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TWO-LEVEL ATOM IN A STRONG FIELD AND/OR A TAILORED RESERVOIR ∗
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We present a generalized master equation, in an operator form, for a two-level atom driven by
a strong classical field and damped into a “tailored” reservoir with non-flat density of modes.
The master equation is derived under the Born and Markov approximations. To derive the
master equation the dressing transformation on the atomic operators is performed first and
next the dressed operators are coupled to the reservoir and the corresponding damping rates
are calculated. The modifications introduced by a strong field and/or by the reservoir with
non-flat density of modes lead to non-standard terms in the master equation, some of which
are reminiscent of terms known for squeezed vacuum reservoirs.

PACS: 42.50.-p,42.50.Hz,42.50.Lc

1 Introduction

When an exited atom is interacting with a reservoir of electromagnetic field modes it emits irre-
versibly in the spontaneous emission process its energy into the reservoir. Usually, it is supposed
that the damping rate, at which the atom looses its energy by radiating photons into the reser-
voir, is an inherent property of the atom and can be expressed as the Einstein A coefficient for
spontaneous emission. This is, however, only true when the atom is radiating to the ordinary
vacuum and is excited by not too strong external field, which does not affect the level structure
of the atom. In fact, when the atom is placed inside a cavity its damping rates depend on the
cavity mode structure [1–3]. The modifications are important when the density of modes of the
reservoir essentially depends on frequency and can be ignored for when the density of modes is
flat.

When the driving field is very strong the energy structure of the atom can be changed in
such a way that also damping rates will depend on the intensity of the driving field [4, 5]. The
influence of the mode structure on the atomic properties was analyzed by Lewensteinet al. [3,6]
within a non-Markovian approach.
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In this paper we present an operator form of the master equation for a two-level atom driven
by a strong laser field and damped into a “tailored” reservoir. The equation has been derived un-
der the Born and Markov approximations, but nonetheless it takes into account the dependence
of the atomic relaxation rates on the strength of the driving field as well as on the density of
modes of the reservoir with a non-flat mode structure. It is a generalization of earlier results. A
transparent and very simple form of the master equation allows, for example, an easy identifica-
tion of new squeezing-like terms, which are reminiscent of the real squeezing terms in the master
equation for an atom in a squeezed vacuum. We discuss some consequences of such terms here.

2 Master equation

We analyze a model of a two-level atom driven by a strong monochromatic laser field of fre-
quencyωL with the Rabi frequencyΩ and detuned by∆ = ωL − ωA from the atomic transition
frequencyωA. The atom is placed in a reservoir with a density of modes structure that depends
in an essential way on frequency. The traditional approach to include damping into the evolution
of an atom driven by a strong laser field assumes that the damping rates do not depend on the
strength of the field and are the same as for spontaneous emission. An alternative approach takes
into account the interaction of the strong field with the atom first to derive the “dressed states”
of the atom, and next takes the coupling of the dressed atomic states to the reservoir in order to
calculate the damping rates [7]. The order in which the two couplings are invoked is important
and leads to different results [8]. In this paper, we first perform the dressing transformation on
the atomic operators and only after that we couple the dressed atomic operators to the reservoir.
In this way we obtain a quite simple and transparent, operator form of the master equation.

The Hamiltonian of the system has the form

H = HA +HR +HL +HI , (1)

where

HA =
1
2
h̄ωA σz = −1

2
h̄∆σz +

1
2
h̄ ωL σz (2)

is the Hamiltonian of the atom, which we split into two terms for further convenience,

HR = h̄

∫ ∞
0

ω b+(ω) b(ω) dω , (3)

is the Hamiltonian of the reservoir field,

HL =
1
2
h̄Ω [σ+ exp(−iωLt− iϕ) + σ− exp(iωLt+ iϕ) ] (4)

is the interaction between the atom and the classical laser field, and

HI = ih̄

∫ ∞
0

K(ω)
[
σ+ b(ω)− b+(ω)σ−

]
dω (5)

describes the interactions of the atom and the reservoir. Operatorsb(ω) andb+(ω) are the an-
nihilation and creation operators of the reservoir field, respectively, satisfying the bosonic com-
mutation relation,σ± are the atomic raising and lowering operators,σz is the atomic inversion
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operator, andK(ω) is the coupling between the atom and the reservoir which is related to the
natural atomic linewidthγ (FWHM) through the relation

K2(ω) =
γ

2π

(
ω

ωA

)3

η(ω) . (6)

In further calculations the phase of the driving fieldφ will be absorbed in the atomic operators,
σ− exp(iφ) → σ−, σ+ exp(−iφ) → σ+. As a first step we transform the Hamiltonian into the
frame rotating with the laser frequencyωL, which gives us

H0 = −1
2
h̄∆σz +

1
2
h̄Ω(σ+ + σ−) , (7)

Hr
I (t) = ih̄

∫ ∞
0

K(ω)
{
σ+b(ω) exp[iφ+ i(ωL − ω)t]

− b+(ω)σ− exp[−iφ− i(ωL − ω)t]
}

dω (8)

The second step is the unitary dressing transformation performed with the Hamiltonian (7)

σ±(t) = exp
[
− i
h̄
H0t

]
σ± exp

[
i

h̄
H0t

]
, (9)

which leads to the following time-dependent atomic raising and lowering operators

σ±(t) =
1
2

[
∓(1± ∆̃)σ̃− exp(−iΩ′t)± (1∓ ∆̃)σ̃+ exp(iΩ′t) + Ω̃σ̃z

]
, (10)

where

σ̃− =
1
2

[
(1− ∆̃)σ− − (1 + ∆̃)σ+ − Ω̃σz

]
,

σ̃+ =
1
2

[
−(1 + ∆̃)σ− + (1− ∆̃)σ+ − Ω̃σz

]
, (11)

σ̃z = Ω̃(σ− + σ+)− ∆̃σz ,

and

Ω′ =
√

Ω2 + ∆2 , Ω̃ =
Ω
Ω′
, ∆̃ =

∆
Ω′
. (12)

After the dressing transformation (9) the interaction Hamiltonian (5) takes the form

HI(t) = ih̄

∫ ∞
0

K(ω)
{
σ+(t)b(ω) exp[iφ+ i(ωL − ω)t]

− b+(ω)σ−(t) exp[−iφ− i(ωL − ω)]
}

dω , (13)

whereσ+(t) andσ−(t) are given by (10).
Using standard methods [9], we derive the master equation, in the Born approximation, for

the reduced atomic density matrix

∂ρ(d)

∂t
= − 1

h̄2

∫ t

0

TrR
{

[HI(t), [HI(t− τ), ρR(0)ρ(d)(t− τ)]]
}

dτ , (14)
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where the superscript(d) stands for the dressed picture,ρR(0) is the density operator for the field
reservoir.TrR is the trace over the reservoir states and the HamiltonianHI(t) is given by (13).
At this stage we make the Markov approximation [9] by replacingρ(d)(t− τ) in (14) byρ(d)(t),
substitute the Hamiltonian (13) and take the trace over the reservoir variables, assuming that

TrR{b(ω)b+(ω)ρR(0)} = [N(ω) + 1]δ(ω − ω′) ,
TrR{b+(ω)b(ω)ρR(0)} = N(ω)δ(ω − ω′) , (15)

whereN(ω) is the mean number of photons at frequencyω. In the Markov approximation we
extend the upper limit of the integral overτ to infinity and perform necessary integrations using
the formula∫ ∞

0

exp(±iετ) dτ = πδ(ε)± iP 1
ε
, (16)

whereP means the Cauchy principal value.
After performing all the calculations and transforming back from the dressed picture to the

original density operator, in the frame rotating with the laser frequency, we finally arrive at the
following master equation

∂

∂t
ρ =

i

2
∆
′
[σz, ρ]− i

2
Ω [σ+ + σ−, ρ]

+
1
2
N (2σ+ρσ− − σ−σ+ρ− ρσ−σ+)

+
1
2

(N + a) (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) (17)

−Mσ+ρσ+ −M?σ−ρσ−

+
1
2
L [σ+, ρσz]−

1
2
L? [σ−, σzρ]

+
1
2

(L+ b) [σ−, ρσz]−
1
2

(L+ b)? [σ+, σzρ] ,

where

∆
′

= ∆ + ∆p ,

∆p =
γ

8

[
(1 + ∆̃)2(1 + 2N−)b− + (1− ∆̃)2(1 + 2N+)b+

+2(1− ∆̃2)(1 + 2N0)b0
]
,

N =
γ

4

[
(1 + ∆̃)2N−a− + (1− ∆̃)2N+a+ + 2(1− ∆̃2)N0a0

]
,

a =
γ

4

[
(1 + ∆̃)2a− + (1− ∆̃)2a+ + 2(1− ∆̃2)a0

]
, (18)

M =
γ

8
(1− ∆̃2) [(1 + 2N−)(a− − ib−) + (1 + 2N+)(a+ − ib+)

− 2(1 + 2N0)(a0 − ib0)] ,

L =
γ

4
Ω̃
[
(1 + ∆̃)N−(a− + ib−)− (1− ∆̃)N+(a+ + ib+)
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− 2∆̃N0(a0 + ib0)
]
,

b =
γ

4
Ω̃
[
(1 + ∆̃)(a− + ib−)− (1− ∆̃)(a+ + ib+)− 2∆̃(a0 + ib0)

]
,

whereη(ω) describes the deviation of the reservoir density of modes from the vacuum density
of modes (for vacuumη(ω) = 1). The other quantities are defined by

N0 = N(ωL) , N± = N(ωL ± Ω
′
) ,

a0 =
(
ωL
ωA

)3

η(ωL) , a± =

(
ωL ± Ω

′

ωA

)3

η(ωL ± Ω
′
) , (19)

b0 = − 1
γ
P
∫ ∞

0

K2(ω)
ωL − ω

dω , b± = − 1
γ
P
∫ ∞

0

K2(ω)
ωL − ω ± Ω′

dω ,

whereN(ω) is the mean number of photons at frequencyω. Lamb shifts are included via the
redefinition of the atomic transition frequency. We have also included in (18) the shifts coming
from the principal value terms. They contribute essentially to the atomic evolution in the cavity
situation when the density of modesη(ω) has a non-trivialω dependence.

We model the reservoir density of modes by a dimensionless Lorentzianη(ω) centered at
frequencyωc with the widthγc

η(ω) =
γ2
c

(ω − ωc)2 + γ2
c

. (20)

For very broad reservoir, (γc →∞), the Lorentzian (20) becomes constant (η(ω)→ 1), and our
results reproduce the results for ordinary vacuum.

For the reservoir described by the Lorentzian (20), parametersb0 andb± take the following
form

b0 = −1
2

(
ωL
ωA

)3
δcγc

δ2
c + γ2

c

,

b± = −1
2

(
ωL ± Ω

′

ωA

)3
(δc ± Ω

′
)γc

(δc ± Ω′)2 + γ2
c

. (21)

It is clear from (21) that the shifts coming from the principal value terms give nonzero con-
tributions for moderately intense laser fields and reservoirs with finite bandwidth. The most
interesting situations appear when the peak of the Lorentzian is centered at the laser frequency
(δc = 0) or the Rabi sidebands (δc = ±Ω

′
).

From the form of the master equation (17) one can identify the new terms coming from the
interaction of the atom with a very strong laser field, seen via theω3 terms ina±, and/or from
the interaction with the reservoir, seen via the density of modesη(ωL ± Ω

′
) at the dressed atom

transitions and via the principal value termsb0 andb±. Our approach is a generalization, on
the one hand, of the Bloch equations introduced by Kocharovskayaet al. [4] and, on the other
hand, the Bloch equations introduced by Keitelet al. [8] for the cavity situation in the secular
approximation.
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For weak driving fields and thermal reservoirs, for whicha± = a0 = 1 andN± = N0, our
master equation (17) has the well known standard form, but for stronger fields and/or tailored
reservoirs it is easy, from the transparent form of the equation (17), to identify the new terms
proportional toM , L andb. Terms proportional toM are reminiscent of the terms appearing
in interactions of an atom with squeezed reservoirs [10, 11]. These terms, however, are not
the real squeezing terms, because, despite the fact that they depend of the phase of the driving
field, they do not give the phase dependence of the fluorescence or absorption spectra, which is
characteristic for the squeezed reservoirs.

3 Generalized Bloch equations

The generalized master equation (17) leads immediately to the generalized Bloch equations de-
scribing the evolution of the expectation values of the atomic operators. The Bloch equations can
be written in the matrix form as

d
dt

 〈σ−(t)〉
〈σ+(t)〉
〈σz(t)〉

 = A

 〈σ−(t)〉
〈σ+(t)〉
〈σz(t)〉

+
1
2

 br − iΛi
br + iΛi
−2a

 , (22)

where the matrixA has the form

A =

 i∆′ − Γ −M i
2Ω

−M? −i∆′ − Γ − i
2Ω

i(Ω + bi) + Λr −i(Ω + bi) + Λr −2Γ

 . (23)

To make the notation shorter we denote the real part of the complex numberQ by Qr and the
imaginary part byQi, and we have used the substitutions

Γ =
1
2

(a+ 2N) , Λ = b+ 2L . (24)

On introducing the Hermitian operators representing the two quadrature components of the
atomic dipole moment

σx =
1
2

(σ− + σ+) , σy =
1
2i

(σ− − σ+) , (25)

the Bloch equations can be rewritten as

d
dt

 〈σx(t)〉
〈σy(t)〉
〈σz(t)〉

 = B

 〈σx(t)〉
〈σy(t)〉
〈σz(t)〉

+
1
2

 br
−Λi
−2a

 (26)

with the matrixB given by

B =

 −Γ−Mr −∆′ +Mi 0
∆′ +Mi −Γ +Mr

1
2Ω

Λr −2(Ω + bi) −2Γ

 . (27)

From the matrixB it is easily seen that two components of the atomic dipole moment,〈σx〉
and〈σy〉 decay with different rates whenMr is different from zero. This effect is well known
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Fig. 1. Time dependence of the atomic inversion〈σz〉(t) for Ω/γ = 15 ωc = ωL − Ω
′
, ∆ = −0.4Ω, and

γc/γ = 10 (solid line),γc/γ = 10000 (dashed line).

for squeezed reservoirs [14], but here it is associated with the modification of the damping rates
in very strong fields and/or with the non-flat density of modes of the reservoir. A new feature
of the Bloch equations (26) is the presence of the shiftsb0 andb±, given by (21), which do not
appear in other Markovian approaches, but they do appear in the non-Markovian approach [6].
On neglecting the shifts, the Bloch equations (22) are equivalent of the Bloch equations obtained
by Kocharovskayaet al. [4].

The steady state solutions of the Bloch equations (26) can be easily obtained for general
case. In particular, for very strong laser fields and equal number of photons, at each frequency,
N(ω) = N0 = N±, the steady state solutions for the atomic operators take the approximate
form

〈σx〉ss =
Ω̃

2(1 + 2N0)
(1 + ∆̃)2 a− − (1− ∆̃)2 a+

(1 + ∆̃)2 a− + (1− ∆̃)2 a+

,

〈σy〉ss = − Ω̃
4Ω′

2(1− ∆̃2) a− a+ + [(1 + ∆̃)2 a− + (1− ∆̃)2 a+] a0

(1 + ∆̃)2 a− + (1− ∆̃)2 a+

, (28)

〈σz〉ss = − ∆̃
1 + 2N0

(1 + ∆̃)2 a− − (1− ∆̃)2 a+

(1 + ∆̃)2 a− + (1− ∆̃)2 a+

.

From solutions (28), it is seen that for thermal reservoir and very strong laser fields the steady
state inversion between the atomic states for the specific range of the laser field detuning can be
realized, the effect reported in [5] and attributed to((ω±Ω

′
)/ωA)3 factors. Moreover, a nonzero

solution for〈σx〉ss component in the resonant case can be found. It is also obvious that placing
the atom inside a cavity, where there is a peak in the density of modes at some characteristic
frequency, may increase the values of〈σx〉ss and the steady state atomic inversion [6,12].

For not too strong laser fields the exact solutions have to be used. In this laser field intensity
regime it is possible to observe changes of the atomic behavior coming from the nonzero principal
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Fig. 2. Time dependence of the atomic inversion〈σz〉(t) for Ω/γ = 15 ωc = ωL − Ω
′
, γc/γ = 10, and

∆ = −0.4Ω. Exact solution (solid line), no shifts (dashed line).

value terms in the case of structured reservoirs. In Fig. 1 we have plotted the time dependence
of the mean value of the atomic inversion〈σz〉(t). The figure shows the differences, for the
moderate laser field intensityΩ/γ = 15, between the broadband reservoir (dashed line) and
the reservoir with the mode structure being a Lorentzian centered at frequencyωc = ωL − Ω

′

(solid line). The laser field is detuned by∆ = −0.4Ω from the atomic resonance, and we can
see that there are significant differences in behavior of〈σz〉(t) for the two cases. When the
atom is placed inside a tailored reservoir with narrow bandwidth the Rabi oscillations of the
atomic population inversion have larger amplitude than in the case of broadband reservoir and
their decay time is longer. In the long time limit there is a considerable amount of population
inversion,〈σz〉ss ≈ 0.15, in the case of narrow bandwidth reservoir, while there is no inversion
between atomic states for broadband reservoir. In Fig. 2 we have illustrated the role of the shifts
coming from the principal value terms in the atomic evolution by plotting the long time behavior
of the atomic inversion: the exact solution (solid line) and the solution with the shifts equal to
zero (dashed line). It is clear that the exact solution gives slightly lower atomic inversion in the
long time limit, for the parameter values taken in the figure, and whole the trajectory is shifted by
the shift terms. The possibility of creating the steady state atomic inversion by tuning the cavity
was discussed in the non-Markovian approach by Lewenstein and Mossberg [6]. We can see that
also the much simpler Markovian approach presented here, leads to similar effects.

4 Resonance fluorescence

We define the fluorescence spectrum into the structured reservoir modes as a rate at which the
mean number of photonsb+(ω)b(ω) of the reservoir mode at frequencyω changes in time for
the steady state conditions. It is given by

F(ω) = lim
t→∞

d

dt
〈b+(ω, t)b(ω, t)〉 = lim

t→∞
〈 d
dt
b+(ω, t)b(ω, t) + b+(ω, t)

d

dt
b(ω, t)〉 (29)
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Using the Heisenberg equations of motion for the bosonic reservoir operators, we obtain the
following formula for the fluorescence spectrum emitted into the cavity modes

F(ω) = 2K2(ω) Re
∫ ∞

0

dτ〈σ+(0)σ−(τ)〉ei(ω−ωL)τ . (30)

Formula (30) differs from the standard definition of the resonance fluorescence spectrum, as the
Fourier transform of the atomic correlation function, by the frequency dependent factorK2(ω),
which is important here. The standard definition assumes that the atomic rate is constant. The
equations of motion for the atomic correlation function appearing in (30) can be obtained from
the generalized Bloch equations (22) with the use of the quantum regression theorem [13]. Tak-
ing the Laplace transform of the evolution equations for the atomic correlation functions with
the appropriate initial conditions, we finally arrive at the following expression for the Laplace
transform of the correlation function〈σ+(0)σ−(τ)〉, which enters the definition of the resonance
fluorescence spectrum

F (z) =
1

2zd(z)

{
z

2
(1 + 〈σz〉ss) [2(z + 2Γ)(z + Γ + i∆′) + Ω(Ω + bi + iΛr)]

+ 〈σ+〉ss
[
−i [Ω(z + a) + Λi(z + 2Γ)](z + Γ +M + i∆′)

+ br [Ω(Ω + bi + iΛr) + (z + 2Γ)(z + Γ−M + i∆′)]
]}

. (31)

The incoherent part of the spectrum can be calculated from

Finc(ω) =
γ

π

(
ω

ωA

)3

η(ω) Re

{[
F (z)− 1

z
lim
z→0

zF (z)
]
z=−i(ω−ωL)

}
, (32)

where we have used the expression (6) for the frequency dependent coupling constantK(ω). We
would like to emphasize that the presence of this factor is necessary when one wish to derive
the fluorescence spectrum into the structured reservoir modes. When the fluorescent light is
emitted to the structureless background modes the traditional definition is applicable andK(ω)
can be omitted. This factor is crucial for “tailored” reservoirs and/or very strong laser fields.

However, the expressions (31) and (32) are quite general and they are applicable for both
strong and weak driving fields and all reservoirs with sufficiently broad linewidth, which is much
broader than the atomic linewidth to justify the Markovian approximation used to derive the
master equation. Of course, for very strong driving fields, in the secular limit, the results can be
simplified considerably.

To illustrate our results, we have plotted in Fig. 3 and Fig. 4 the fluorescence spectra for
moderately strong laser fields, for which the principal value terms (shifts) and the density of
modes of the reservoir play an important role. We can observe that the structured reservoir with
non-flat density of modes leads to narrowing of the central line and simultaneously broadening
of the sidebands when the cavity is tuned to the central frequency (Fig. 3). This is the effect
reminiscent of the analogous effect observed for the squeezed vacuum reservoir [14], and it is
related to a possibility of getting negative values ofMr by tuning the Lorentzian representing the
reservoir density of modes to the central line.
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Fig. 3. The incoherent part of the fluorescence spectrumFinc(ω) for ∆ = 0, Ω/γ = 15, ωc = ωL,
γc/γ = 10 (solid line), andγc/γ = 10000 (dashed line).
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Fig. 4. The incoherent part of the fluorescence spectrumFinc(ω) for ∆/γ = 5, Ω/γ = 15, ωc = ωL+Ω
′
,

γc/γ = 10. Exact solution (solid line), no shifts (dashed line).

We can also observe that including the principal value terms (shifts) in the derivation of the
fluorescence spectrum,i.e. using our solutions for “tailored” reservoirs can lead to the observable
asymmetry in the fluorescence emitted into the cavity modes. This effect is clearly seen from
Fig. 4, where we compare the spectra with and without the shift terms. For very strong driving
fields, in the secular limit, the shift terms become negligible, and the resonance fluorescence
spectrum becomes symmetric in accordance with the earlier results [8].
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5 Summary

In this paper we have presented the generalized master equation for the reduced density matrix
within the Born and Markov approximations for a two-level atom driven by a strong laser field
and damped by a “tailored” reservoir. The dressing transformation on the atomic operators has
been performed first and after that the coupling between the dressed atom and the reservoir has
been included. The generalized master equation is valid for a wide range of laser intensities (for
very strong laser fields it includes the dependence of the damping rates on the laser intensity) and
different types of Markovian reservoirs. It includes the shifts coming from the nonzero principal
value terms. We have identified some new terms in the master equation that are reminiscent of
the well known terms occurring when atom is interacting with the squeezed vacuum. Such terms
give similar effects as if the atom were damped by a squeezed vacuum (narrowing of the central
line of the Mollow triplet, the different damping rates for the two quadrature components of the
atomic dipole) although, in fact, they are not real squeezing terms because they do not give, for
example, the phase dependence of the resonance fluorescence spectra.
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