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PULSED NONLINEAR OSCILLATOR –
CLASSICAL AND QUANTUM DYNAMICS ∗
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We discuss a system comprising an anharmonic oscillator permanently excited by a series
of ultra-short coherent pulses. Assuming that the system was initially in the vacuum state
we investigate and compare its classical and quantum dynamics. Moreover, we compare the
picture based on the single classical trajectory with the “averaged” one.

PACS: 42.50.Dv, 42.65.Sf

1 The quantum model

Models involving a nonlinear oscillator has been a subject numerous papers ( [1]– [8] and the
references quoted therein). We discuss the model identical to that discussed in [6] and [7].
It contains an anharmonic oscillator (the oscillator can be interpreted as the third-order Kerr
medium), located inside a one-mode, high-Q cavity. The cavity is irradiated by a seriesof ultra-
short classical pulses. The evolution of our system is governed by the following Hamiltonian (in
the interaction picture):

H = HNL +HK , (1)

where

HNL =
χ

2
(
a†
)2
a2 (2)

and

HK = ε
(
a+ a†

) ∞∑
k=1

δ(t− kT ) . (3)

The quantityχ denotes nonlinearity of the oscillator and can be interpreted as the third-order
nonlinear susceptibility of the Kerr medium (anharmonic oscillator),ε measures the strength of
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the external field – cavity field interaction, whereasT is the time between two subsequent pulses.
We use units of̄h = 1. In fact, the Hamiltonian (1) is the same as that for the system discussed
in the paper [6]. Moreover, we assume that the timeT is long enough to exceed1/ω, whereω
is the external field frequency. Thanks to this assumption the series of ultra-short pulses can be
approximated by a series ofDirac delta“functions” [Eq.(3)] and the rapid oscillations are washed
out in the interaction picture. We note, that between two subsequent pulses the evolution of the
system is governed by the HamiltonianHNL. Thus, we define the “free” nonlinear evolution
operatorUNL as follows:

UNL = e−iχT n̂(n̂−1) , (4)

wheren̂ = a†a is the photon number operator. Moreover, we introduce the “kick” evolution
operatorUK responsible for changes of the system under the influence of the laser pulses.

UK = e−iε(a
†+a) . (5)

Thus, the evolution of the system from the moment of time just after thek-th pulse up to the time
after the(k + 1)-th pulse is governed by the unitary evolution operator

U = UNLUK . (6)

Acting n times with the operatorU on the wave-function|Ψ〉 defined fort = 0, we obtain the
wave-function describing the system at the moment of time just after then-th laser pulse:

|Ψn〉 = Un |Ψ(t = 0)〉 . (7)

Obviously, these calculations can be easily performed numerically in the same way as in [6].

2 Classical dynamics

Since we are interested in comparing the classical and quantum mechanical models, we have
to introduce the appropriate formulas describing classical evolution of the system. We start our
considerations from the equation of motion for the annihilation operatora:

da

dt
= −iχa†aa . (8)

Of course, we assume at this stage that damping is absent. Therefore, the number of photons is an
integral of motion during the time between two laser pulses, and the operatora†a can be treated
in Eq. (8) as constant. Hence, equation (8) is easily solvable and the solution for the operatora
is of the form:

a(τ) = e−iχa
†aτa . (9)

It is obvious thatτ is restricted to moments of time belonging to the interval between two laser
“kicks”. To include the influence of the laser pulse on the operatora we have to transform
Eq.(9) using the evolution operatorUK . SinceUK is the well known shift operator, equation (9)
becomes

ak+1 = e−iχT (a†
k
+iε)(ak−iε)T (ak − iε) . (10)
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We now replace the creation and annihilation operatorsa† anda by the complex numbersα∗ and
α respectively:

αk+1 = (αk − iε)e−i(χ|αk−iε|
2)T . (11)

This equation allows us to find the classical map of the system and, consequently, the energy
|α|2 for the system discussed here. This method varies from that used in [4], where the cumulant
method has been applied.

Since we will be comparing the classical and quantum models and will assume that the quan-
tum system is initially in the vacuum state, we shall need to find a way to simulate the quantum
vacuum state in classical picture. We will follow the procedure proposed by Milburn and Holmes
[8]. Instead of studying single classical trajectories we will investigate an ensemble of trajecto-
ries, all starting from a circle with the center atα = 0 and the radius equal to0.5. These
trajectories are chosen randomly (the starting points of the trajectories are generated in Monte-
Carlo fashion) from within the above mentioned circle. Next, we will calculate an “average”
trajectory that will be treated as the counterpart of the quantum trajectory.

3 Results and discussion

In this part we briefly discuss the quantum and classical dynamics of our system corresponding to
various parameters describnig the system. Thus, Fig. 1 corresponds to weak external excitations
(ε = π/25) and the timeT = π. In Fig. 1 we compare the dynamics of the classical mean
energyn = |α|2 (Fig. 1a,b) and of average photon number

〈
a†a
〉

(Fig. 1c) for the system.
Moreover, Fig. 1d depicts classical, stroboscopic map of the evolution of the complex amplitude
α introduced in (11). We see that the single classical trajectory (trajectory starting from a single
point - Fig. 1a) is regular and oscillates between0 and∼ 0.3. However, as we have mentioned,
the “averaged” trajectory contains information from all the trajectories starting from the circle
centered at the point Re(α) = Im(α) = 0. Therefore this trajectory (Fig. 1b) differs significantly
from that shown in Fig. 1a. It oscillates around∼ 0.37 and these oscillations are damped. In
fact, this damping is rather slow, so that the amplitude of the oscillations remains equal to about
0.15 (after∼ 200 laser pulses). For this case the dynamics of our system is regular, as seen from
Fig. 1d, where the classical map of these trajectories is depicted. In practice, all of them exhibit
regular behaviour.

For this case the behavior of the quantum model of our system differs significantly from that
corresponding to the classical model. And thus, Fig. 1c shows sinusoidal oscillations of the mean
number of photons between0 and1. This is the same behavior as that discussed in [6] and it
corresponds to one-photon state generation (OPSG). We do not observe here any correspondence
between the classical and quantum trajectories as was the case in [8]. This is a consequence of
the fact that the mean number of photons is not large enough.

Fig. 2 corresponds to the same situation as that depicted in Fig. 1 but for stronger laser pulses
(ε = π/5). We see that|α|2 for the single trajectory (Fig. 1a) exhibits chaotic behavior reaching
∼ 120 for times exceeding∼ 200 pulses. It is obvious that for stronger external fields regular
trajectories split and chaotic behavior occurs as seen in Fig. 2d. Instead of regular trajectories
we observe growing and spreading in time cloud of chaotically located points. Nevertheless,
despite this chaotic picture, the “averaged” classical trajectory grows almost linearly in time
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Fig. 1. Classical mean energy|α|2 (a), “averaged” classical energy (b), mean number of photons
〈
a†a
〉

(c)
and stroboscopic, classical map ofα (d). The strength of external pulsesε = π/25 and the time between
two subsequent pulseT = π.

(Fig. 2b). The quantum evolution of the system (Fig. 2c) leads to an increase in the mean number
of photons, albeit different in nature. We observe rapid oscillations that modulate slowly varying
variations. The latter are very slow, so it may be too slow in practice to determine the character
of the growth in|α|2. Figure 3 corresponds to the case of strong external excitations (ε = pi)
and short times between two subsequent pulses (T = 0.02). For this case, the mean energy|α|
oscillates regularly between0 and∼ 70. Fig. 3a shows that two pictures: single trajectory picture
(circle marks) and “averaged” trajectory one (solid line), give very similar results. Moreover, as
seen form Fig. 3b, the mean number of photons in the quantum model behaves almost identicaly
as the mean energy in the “averaged” trajectory picture and oscillates between0 and∼ 75.
Obviously this result agrees with that for the single trajectory simulations (circle marks).

It seems obvious that for a greater number of photons the quantum description should be close
to the classical one and, as a consequence, the quantum state should correspond to the classical
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Fig. 2. The same as in Fig.1 but for stronger laser pulses (ε = π/5)
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Fig. 3. Classical mean energy|α|2 (a,b – circle marks), “averaged” classical energy (a – solid line) and
mean number of photons

〈
a†a
〉

(b – solid line) for strong external fieldε = π and short time between two
subsequent pulsesT = 0.02.
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−10

−5

0

5

10

−10

−5

0

5

10

0

0.2

0.4

0.6

0.8

1

(a)

Re(α)
Im(α)

Q

−10

−5

0

5

10

−10

−5

0

5

10

0

0.2

0.4

0.6

0.8

1

(b)

Re(α)
Im(α)

Q

−10

−5

0

5

10

−10

−5

0

5

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c)

Re(α)
Im(α)

Q

−10

−5

0

5

10

−10

−5

0

5

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d)

Re(α

)
Im(α)

Q

−10

−5

0

5

10

−10

−5

0

5

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e)

Re(α)
Im(α)

Q

−10

−5

0

5

10

−10

−5

0

5

10

0

0.2

0.4

0.6

0.8

1

(f)

Re(α)
Im(α
)

Q

Fig. 4. HusimiQ-function for the timet = 0 (a) and after3th, 4-th, 5-th, 6-th and8-th pulse (b, c, d, e, f
respectively). The parameters are the same as for Fig. 3.

one. However, for the case discussed here, quatnum states still manifests its quantum nature.
Thus, Fig. 4 depicts the evolutrion of HusimiQ-function of the quantum state corresponding to
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the same parameters as in Fig. 3. We see that for the timet = 0 theQ-function corresponds to
the vacuum state and is located at the origin of the system of coordinates. Then, after3 pulses
this function is translated on the complex plane of the parameterα toward negative values of
Im(α). After the next pulse theQ-function changes its character from that remaining coherent
state to that of crescent type similar to that corresponding to the displaced Kerr state [3]. This
state is of the quantum nature and its properites are far from the classical picture. Next, up to6-th
pulse,Q-function is rotated around the center of the system and after8-th pulseQ-function is
shifted down toward the point of the initial position. This behaviour can be explained similarly as
for the states discussed in [9]. As the mean number of photons increases sufficiently the unitary
operatorUNL [Eq. (4)] starts to play a significant role in the whole evolution operatorU [Eq. (6)]
thanks to the fact thatUNL contains a factor proportional ton2 and becomes dominant when we
compare it with the factors proportional to

√
n andn. Consequently, the nonlinear evolution has

the leading role andQ-function changes its shape to the crescent type and is rotated around the
center of the system.

4 Conclusions

We have discussed the system comprising the nonlinear oscillator irradiated by the series of
ultra-short laser pulses. The two models were considered: classical and quantum ones. For these
models we have found the time evolution for the mean energy and average number of photons,
respectively, that have been treated as classical and quantum trajectories. Due to the fact that for
the quantum model the initial state is determined with some incertainty the problem of simulation
of this fact in the classical picture forced us to introduce “averaged” classical trajectories as in [8].
Consequently, in this paper we compare the results obtained within the three models: single
classical trajectory, “averaged” one and quantum description model. We have shown that for the
time between two subsequent pulsesT = π those three models give us different results. For
shorter timesT = 0.02 and for stronger external excitationsε = π the mean energies and mean
number of photons evolve in a similar way within all models discussed. Nonetheless, despite
this result, the clasical and quantum evolutions lead to the states that are different in nature. It
is evident as we examine the HusimiQ-function corresponding to this case. TheQ-function
exhibits specific quantum properties of the state obtained in the quantum model, contrary to the
classical states discussed in the classical ones.

AcknowledgementAuthor wishes to thank Prof. Tanaś for for valuable discussions and sugges-
tions.
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[8] G. J. Milburn and C. A. Holmes:Phys. Rev. A 44 (1991) 4704
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