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PROPERTIES OF COHERENT MATTER-WAVE BUBBLES ∗
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Recently we have proposed a method to create thin matter-wave bubbles from coherent atoms
trapped in a magnetic potential. In this article we discuss in detail some properties of these
states. In particular, we numerically and analytically investigate the Wigner function to de-
monstrate their non-classical nature. Furthermore, we study the energy and lifetime of the
bubbles, which are long-lived resonances in a radio frequency-induced adiabatic potential,
and illustrate how they can be transformed into excited eigenstates of the original harmonic
trapping potential.

PACS: 42.50.Vk, 03.75.Be, 32.80.Pj, 03.75.Fi

1 Introduction

In a recent paper [1] we have proposed a mechanism for the generation of matter-wave bubbles
from trapped coherent atoms. These bubbles could have applications as probes of condensate
interactions, as an exotic environment for atoms, and as a candidate for a 2D condensate. In this
paper we wish to explore some of the properties of these matter wave states to reveal part of their
non-classical nature.

The bubbles can be formed using a variation of the well-established evaporative cooling
technique (see Fig. 1). In evaporative cooling, magnetically trapped atoms are exposed to a
strong radio frequency (RF) field that couples the bound hyperfine sublevel to an untrapped
state. The motion of the atoms can then be pictured to take place in the adiabatic potentialV− of
Fig. 1. With the RF frequency chosen appropriately, only the hottest atoms can reach and cross
the maximum of the potentialV−, i.e., the resonance region of the RF-induced coupling, and get
expelled from the trap. This mechanism leads to the cooling of the sample.

A completely different dynamical behaviour is to be expected if the atoms are evolving in the
upper adiabatic potentialV+. In particular, if they can be prepared in the quantum mechanical
ground state of this potential, the resulting wave function has the shape of a shell or a bubble. In
an anisotropic harmonic trap the bubble will be centered around the surface of an ellipsoid, in
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Fig. 1. (a) Schematic of field-induced adiabatic potentialsV± for ∆ > 0. Dashed curves show the bare
potentials crossing atrc. Inset: bare potentials showing resonance atrc. (b) Matter-wave bubble prepared
in the adiabatic potentialV+ of (a). Full curve: atomic density|φ+|2/r2 in the adiabatic state+; dotted
and dashed curves show|φ1|2/r2 and|φ2|2/r2, respectively. The inset indicates the preparation process.

the isotropic case, which we will be considering in the following, the bubble is spherical. That it
is indeed possible to create such matter-wave bubbles was shown in Ref. [1].

Before summarizing the creation process let us briefly outline the formal description of our
system. We consider a sample of coherent atoms, e.g., a Bose-Einstein condensate, with two
internal hyperfine ground states|1〉 and |2〉. These states are supposed to possess magnetic
moments which are equal in magnitude but opposite in sign. In view of the spherical symmetry
of our setup the two-component wave function of the system is written asΦi(r) = φi(r)/

√
4πr.

In an interaction picture with respect to the applied RF field the time evolution is determined by
the Gross-Pitaevskii equation

iφ̇1 =
(
−1

2
∂2

∂r2
+
r2

2
− ∆(t)

2

)
φ1 + Ω(t)φ2 +

(
g11|φ1|2 + g12|φ2|2

) φ1

r2
,

iφ̇2 =
(
−1

2
∂2

∂r2
− r2

2
+

∆(t)
2

)
φ2 + Ω(t)φ1 +

(
g12|φ1|2 + g22|φ2|2

) φ2

r2
. (1)

In these equations all quantities are scaled to natural units, i.e., harmonic oscillator frequencyω
and oscillator lengthaho. The wave function is normalized according to

∫∞
0
dr(|φ1|2 + |φ2|2) =

N , with N the total number of atoms. The coupling strength of the applied RF field is denoted
Ω(t). Its effective detuning is defined by∆(t) = (h̄ωf − ∆E(0))/h̄ω, where∆E(0) is the
energy difference between the two hyperfine states at the originr = 0 andωf the RF frequency.
The nonlinearity parameters for the Gross-Pitaevskii equation are given bygij = aij/aho with
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aij the scattering lengths for intra- and inter-species collisions. In this paper, however, we will
not give further consideration to the nonlinear effects. Note that in Eqs. (1) we have not taken
the influence of gravity into account which might lead to a displacement between the extrema
of the magnetic potentials for the two states|1〉 and|2〉 (“gravitional sag”). This effect may be
compensated for by applying an additional optical dipole potential whose center (including the
gravitional shift) coincides with the minimum of the magnetic field.

The creation of matter-wave bubbles now proceeds as shown in the inset of Fig. 1(b). Starting
from a BEC prepared in the internal state|1〉 and in the ground state of the uncoupled trap the RF
field is ramped up at negative detuning∆(t) to a sufficiently large value ofΩ(t). This allows for
a smooth transition of the wave function from the bare trapping field into the adiabatic potential

V+(r, t) =
√

[r2 −∆(t)]2/4 + Ω2(t), (2)

defined as the spatially dependent (high-energy) eigenvalue of the potentials and couplings in
Eqs. (1). Subsequently, the detuning is increased to the desired final value at fixedΩ. If the
process is performed slowly enough, the wave function will always stay in the instantaneous
ground state ofV+ due to adiabatic following. This ground state has a finite lifetime which,
however, increases exponentially for growingΩ (see Sec. 3). In this way, a long-lived bubble
state, e.g., as shown in Fig. 1(b), can be produced.

In this paper we discuss some of the properties of these states, in particular, we investigate
their non-classicality by studying their Wigner function.

2 Wigner function

The Wigner function provides a very useful tool for the study of quantum states. The general
features reflect a phase space distribution for a quantum state, i.e., a quasi-probability distribu-
tion. However, the negativity of the function provides an indication of non-classical behaviour,
while integration over an infinite line gives the correct marginal distributions. Thus to investigate
the non-classical nature of our bubble state, we will calculate the Wigner function.

For a three-dimensional wave function the Wigner function takes the form [2]

W (r,p) =
1

(2π)3

∫
dq Ψ∗(r + q/2) Ψ(r− q/2) eip·q . (3)

Our matter wave bubble is spherically symmetric, i.e.Ψ(r)→ Ψ(r), which means that if we let
r define thez-axis, withθ as the angle betweenr andp andθ′ as the angle betweenr andq, the
equation (3) reduces to

W (r,p) = W (r, p, θ) =
1

(2π)2

∫ ∞
0

dq

∫ 1

−1

dx q2

×Ψ∗(
√
r2 + q2/4 + rqx ) Ψ(

√
r2 + q2/4− rqx )

× exp(ixqp cos θ)J0(qp sin θ
√

1− x2) (4)

when we carry out the integration over the polar angleφ′ relative tor andq. In Eq. (4)J0 denotes
the Bessel function of order 0 andx = cos θ′.
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Fig. 2. Wigner function as a function ofp andθ at fixedr = 0.0, 1.0, 2.5, 4.0, 6.0, and 7.75 for the bubble
state withΩ = 9 and∆ = 60.

To accurately determine the Wigner function for the bubble state, Eq. (4) was evaluated
numerically with a wave functionΨ(r) = Φ+(r) previously obtained from the integration of Eqs.
(1). In the examples shown in Figs. 2 and 3 the state depicted in Fig. 1(b) was used, which has
parametersΩ = 9 and∆ = 60 for the potential. Because the Wigner function for a spherically
symmetric wave function depends on three variables it is hard to display the numerical results.
As a result we have chosen to make two types of section through the distribution. Figures 2 show
the Wigner function for fixedr as a function of the projections ofp on r, i.e., as functions of
pz andpx. In Figs. 3, on the other hand, the roles ofp andr are interchanged, i.e., we see the
Wigner function at fixedp as a function ofrz andrx which are the projections ofr ontop.

To obtain a deeper understanding of the structures shown in these figures we have investigated
an analytically tractable “model bubble” system. To this end, we approximate the wave function
as a radial Gaussian function

φ+(r) ≈ 1
4
√
πσ2

exp
[
− (r − rc)2

2σ2

]
. (5)

In Eq. (5) it is understood thatφ+(r = 0) = 0. For givenΩ and∆ the bubble radius is determined
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Fig. 3. Wigner function as a function ofq andθ at fixedp = 0.0, 0.25, 0.5, 1.0, 1.5, and 2.5 for the bubble
state withΩ = 9 and∆ = 60.

by rc =
√

∆. Expanding the adiabatic potential aroundrc, i.e.,V+(r) ≈ Ω + ∆(r − rc)2/2Ω,
we can identifyσ = (Ω/∆)1/4. The approximate description should be valid if the bubble radius
is large compared to its thickness, i.e.,rc � σ or ∆3 � Ω. This condition is assumed to hold
in the following. In the numerical example, we haverc = 7.75 andσ = 0.62. Under these
circumstances we find the following behaviour of the Wigner function.

1. At r = 0 the angleθ is not defined. We obtain

W (r = 0, p) = π−3 exp(−σ2p2/4)j0(2rcp) (6)

with the spherical Bessel functionj0(x) = sinx/x. The Wigner function is thus oscillating with
a period determined byrc. These oscillations, which indicate the non-classical nature of the
state, decay on a scale given by1/σ [compare with Fig. 2(a)].

2. To determine the Wigner function inside the bubble, i.e.,r<∼rc − σ, we expand

Ψ∗(
√
r2 + q2/4 + rqx )Ψ(

√
r2 + q2/4− rqx )

' exp
{
−η
[
(q − 2q0)2/4 + r2x2

]}
/4πr2

c

√
πσ2 (7)
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Fig. 4. Resonance states of Eqs. (1) at∆ = 60 and various values ofΩ. The wave functions are determined
numerically by slowly decreasing the value ofΩ in Eqs. (1) after initially preparing a bubble state. Full
curves:|φ1|2, dashed:|φ2|2, dotted: sum of both. The displayed wave functions are normalized to one.

with η = (r2
c − r2)/r2

cσ
2 andq0 =

√
r2
c − r2. For smallp sin θ one can make the substitution

J0(p sin θq
√

1− x2) ' J0(2p sin θq0). For the Wigner function it is thus obtained

W (r, p, θ) =
q0

2π3rc

√
π

α
exp(−β2/4α)J0(2q0p sin θ)Re erf(

√
α+ iβ/2

√
α) (8)

with erfx the error function,α = ηq2 + (p cos θ)2/η, andβ = 2q0p cos θ. In particular, for
θ = 0, the Bessel function does not play a role, and we see that at fixedr, W (r, p, θ = 0)
is essentially a Gaussian inp. For smallerr this Gaussian is modulated by slight oscillations
induced by the error function, but these oscillations die away asr grows and the error function
becomes constant. This behaviour is clearly demonstrated in Figs. 2. Finally, we also note that
W (r, p = 0) > |W (r, p, θ)|, and, from Eq. (8),W (r, p = 0) is a monotonically decaying
function ofr [see Fig. 3(a)].
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3. For largerp sin θ we replace the Bessel function in Eq. (4) by its asymptotic expansion
thereby still neglecting its dependence onx. Together with Eq. (7) this yields the result

W (r, p, θ) =
(r2
c − q2)1/4

16π3rc
√
αp sin θ

Re

{
exp

[
− (p sin θ)2

η
− γ2

4α
+ 2iq0p sin θ − i

π

4

]

×
[
erf(
√
α+ iγ/2

√
α)− erf(−

√
α+ iγ/2

√
α)
]}

(9)

with γ = 2q0p cos θ + ip2 sin(2θ)/η. Typically, the approximations (8) and (9) have an over-
lapping region of good accuracy, e.g., at intermediatep for fixed q andθ. At θ = π/2 Eq. (9)
simplifies to

W (r, p, θ = π/2) =
(r2
c − q2)1/4

8π3rc
√
αp

exp(−p2/η) cos(2q0p− π/4)erf
√
α. (10)

We see that at fixedr,W considered as a function ofp has still a Gaussian-shaped envelope, but
in contrast to the caseθ = 0 this envelope is strongly modulated by oscillations induced by the
cosine appearing in Eq. (10). Only ifr gets close torc the period of these oscillations grows
rapidly and they become less and less manifest in the shape of the Wigner function. Again,
these conclusions are corroborated in Figs. 2. In Fig. 2(f) we see that whenr = rc = 7.75
we have an almost Gaussian distribution inpz andpx. The Wigner function is broader in the
z-direction because atq = rc the matter wave is more confined in the radial direction than it is
in the transverse direction.

4. Forr > rc the exponent appearing in Eq. (4) after insertion of the wave function (5) has
to be expanded aroundq = x = 0. For this case we only give the result

W (r, p = 0) =
σ2

4π3r(r − rc)
exp

[
−(r − rc)2/σ2

]
(11)

which shows (asW (r, p = 0) > |W (r, p, θ)|) that the Wigner function is exponentially decaying
outside the bubble.

The plots of the Wigner function at fixedp, i.e., Figs. 3, complement our above discussion
of W which focussed on the behaviour withp at fixedq. For p = 0 the Wigner function is
everywhere positive and monotonically decaying withq as discussed under 2 above. For small
momentump > 0 some structure develops in the center thereby evidently displaying negativity
for smallq. As p is increased the structure becomes more complex and exhibits curved fringes
whenp reaches 1.0 [Fig. 3(d)]. Further increases inp result in smaller, but even more complex
curved structures, until atp = 2.5 [Fig. 3(f)] we find essentially two lobes of probability dis-
tribution, located at (rx ∼ 0, rz ∼ ±rc), with a fringed structure isolated in the centre. This
distribution is rather reminiscent of the Wigner function of the even and odd coherent states [3],
but the suggestion here is that the lobes arise from opposite parts of the bubble, and the fringes
are the result of quantum interference between them.

It should be noted that the analytical expressions given above for the Wigner function also
allow to estimate the influence of the nonlinear interactions included in Eqs. (1). As these in-
teractions tend to broaden the wave function due to the interatomic repulsion, their effect can
be studied in a simple way by investigating the behaviour ofW as the width parameterσ is
increased.
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3 Energy and lifetime

The bubble states are not truly bound states with an infinite lifetime. Rather, they should be con-
sidered resonances, albeit long-lived ones, of the adiabatic potentialV+. This feature becomes
obvious if Eqs. (1) are transformed to the dressed state basis, i.e., the basis that diagonalizes the
bare potentials and the couplings at each pointr [4]. This representation shows that the two adia-
batic wave function componentsφ+ andφ− are coupled by kinetic terms. These terms, however,
become less important for growingΩ. The decay rateγ of the bubble may be determined with
the help of semiclassical methods developed in connection with molecular predissociation [4, 5].
Applying these techniques we find thatγ = −2Im E0, where the complex ground state energy
E0 is a solution of

[e2πδ(E) − 1] cos Φ(E)e−i[β(E)−Φ(E)] + cosβ(E) = 0 (12)

with β(E) = π(2E + ∆− 1)/4 and the quantitiesδ(E) andΦ(E) characterizing the scattering
matrix of the linearized potential crossing problem. For these quantities there are several analyt-
ical approximations in the literature [6]; following, e.g., Ref. [4] one can putδ(E) = 1/8ab and
Φ(E) = 2b3/3a+ argΓ[iδ(E)] + δ(E) ln[δ(E)]−2δ(E) ln(b/a) +π/4 with a2 = ∆/(8Ω3) and
b2 = E/Ω. For large enoughΩ, i.e.,exp[2πδ(E)]� 1, one obtains

γ =
2 cos2 β(E)

{exp[2πδ(E)]− 1}(∂Φ/∂E)
(13)

where all quantities have to be evaluated at the approximate energy of the bubble

ReE0 ' Ω +
√

∆/4Ω. (14)

This estimate for the energy follows directly directly from the harmonic expansion ofV+ around
its minimum atrc. Equation (14) can be expected to be accurate over a large range ofΩ as the
bubble width only grows withΩ1/4. Equation (13) leads to two important conclusions. First of
all, the decay is exponentially suppressed with growingΩ. Secondly, forReE0 = 2k + 3/2 −
∆/2 with integerk the decay rates become very small. In these cases the matter-wave bubble is
in resonance with an eigenstate of the bare harmonic trapping potential. This stabilization effect
may be used to obtain extremely long-lived states already for moderate coupling strengths.

So far we have considered the case of strong coupling, i.e.,Ω large enough that the concept
of adiabatic potentials is meaningful and the bubble is well localized at the bottom ofV+. How-
ever, it is also of interest to study the system behaviour when, at fixed detuning∆, the coupling
strengthΩ is lowered to zero. It turns out that resonance states exist at all values ofΩ – although
some have relatively short lifetime – but their qualitative character is changed profoundly as it
is displayed in Figs. 4. For smaller values ofΩ the wave function evolves into an eigenstate of
the bare harmonic potential. In Ref. [1] it was proposed to use this method to experimentally
prepare atoms in high-lying trap eigenstate. From Figs. 4 we can distinguish, at∆ = 60, two
different phases in this process. In the first stage, represented by Fig. 4(a) [compare to Fig. 1(b)],
the original maximum in the wave function which constitutes the bubble more or less maintains
its shape. The two componentsφ1 andφ2 continue to have approximately equal weight and the
adiabatic description is still applicable. At the same time, a smaller part of the wave function be-
gins to fill the interior of the shell thereby already displaying oscillatory structures characteristic



Properties of coherent matter-wave bubbles 367

of the bare trap eigenstate. In the second phase, shown in Figs. 4(b)-(c) the bubble itself begins to
disintegrate, the componentφ2 starts to vanish whereas the inner oscillatory structures continue
to grow. The resonance is most unstable, i.e., the lifetimeγ−1 is lowest, aroundΩ ≈ 4 which
here coincides with the beginning of the disintegration process and the change in character of the
resonance.

The lifetime of the resonances in the limit of low coupling, i.e.,exp[2πδ(E)] − 1 � 1, is
given by

γ = 4{exp[2πδ(E)]− 1} cos2 Φ(E)/π. (15)

Again, all quantities have to be evaluated at the energy of the resonance, which in this case can be
taken as the energy of the emerging eigenstate in the bare trap to a good degree of approximation.
It is an interesting question as to which harmonic eigenstate the resonance actually evolves into.
Of course, it can immediately be answered by numerically solving Eq. (12). We have not been
able to give a simple qualitative argument, though. As a rule of thumb, we find that around∆ =
20 the resonance evolves into the second eigenstate with positive energy, i.e.,(2n−1/2)−∆/2 ≈
2.5...4.5 with n the number of radial nodes ofφ1(r). Around∆ = 60 we find(2n−1/2)−∆/2 ≈
4.5...6.5, i.e., evolution into the third eigenstate of positive energy [compare with Fig. 4(d), where
n = 18].

4 Conclusion

In this paper we have extended our initial study [1] on the creation and properties of coherent
matter-wave bubbles. Here we have put the emphasis on elucidating the non-classical nature
of these states by analytically and numerically investigating their Wigner function. The Wigner
function displays pronounced negativity which implies that the bubbles cannot be considered
as “quasi-classical objects”. In this context we wish to mention that we are not aware of other
detailed discussions of the Wigner function of genuine three-dimensional quantum states.

Furthermore we have studied the energy and lifetime of the matter-wave bubbles which are
resonance states in the RF-incuded adiabatic potential. We have illustrated the transformation
from bubble state to harmonic trap eigenfunction that occurs when the field intensity is reduced
to zero.
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