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Quantum theory allows to measure incompatible observables sequentially in the course of
repeated measurements. To get information about the observed system, all the observations
must be synthetized. This is the main idea of quantum tomographical methods. As shown
in this contribution, the maximum likelihood principle provides the best measure for relating
the experimental data with predictions of quantum theory. Synthesis of incompatible obser-
vations appears to be a novel quantum measurement described by a positive operator-valued
measure. Besides this the procedure finds the optimal state of the system, which fitts such a
measurement in optimal way.

PACS: 03.65.-w

1 Introduction

Quantum theory describes events on the most fundamental level currently available. The syn-
thesis of information from mutually incompatible quantum measurements plays the key role in
testing of the theory. Bell inequalities with a pair of spin 1/2 particles may be considered as
an example. Correlations for two settings of polarizators are measured on each component of
the pair. These observations are incompatible, since they cannot be obtained in the same simul-
taneous measurement. Information must be collected in subsequent measurements, when the
experiment is repeated with different setting of polarizators. The purpose of this contribution is
to develop general quantum theory of such observations. As will be shown, there is a unique
relationship between quantum theory and the mathematical statistics: Quantum theory prefers
the relative entropy (maximum likelihood principle) as the proper measure for evaluation of the
distance between measured data and probabilities defined by quantum theory. For an experimen-
talist working in quantum physics it means, that data should be fitted to the theory preferably
using the maximum likelihood estimation.

For the sake of simplicity and brevity we assume a discrete spectrum of the observed variable.
This corresponds to the case of sharp and precise quantum measurements. Notice, however,
that these ideal assumptions are not detrimental. The more realistic case of observables with a
continuous spectrum and finite experimental precision can be incorporated into this framework
by replacing the corresponding projectors by a probability-valued operator measure (POVM)
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[1,2]. Our main result is independent of a particular implementation of the quantum measurement
and works in the very general case as well. In the following, we shall use the Dirac notation.

Let us start the exposition with the simplest model. Quantum mechanics of spin-1/2 particles
often serves as an illustrative example of key quantum physical concepts in standard textbooks
of theoretical physics [3]. The importance of spin-1/2 states is enhanced by the fact that they
represent the smallest possible amount of quantum information – quantum bits (q-bits). Aside
from theoretically valuable “Gedanken” experiments, spin–1/2 particles such as electrons, neu-
trons or the circular polarization states of light quanta have allowed the realization of a variety
of fundamental experiments in matter wave and quantum optics. They play a crucial role in
many sophisticated schemes involving entanglement, Bell state analysis or teleportation. Let us
review briefly the basic properties of spin–1/2 quantum systems. A pure state (projector) shall
be represented by the expression

|a〉〈a| = 1
2

(1 + aiσi), (1)

wherea = (a1, a2, a3) is the three-dimensional normalized state vector,σi, i = 1, 2, 3 represent
the Pauli matrices and the summation convention for repeated indices is used. Since

σiσj = δij + iεijkσk,

the scalar product of two projectors is given as

|〈a|b〉|2 =
1
2

(1 + aibi).

A mixed state, which is described by a density matrix, can be parameterized by

ρ̂ = p+|a〉〈a|+ p−|−a〉〈−a| (2)

=
1
2

+
1
2
σiai(p+ − p−), (3)

wherep+ +p− = 1 and the states|±a〉 denote a general orthogonal basis. Alternatively the spin
state is completely determined if the associated polarization vector

ri = 〈σi〉 = ai(p+ − p−) (4)

is known, where, as usual, the brackets〈〉 denote an expectation value. The degree of polarization
is defined by

|r|2 ≤ 1 ,

with |r|2 = 0 for completely unpolarized (mixed) state and|r|2 = 1 for fully polarized (pure)
states.

The polarization or spin may be measured by projecting the state into the given directions±a
of a SG apparatus. Closure relation and operator representation of such a device can be written
as

|a〉〈a|+ |−a〉〈−a| = 1̂, (5)

Â =
1
2
[
|a〉〈a| − |−a〉〈−a|

]
. (6)
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Assuming for the sake of simplicity always the same total number of particlesN , the number of
particles with either spin “up” or “down” yields estimates of the projections of the polarization
vector according to the relations

n± = Np(±a) =
1
2
N(1± r.a). (7)

Since this may be done for three orthogonal directions in spacexi (i = 1, 2, 3) the polarization
vector may be found by eliminating the total number of particlesN

ri =
ni+ − ni−
ni+ + ni−

. (8)

By this procedure each polarization component is determined separately. It represents a cor-
rect solution, provided that the resulting polarization lies upon or inside the Poincaré sphere
|r|2 ≤ 1. However, the “states” outside the Poincaré sphere violate the positive semidefinite-
ness of quantum states and thus leads to an improper quantum physical description of noise [4].
Similar problems appear in the case when more than three projections are used. Some results
of SG projections might appear as incompatible among themselves due to the fluctuations and
noises involved. Various SG measurements are not equivalent, since they are observing differ-
ent “faces” of the spin system. Such measurements, even when done with an equal number
of particles, determine different projection with different errors. Detected datani,± collected
from SG observations inM directions±ai, i = 1, 2, . . .M sample a variety of binomial distri-
butions. Significantly, the detected datani,± fluctuate with the root–mean square errors given
by
√
N(1− (r.aj)2)/2 depending on the deviations between projections and the true (but un-

known!) direction of the spinr . Therefore the data from various projections cannot be trusted
with the same degree of credibility, since they are affected by different errors. The incompat-
ibility of various SG measurements becomes manifest in quantum theory as the corresponding
operators (1) do not commute for different orientationsaj . Such data cannot be obtained in the
course of the same measurement, but may be collected by repeated experiments. Thus an optimal
procedure must predict an unknown state and simultaneously take into account data fluctuations.
This indicates the inevitable nonlinearity of such a kind of algorithm. As will be demonstrated in
the following section, the synthesis of incompatible measurements may be considered as a novel
concept of measuring quantum states.

2 General theory

Let us review briefly the standard theory treated in the textbooks [3]. Any observation is repre-
sented by a hermitian operator̂A, whose spectrum determines the possible results of the mea-
surement

Â|a〉 = a|a〉. (9)

Eigenstates are orthogonal〈a|a′〉 = δaa′ and the corresponding projectors provide the closure
relation∑

a

|a〉〈a| = 1̂. (10)
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Projectors predict the probability for detecting a particular value of the q–variablea represented
by the operatorÂ aspa = 〈a|ρ|a〉, provided that the system has been prepared in a quantum
stateρ. This mathematical picture corresponds to the experimental reality in the following sense:
When the measurement represented by the operatorÂ is repeatedN times on identical copies
of the system, the number a particular outputa is collectedNa times. The relative frequencies
fa = Na

N will sample the true probability asfa → pa fluctuating around them. The exact values
are reproduced only in the asymptotical limitN → ∞. Experimentalist’s knowledge may be
expressed in the form of a diagonal density matrix

ρ̂est =
∑
a

fa|a〉〈a|, (11)

provided that error bars of the order1/
√
N are associated with the sampled relative frequencies.

This should be understood as mere rewriting of the experimental data{N,Na}. Similar knowl-
edge may be obtained by observations, which can be parameterized by operators diagonal in the
|a〉 basis, i.e. by operators commuting with operatorÂ. But the possible measurement ofnon–
commutingoperators yields new information, which cannot be derived from the measurement of
Â.

Consider now the sequential measurement of various non–commuting observables. In this
case several operatorŝAj , j = 1, 2, . . . will be measured by probing of the systemN times
together. Now, one expects to gain more than just the knowledge of the diagonal elements of
the density matrix in some a priorigivenbasis. This sequential measurement of non–commuting
observables should be distinguished from the similar problem of approximate simultaneous mea-
surement of non–commuting observables [5]. As in the previous case of the measurement of
single hermitian operator, the result of sequential measurements of non–commuting operators
may be represented by a series of projectors|yi〉〈yi|. This should be accompanied by relative
frequenciesfi indicating how many times a particular outputi has been registered,

∑
i fi = 1.

Various states need not be orthogonal〈yi|yj〉 6= δij , in contrast to the previous case of a hermitian
operator. However, this substantial difference has its deep consequences. The result of the mea-
surement cannot be meaningfully represented in the same manner as previously. For example,
direct linking of probabilities with relative frequencies used in standard reconstructions [6, 7]
ρii = fi, ρii = 〈yi|ρ̂|yi〉, may appear as inconsistent, since the system of linear equations is
overdetermined, in general.

To develop the novel approach, let us assume the existence of a quantum measureF (ρii|fi)
parameterizing the distance between measured data and probabilities. Then we will search for
the state(s) located in the closest neighborhood of the data. A general state may be parameterized
in its diagonal basis as

ρ̂ =
∑
i

ri|ϕi〉〈ϕi|. (12)

The equation for the extremal states may be found analogously to the treatment developed in
[4,8]. Particularly, the formal necessary condition for extremal solution reads

δF (ρii|fi)
δρ̂

= 0. (13)
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Since the density matrix is parametrized according to the relation (12) with the help of indepen-
dent (orthogonal) states|ϕk〉, the variation may be done along these rays yielding the system of
coupled equationsδF (ρii|fi)

δ〈ϕk| = 0 for any allowedk. Using the relation

δF (ρii|fi)
δ〈ϕk|

=
∑
i

∂F (ρii|fi)
∂ρii

|yi〉〈yi|ϕk〉, (14)

the system of equations may be rewritten as the equation for the density matrix∑
i

∂F

∂ρii
|yi〉〈yi|ρ̂ = λρ̂, (15)

whereλ is a Lagrange multiplier. The normalization conditionTrρ̂ = 1 sets its value to

λ =
∑
i

∂F

∂ρii
ρii. (16)

Any composed functionG(F (ρii|fi)) fulfills the same extremal equation (15) with the La-
grange multiplier rescaled asλdGdF . Without loss of generality it is therefore enough to consider
the normalization conditionλ = 1.

The extremal equation (15) has the form of a decomposition of the identity operator on the
subspace, where the density matrix is defined by∑

i

∂F

∂ρii
|yi〉〈yi| = 1̂ρ. (17)

This resembles the definition of POVM characterizing a generalized measurement [1, 2]. To
link the above extremalization with quantum theory, let us postulate the natural condition for the
quantum expectation value

Tr

(
∂F

∂ρii
|yi〉〈yi|ρ̂

)
= fi. (18)

This assumption seems to be reasonable. The synthesis of sequential non–compatible observa-
tions may be regarded as a new measurement scheme, namely the measurement of the quantum
state.

The quantum measureF then fulfills the differential equation

∂F

∂ρii
ρii = fi. (19)

and singles out the solution in the form

F (ρii|fi) =
∑
i

fi ln ρii. (20)

This is nothing else than the log likelihood or Kullback–Leibler relative information [9]. Formal
requirements of quantum theory, namely the interpretation of the extremal equation as a POVM,
result in the concept of maximum likelihood in mathematical statistics. The analogy between
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the standard quantum measurement associated with a single hermitian operator, and a series of
sequential measurements associated with many non–commuting operators is apparent now. The
former determines the diagonal elements in the basis of orthonormal eigenvectors, whereas the
latter estimates not only the diagonal elements, but the diagonalizing basis itself. This is the
difference between measurement of the quantum observableÂ and measurement of the quan-
tum state. In this sense maximum likelihood estimation may be considered as a new quantum
measurement. The observed quantum state is given by the solution of the nonlinear operator
equation

R̂(ρ̂)ρ̂ = ρ̂, (21)

where

R̂(ρ̂) =
∑
i

fi
ρii
|yi〉〈yi|. (22)

Extremal equation is, in fact, the completeness relation of a POVM, expectation values of which
are the measured data{fi} [10]. The equation of this type is well known is mathematical statistics
and its solution is given by the so called EM (expectation-maximization) algorithm [11]. In
quantum domain, the EM algorithm must be completed by a unitary transformation changing the
diagonalizing basis of extremal density matrix [12].

Maximum likelihood has been used recently for solution of various problems in quantum
theory. Ideal phase concepts have been considered from the viewpoint of maximum likelihood
in Refs. [13]. Special cases of the solution (21) have been discussed for the operational phase
concepts [14], determination of diagonal elements of the density matrix [15]. Reconstruction
of the1/2 spin state using as an introductory example has been considered in the Ref. [16]. A
numerical technique for maximum likelihood estimation of density matrices has been suggested
in Ref. [17]. Maximum likelihood provides a feasible alternative to other statistical approaches
dealing with incomplete data [18].

3 Summary

The quantum interpretation offers a new viewpoint on the maximum likelihood estimation. This
method is customarily considered as just one of many estimation methods, unfortunately one of
the most complicated ones. It is often considered as rather subjective, since likelihood quantifies
the degree of belief in a certain hypothesis. Any physicist, an experimentalist above all, would
perhaps use as his first choice another fitting procedure, for example the least–squares method.
However, such fitting will not reveal the structure of quantum measurement. Only the maximum
likelihood estimation interprets the measured data as expectation values of some new POVM. In
this sense the maximum likelihood seems to be unique and exceptional.
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[13] J. H. Shapiro, S. R. Shepard, N. C. Wong:Phys. Rev. Lett. 62 (1989) 2377; A. S. Lane, S. L. Braun-
stein, C. M. Caves:Phys. Rev. A 47 (1993) 1667
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