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OBSERVABLE NONCLASSICAL CORRELATION EFFECTS
IN THE DYNAMICS OF A BIDIMENSIONALLY CONFINED ION ∗
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The occurrence of a peculiar correlation effect in the quantum dynamics of an ion confined in
a 2D Paul microtrap is reported. We analytically find that when the ion, prepared in a SU(2)
vibrational coherent state, is irradiated by two orthogonal laser beams, the time evolution of
the quantum covariance between two clearly interpretable bosonic observables displays an
high sensitivity to the initial state parameters. Both the nonclassical nature of this effect and
a simple proposal for its detection is briefly discussed.

PACS: 42.50.Dv, 42.50.Vk, 32.80.Pj

1 Introduction

Over the last few years we have witnessed a very rapid development of cooling and trapping
techniques both for neutral atoms and for ions [1–4]. These progresses have made it possi-
ble performing sophisticated experiments wherein several examples of couplings between a few
bosonic and fermionic dynamical variables have been realised [4–9]. If, in fact, an ion confined
in a miniaturised Paul trap is exposed to suitable configured laser beams, the 3D harmonic mo-
tion of the ionic centre of mass gets entangled with the time evolution of the internal degrees
of freedom. Some peculiar aspects of the vibronic response stemming from such a practically
environmental loss-free coupling, have been brought to light and successfully exploited for en-
gineering several nonclassical states [6,7,10–20], implementing quantum logic gates [5,21,22],
realising tomografic measurement for reconstructing the density matrix of the system [23–26],
and, more in general, discovering purely quantum effects characterising the ionic quantized os-
cillatory motion [27–32]. Many hamiltonian models have been reported so far in the literature to
describe physical properties of trapped ions. Some models explore physical situations wherein
only the ionic motion along a prefixed direction of the trap is effectively influenced by the pres-
ence of the laser beams. When the induced vibronic coupling is instead extended over two (three)
independent directions of the trap, then one refers to the correspondent physical scenario as to a
2D (3D) trapped ion.
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In this paper we study the motion of an ion isotropically confined in the radial plane of a
Paul microtrap when it is irradiated by a properly chosen configuration of external laser beams.
We show that there exist experimentally interesting conditions under which the dynamics of
this system may be exactly treated. Exploiting this fact, and under suitable initial conditions,
we succeed in bringing to light the existence of pairs of simple vibrational observables whose
quantum correlations exhibit, at given time instants, nonclassical effects transparently reflecting
the discreteness of the harmonic oscillator energy.

2 Hamiltonian model and its exact dynamics

Consider a two-level ion of massM confined in a bidimensional isotropic harmonic potential
characterised by the trap frequencyν. Indicate byâ (â†) and b̂ (b̂†) the annihilation (creation)
operators of the vibrational quanta relative to the oscillatory motion along thex andy axes of the
trap respectively. Accordingly, the position and momentum operators can be written as

X̂ =
√

h̄
2νM

(
â† + â

)
Ŷ = 1√

2νM

(
b̂† + b̂

)
(1)

P̂x = i
√

h̄νM
2

(
â† − â

)
P̂y = i

√
h̄νM

2

(
b̂† − b̂

)
(2)

It is well known that the bidimensional harmonic oscillator may be associated to a generalised
Schwinger angular momentum operatorĴ ≡ (J1, J2, J3) as follows

Ĵ1 =
â†b̂+ b̂†â

2
Ĵ2 =

â†b̂− b̂†â
2i

Ĵ3 =
â†â− b̂†b̂

2
(3)

Assume that the ion is driven by two laser beams applied along the two orthogonal directions
x̄ and ȳ with an angle ofπ/4 relative to thex andy axis respectively, having phasesφx̄ = 0
andφȳ = π and equal intensities and wavelengths. It is possible to demonstrate that, if the
laser beams are both tuned to the second lower vibrational sideband, the physical system under
scrutiny is described, in the Lamb-Dicke limit and in the interaction picture, by the following
effective Hamiltonian [17]

Ĥ = g
[
(âb̂)σ̂+ + (â†b̂†)σ̂−

]
(4)

where σ̂z = |+〉〈+| − |−〉〈−|, σ̂+ = |+〉〈−|, σ̂− = |−〉〈+| are the atomic operators,|+〉
and |−〉 being the ionic excited and ground states respectively. In equation (4)g measures the
strength of the interaction between the internal and external degrees of freedom and depends on
physical parameters such as the laser intensity and wavelength and the amplitude of oscillation
of the ionic centre of mass.

It is easy to verify that the total number of excitations

N̂ = â†â+ b̂†b̂+ σ̂z + 1 (5)

and the difference of vibrational quanta, relative to thex andy harmonic motion,̂a†â−b̂†b̂ = 2Ĵz
are constants of motion. Let’s denote with|na, nb〉 = |na〉|nb〉 the simultaneous eigenstates of
â†â andb̂†b̂ such that:

â†â|nanb〉 = na|nanb〉 b̂†b̂|nanb〉 = nb|nanb〉 (6)
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Suppose to prepare the ion att = 0 in the state|ΨN (0)〉 = |τ = 1, j0 = N
2 〉|−〉, where

|τ = 1, j0 =
N

2
〉 ≡ 1

2N/2

N∑
k=0

(
N
k

)1/2

|N − k, k〉 ≡

≡
N∑
k=0

Pk|N − k, k〉 (7)

is a SU(2) coherent state [34,35]. It is not difficult to see that

|τ = 1, j0 =
N

2
〉 = e+iπ2 Ĵ2 |0, N〉 (8)

and that, from Eqs. (1), (2) and (3) the operatorĴy is proportional to thez-component of the

ionic adimensional angular momentum operatorL̂z ≡ 1
h̄

(
X̂P̂y − Ŷ P̂x

)
≡
(
â†b̂− b̂†â

)
=

2Ĵ2. Thus, the generation of the initial state|τ = 1, j0 = N
2 〉 amounts at realising a Fock state

of the ion motion along the direction̄x.
It is worth noting that Fock states of the unidimensional ionic c.m. motion in a Paul trap have

been experimentally realised by Meekhof et al. [6,33].

The states|N − k, k〉 appearing in Eq. (7) are eigenstates of the operator
(
â†â+ b̂†b̂

)
all

pertaining to the common eigenvalueN = 2j0 representing the initial total number of vibrational
quanta.

If, at t = 0, we turn on the laser fields realising the Hamiltonian model (4), then at any
subsequent instant of timet, the state of the system, in the Schrödinger picture and apart from an
overall phase factor, can be written down as follows

|ΨN (t)〉 = |ϕ−(t)〉|−〉 − i|ϕ+(t)〉|+〉 (9)

with

|ϕ−(t)〉 =
N∑
k=0

Pk cos(fkt)|N − k, k〉 (10)

|ϕ+(t)〉 =
N−1∑
k=1

Pk sin(fkt)|N − k − 1, k − 1〉 (11)

where

fk = 2g
√

(N − k)k (12)

are the Rabi frequencies. Eq. (9) clearly shows that the laser-ion interaction, and in particular the
momentum exchange between the classical laser beams and the ion, entangles the ionic internal
and external degrees of freedom.
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3 Time evolution of momenta e positions covariances

We now concentrate our attention on the componentĴ1 of the Schwinger angular momentum
operator. Since the system is initially prepared in an eigenstate of the operatorN̂ defined by
equation (5), taking into consideration that the total number of excitations is a constant of motion,
then the state|ΨN (t)〉 as given by equation (9) is an eigenstate ofN̂ pertaining to the initial
eigenvalue2j0. This implies, by virtue of equations (1) and (2), that the expectation values of the
operatorsX̂, Ŷ , P̂x andP̂y vanishes at anyt. Accordingly it is not difficult to convince oneself
that, using the notation〈A(t)〉 ≡ 〈ΨN (t)|A|ΨN (t)〉, the relations

〈Ĵ1〉 ∝ 〈X̂Ŷ 〉 − 〈X̂〉〈Ŷ 〉 ≡ C(X̂, Ŷ , t) (13)

〈Ĵ1〉 ∝ 〈P̂xP̂y〉 − 〈P̂x〉〈P̂y〉 ≡ C(P̂x, P̂y, t) (14)

hold at anyt. In words, the mean value of̂J1 , at any time instantt, is proportional both to the
covarianceC(X̂, Ŷ , t) between the position operatorŝX, Ŷ and to the covarianceC(P̂x, P̂y, t)
between the momentum operatorsP̂x, P̂y. It is then interesting to consider in more detail the time
evolution of〈Ĵ1(t)〉 since it gives direct information on momenta and positions covariances.

From Eqs. (3), (9), (10) and (11) one gets

〈Ĵ1(t)〉 =
N

2

N−1∑
k=0

∣∣∣P (N−1)
k

∣∣∣2 cos[(fk − fk+1)t] +

+
N

2

N−1∑
k=0

∣∣∣P (N−1)
k

∣∣∣2 [√ k

k + 1
N − k − 1
N − k

− 1

]
sin(fkt) sin(fk+1t) (15)

where∣∣∣P (N−1)
k

∣∣∣2 =
(N − 1)!

(N − k − 1)!k!
1

2N−1
(16)

It is possible to show, by lengthy calculations, that the modulus of the second term appearing in
the right hand side of Eq. (15) is always≤ 1. In light of this consideration Eq. (15) can be cast
in the form

〈Ĵ1(t)〉 =
N

2

N−1∑
k=0

∣∣∣P (N−1)
k

∣∣∣2 cos[(fk − fk+1)t] +O(1) (17)

Figure 1 displays the time evolution of〈Ĵ1(t)〉 in correspondence to two different exemplary
values of the initial total number of vibrational quanta,N = 20 andN = 21.

These plots, obtained from numerical computation of the exact expression (17), suggest the
existence of a rich dynamical behaviour and clearly display the occurrence of constructive and
destructive interference, at specific time instants, among the oscillatory terms present in the right
hand side of Eq. (17) .

In order to get an analytical confirmation of such a behaviour, we look for a closed expression

of 〈Ĵ1(t)〉. To this end we recall, first of all, that
∣∣∣P (N−1)
k

∣∣∣2 is a binomial distribution peaked
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Fig. 1. Time evolution of〈Ĵ1(t)〉 in correspondenceN = 20 (gray line) andN = 21 (black line)

on its mean value〈k〉 = N−1
2 with a variance of

√
N−1
2 . We then may assume that, in the limit

N � 1, only the terms satisfying the inequalityN−1
2 −

√
N−1
2 ≤ k ≤ N−1

2 +
√
N−1
2 effectively

contribute to the sum appearing in Eq. (17). Moreover, ifN � 1, it is possible to linearize, with
respect tok, the frequency differencefk − fk+1, obtaining the following expression

fk − fk+1 = g

(
2k −N + 1

N

)
+ gO

(
1
N2

)
(18)

Inserting Eq. (18) into Eq. (17) and exploiting the identity
n∑

m=0

(
n
m

)
cos(xm+ a) = 2n cosn

(x
2

)
cos
(
x
n

2
+ a
)

(19)

finally yields

〈Ĵ1(t)〉 ' N

2
cosN−1

(
gt

N

)
(20)

As a consequence of the approximated approach followed to derive Eq. (20) from Eq. (17) with
the help of Eq. (18), expression (20) has a limited temporal validity, satisfying the condition

gt� N2 (21)

From Eq. (20) it is easy to deduce that at the time instanttN = πN
g , compatible with (21), we

get

〈Ĵ1(t)〉 ' (−1)N−1N

2
(22)

This result clearly evidences that our system possesses an inherent peculiar sensibility to the
parity of the initial total numberN of vibrational quanta. In fact, Eq. (22) says that there exists a
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N -dependent instant of timetN at which〈Ĵ1(t)〉 assumes values crucially related to the evenness
or oddness ofN . In more detail,〈Ĵ1(tN )〉 is equal to−N/2 whenN is even and+N/2 when
N is odd. Remembering the link between〈Ĵ1(t)〉 and the quantum covariancesC(X̂, Ŷ , t) and
C(P̂x, P̂y, t) and taking into consideration that the maximum (minimum) mean value ofĴ1 is
N/2 (−N/2), this result can be readily interpreted in the following way. The dynamics of the
system under scrutiny is characterised by the existence of a N-dependent instant of time at which
the ionic oscillatory motions along thex andy axis are maximally or minimally correlated in
position and momentum in dependence on the oddness or evenness ofN respectively.

4 Discussion and conclusive remarks

In this paper we have analysed the dynamics of the quantity〈Ĵ1(tN )〉which, as put into evidence
in Section 3, gives physically transparent information on the spatial and momentum correlations
between the two oscillatory motions along the axis of the trap. We have presented a new quantum
effect in its dynamics showing that there exists an instant of timetN at which this quantity
undergo variations proportional toN further to a change of one quantum only in the initial
total numberN � 1 of vibrational quanta. Such a peculiar dependence onN may be traced
back to the specific set of Rabi frequencies characterising the dynamics of our system and is
therefore a phenomenon having a nonclassical origin being directly related to the discreteness of
the quantum energy of the harmonic oscillator. We now intend to address briefly the question of
the measurability of〈Ĵ1(tN )〉. Introducing the annihilation operators along the two bisectorsx̄
andȳ of the trap axisx andy

âx̄ =
1√
2

(â+ b̂) b̂ȳ =
1√
2

(−â+ b̂) (23)

it is immediate to deduce that the operatorĴ1, as given by Eq. (3), can be written down as follows

Ĵ1 =
n̂x̄ − n̂ȳ

2
(24)

wheren̂x̄ = â†x̄âx̄ andn̂ȳ = b̂†ȳ b̂ȳ are the number operators relative to the motion along thex̄

andȳ directions. According to Eq. (24), measuring〈Ĵ1(t)〉 is equivalent at measuring the mean
vibrational quanta along the directionsx̄ andȳ. it is worth noting that the measurement of〈n̂〉
along a given direction is currently performed in the experiments and in particular it is deduced
from the population analysis of motional states [6, 33]. Moreover several other methods for
reconstructing the vibrational distribution have been recently proposed [36–38], including QND
techniques [38,39].

These considerations legitimate us to say that we have brought to light for the first time a new
measurable nonclassical correlation effect in the dynamics of an ion isotropically confined in a
2D microtrap.

Before concluding we wish to point out that, by virtue of the rotational invariance of the sys-
tem with respect to thez-axis of the trap, our results, here presented prefixing a pair of orthogonal
directions in the radial plane of the trap, may be generalised getting rid of the assumptions con-
cerning the directions of both the laser beams and the initial oscillatory motion.
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