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HEATING OF TRAPPED PARTICLES CLOSE TO SURFACES –
BLACKBODY AND BEYOND ∗
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We discuss heating and decoherence in traps for ions and neutral particles close to metallic
surfaces. We focus on simple trap geometries and compute noise spectra of thermally excited
electromagnetic fields. If the trap is located in the near field of the substrate, the field fluc-
tuations are largely increased compared to the level of the blackbody field, leading to much
shorter coherence and life times of the trapped atoms. The corresponding time constants are
computed for ion traps and magnetic traps. Analytical estimates for the size dependence of
the noise spectrum are given. We finally discuss prospects for the coherent transport of matter
waves in integrated surface waveguides.

PACS: 03.75.-b, 32.80.Lg, 05.40.-a, 05.60.-k

1 Introduction

In the field of particle cooling and trapping, a strong trend towards miniaturisation and integration
has emerged in the last few years. Small particle traps might form the building blocks of future
quantum computers. Integrated atom optical circuits might distribute coherently matter waves
for interferometric or nanolithographic applications. Major issues in this field are heating and
decoherence that have to be controlled in order to maintain the coherence properties as long
as possible. Heating is an intriguing concern because of the dramatic temperature difference
between the trapped particles and the macroscopic objects that form a typical miniature trap.
In fact, recent experiments with small ion traps have revealed that the life time of the ion’s
vibrational ground state gets shorter in smaller traps, making it difficult to down scale the trap
geometry to micrometre size [1, 2]. In neutral particle traps, sizes in the micrometre range have
already been achieved experimentally [3–6], but to our knowledge, life times are difficult to
measure and are rather limited by background pressure and inelastic few-body collisions.

In this contribution, we consider a simplified geometry for particle traps and compute heating
and decoherence rates. The work is divided in two parts. We start with the heating of the
vibrational motion of an ion in a tightly confining potential. Using perturbation theory, the
heating rate is linked to the cross correlation spectrum of the electric field at the trap center. This
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noise spectrum is evaluated asymptotically, taking into account that the trap distance is small
compared to the photon wave length associated with the ion’s vibration frequency. As a by-
product, we also get the noise spectrum for the magnetic field. This spectrum determines the life
time of a neutral particle in a magnetic trap, since the fluctuating field induces spin transitions
to a non-trapped state, kicking the particle out of the trap. In the second part, we focus on the
quasi-free motion of a particle in a wave guide (linear or planar). The particle scatters from
thermal field fluctuations and thus loses its spatial coherence. A transport theory is formulated
and analytically solved in the limit of a broad-band fluctuation spectrum.

2 Heating of a trapped ion

2.1 Heating rate

Let us focus on a single degree of freedom of the ion’s motion and assume a parabolic confining
potential. The Hamiltonian is then simply given by

Htrap = h̄Ω
(
b†b+ 1

2

)
(1)

with Ω the ion’s vibration frequency (typically in the MHz range). If the ion is perturbed by a
time-dependent force, this is described by the potential [7,8]

V (t) = −x · F(r, t) = −an̂ · F(r, t)
(
b† + b

)
. (2)

We assume that the force varies on a spatial scale much larger than the sizea = (h̄/(MΩ))1/2 of
the trap ground state and evaluate it at the trap centerr. x = xn̂ is the ion’s displacement from
the center.

Using standard second-order perturbation theory, one may easily derive a master equation for
the reduced density matrix of the ion, that describes its dynamics when the fluctuations of the
force fieldF(r, t) are traced over [1,7–9]. This master equation allows to derive the equation of
motion for the population of the lowest trap levels, as well as for the average creation operator
and the average excitation number (in the absence of cooling processes)

ρ̇00 = −γ−ρ00 + γ+ρ11 (3)

〈ṅ〉 = −(γ+ − γ−)〈n〉+ γ− (4)

〈ḃ〉 = −iΩ〈b〉 − 1
2

(γ+ − γ−)〈b〉 (5)

The ratesγ± in these formulas are related to the cross spectral density of the force fluctations as
follows

γ± = γ(r;±Ω)

=
a2

h̄2

∑
i,j

n̂in̂jS
ij
F (r;±Ω) (6)

with

SijF (r;ω) =
∫ +∞

−∞
dτ 〈Fi(r, t+ τ)Fj(r, t)〉eiωτ (7)

According to (3), the heating rate from the trap ground state is thus given byΓ0→1(r) = γ−. We
are thus left with the calculation of the spectral density (7) for the perturbing force.
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2.2 Electric field noise spectrum

The trapped ion being charged, it is perturbed by fluctuating electric fields,F = qE. The Planck
blackbody spectrum then gives the following spectral density

SijF (r;ω) = q2SE(ω)δij =
q2 h̄ω3 δij

3πε0c3(1− e−h̄ω/kBT )
(8)

whereT is temperature. One must keep in mind, however, that this gives the thermal spectrum
only in free space, far from the sources. But the ion is trapped at a distancez from the trap
electrodes that is typically much smaller than the photon wave lengthλ = 2πc/Ω associated
with the vibration frequency. It is thus located in the near field of the electrodes, and the Planck
formula does not cover this case. This was recognised already in the early days of ion trapping
when “hot” ion clouds (with temperatures much larger than room temperature) were cooled down
by thermalisation with the surrounding electrodes, the coupling being provided by the absorption
of the electric fields radiated by the moving ions in the lossy metallic environment [10]. When
laser cooling took over to reach temperatures in theµK range, voltage fluctuations due to electric
losses became a source of heating. Modeling the ion trap as a lumped circuit with resistance
R(ω), the standard Nyquist formula for Johnson noise gives an electric field spectrum [7,8,10]

SF (r;ω) ≈ q2 kBTR(ω)
z2

(9)

where the high-temperature limitkBT � h̄|ω| has been assumed. For a given trap geometry, it
is not easy to determine the resistanceR(ω) that enters this formula. Assuming that the electric
currents propagate only in the skin layer of the electrodes, the NIST group estimated that the
spectrum (9) actually gives a heating rate too small to account for the experimental observations.
In addition, there are indications that the scaling lawΓ0→1(r) ∝ SF (r) ∝ 1/z2 is not followed
experimentally (although it is difficult to exclude other influences when down-scaling the trap
geometry) [2].

We now outline a microscopic effective model [2,9,11] that may in principle allow to compute
the electric noise spectrum for an arbitrary trap geometry. We describe the electric properties
of the surrounding metal by its frequency-dependent complex dielectric functionε(r;ω). The
microscopic source of Johnson noise are fluctuating polarisation fieldsP(r, t) that are thermally
excited in the metal. According to the fluctuation dissipation theorem, the spectral density of this
fluctuating polarisation is related to the imaginary part of the dielectric function [12–14]:

SijP (r′, r;ω) =
2h̄ε0 Im ε(r;ω)
1− e−h̄ω/kBT

δijδ(r′ − r) (10)

Maxwell’s equations now determine the field radiated by this polarisation. It may be written as
an integral over the Green tensor

Ei(r;ω) =
∫

dr′
∑
j

Gij(r, r′;ω)Pj(r′;ω) (11)

whereGij depends on the geometry of the trap electrodes.2

2Rigorously speaking, the electric field also contains a contribution due to modes impinging from infinity in the
vacuum space. In the short distance limitz � λ relevant here, however, this contribution may be shown to be very small
(C. Henkel, K. Joulain, R. Carminati, J.-J. Greffet, in preparation).
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Fig. 1. Sketch of the microscopic effective model used to compute the electric field noise spectrum.

To proceed with the calculation, we now fix the geometry and consider a trap located at a
distancez above an infinite flat metallic surface. In this geometry, the Green function in (11) is
explicitly known in spatial Fourier space, and it is possible to perform an asymptotic expansion
in the near field limitz � λ. As a result, we obtain the following interpolation formula [2,9]

SijE (z;ω) ≈ h̄ω %

4π(1− e−h̄ω/kBT ) z3

(
sij + δij

z

δ(ω)

)
. (12)

As expected, the spectrum only depends on thedistance from the surface. The material proper-
ties enter through the specific resistance% and the skin depthδ(ω) = c

√
ε0%/ω. The geometry

enters through the power lawSE(z) ∝ 1/z3 in the “extreme near field”z � δ. This behaviour
may be understood from the principle of detailed balance: the heating rate of the ion is equal to
the relaxation rate of an oscillating electric dipole, and it is well known that close to a metallic
surface, this rate is dominated by nonradiative transfer and increases as1/z3 [15,16].

We may also extract from (12) an “effective resistance”: if the distance is large compared to
the skin depth, the near field spectrum indeed follows a1/z2 power law, as in Eq.(9). The com-
parison yields an effective resistanceReff(ω) ≈ 3%/(4πδ(ω)). This indicates that the thermal
currents actually flow in a skin layer right below to the metallic surface, in agreement with the
estimates made by the NIST group [1].

The ion heating rate obtained from the spectrum (12) is plotted in Fig. 2. We observe that
the electric near field fluctuates at a noise level much larger than the blackbody field (dotted
line). It is also apparent that life times shorter than 1 s are to be expected when the trap size
gets into the micrometre range. The figure also shows that the life times in current traps are
not limited by the near field fluctuations discussed here, the observed heating rates being much
larger. The NIST group proposed a model including fluctuating electric patch potentials that may
explain this discrepancy, but little is known about the dielectric properties of these electric surface
domains in the relevant frequency range [2]. In view of recent theoretical and experimental
investigations [1,2,9,11,17,18], a detailed understanding of ion heating processes is still lacking.
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Fig. 2. Heating rate for a trapped ion (mass40 amu, chargeq = e) trapped in a harmonic trap (frequency
Ω/2π = 1 MHz) above a copper surface at300 K. Dots: exact evaluation of the electric near field flucta-
tions; solid line: asymptotic expansion (12); dashed line: heating rate from the Johnson noise spectrum (9)
with R(ω) = 1 Ω.

2.3 Magnetic field noise spectrum

To conclude this section, we turn to a different type of trap: a static inhomogeneous magnetic
field that traps a paramagnetic atom at local minima of the magnetic field strength. Such traps
are routinely used for evaporative cooling [19], and miniature versions close to wires or surfaces
have been proposed [6, 20] and actually realised [21–25]. Thermally fluctuating magnetic fields
now may flip the atomic spin, leaving the atom possibly in an unbound potential (see Fig. 3).
The spin flip rate is easily obtained from perturbation theory and relates to the spectral density
of the magnetic field fluctuations:

Γi→f (r) =
1
h̄2

∑
α, β

〈i|µα|f〉〈f |µβ |i〉SαβB (r;ωL) (13)

whereωL = µBtrap(r)/h̄ is the Larmor frequency. The magnetic field spectrum may be calcu-
lated using the theory outlined above, and one finds the following asymptotic result [9]:

SαβB (z;ω) ≈ h̄ω sαβ

16πε2
0c

4% (1− e−h̄ω/kBT ) z

(
1 +

2z3

3δ3(ω)

)−1

(14)

For a spin 1/2 particle, we thus get the trap loss rate shown in Fig. 4. We note that in micrometre
size traps, the life time is limited to less than a second due to near field fluctuations, which should
be an observable effect in current experiments.
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Fig. 3. Fluctuating magnetic fields flip the spin of an atom in a magnetic trap and put it onto a non-trapping
potential surface.

100 nm 1 µm 10 µm 100 µm 1 mm 10 mm
distance from surface

10−3s−1

103s−1

1 s−1

10−6s−1

10−9s−1

lo
ss

ra
te

Γ i
→

f

100 MHz (b)

(a) 1 MHz

Typical micro − traps

skin depths: (b) (a)

Fig. 4. Spin flip rate (loss rate) for a paramagnetic atom (magnetic momentµ = µB) in a magnetic trap
above a copper surface at300 K. The Larmor frequency takes the valuesωL/2π = 1 MHz (curve (a)) and
100 MHz (curve (b)). The rate obtained from the blackbody spectrum is much smaller (about1013 s−1 for
ωL/2π = 100 MHz).

3 Decoherence in wave guides

We now turn to the influence of fluctuating near fields on the quasi-free motion of atoms in linear
or planar wave guides [4, 6, 20, 21, 25]. The atomic matter wave is scattered from spatial inho-
mogeneities of the perturbing field, thus changing its momentum. We assume again a statistical
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description of the scattering process. The typical momentum transfer is thus of the order ofh̄/`
where` is the correlation length of the field. Energy is not conserved because the field is fluc-
tuating, and the maximum energy transfer is roughly limited bykBT . Note that this is typically
much larger than the kinetic energies involved in cold atomic clouds.

3.1 Transport equation

We want to characterise the evolution of the single-particle spatial density matrix (or coherence
function)

ρ(r; s) = 〈ψ∗(r + 1
2s)ψ(r− 1

2s)〉 (15)

where the average〈. . .〉 is taken over the spatial and temporal fluctuations of a perturbing poten-
tial V (r, t). It is useful to introduce the Wigner transform of the density matrix

W (r,p) =
∫
d3s

2πh̄
eip·s/h̄ρ(r; s) (16)

that may be interpreted as a quasi-probability distribution in phase space.
Using second-order perturbation theory, assuming gaussian statistics for the perturbing po-

tential and doing a multiple-scale expansion of the Bethe-Salpeter equation for the coherence
function, we get the following transport equation [26]:(

∂t +
1
m

p · ∇r + Fext · ∇p

)
W (r,p) =∫

dDp′ SV (p′ − p;Ep′ − Ep) [W (r,p′)−W (r,p)] (17)

whereD = 1, 2 is the dimension of the wave guide andS(q; ∆E) the spectral density of the
fluctuating potential

SV (q; ∆E) =
1
h̄2

∫
dDs dτ

(2πh̄)D
〈V (r + s, t+ τ)V (r, t)〉 e−i(q·s−∆Eτ)/h̄. (18)

We have assumed that the potential is statistically stationary in both space and time.
The left hand side of the transport equation (17) describes the ballistic motion of the atom

subject to the external (deterministic) forceFext. The right hand side describes the scattering
off the fluctuating potential. As a function of the momentum transferq, e.g., the spectral density
SV (q; ∆E) is proportional to the spatial Fourier transform of the potential, as to be expected
from the Born approximation for the scattering processp→ p′ = p+q. The transport equation
thus combines in a self-consistent way ballistic motion and scattering processes.

3.2 Example: magnetic perturbation

For illustration purposes, we show in Fig. 5 the magnetic near field spectrum at a distancez =
1µm above a flat metallic surface. This spectrum is proportional toSV (q; ∆E) in (17) for
a planar magnetic waveguide. One observes that for typical kinetic energies of cold atoms, the
magnetic spectrum is essentially flat. In the following, we shall hence approximate the perturbing
field by a white noise.
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Fig. 5. Magnetic field spectrum vs. frequency at distance1µm above at copper surface at300 K. The
frequencyω is expressed via the electromagnetic wave lengthλ = 2πc/ω. Note: a kinetic energy of10µK
corresponds to a wave length14 km.
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Fig. 6. Spatial (normalised) correlation function of the thermal magnetic near field above a metallic surface
at frequencyω/2π = 30 MHz. The separations gives the distance between two observations points at the
same heightz above the surface. The other parameters are identical to the previous figure 5. Dots: exact
evaluation, solid lines: asymptotic expansions in the short-distance regime. For even lower frequencies, the
correlation function is essentially unchanged.

In Fig. 6, we show the normalised spatial correlation function of the thermal magnetic field
above a metallic surface. One observes that in a planar wave guide above the surface, the field’s
spatial correlation length is of the order of the heightz. The correlations decay algebraically with
the lateral separations (measured in the waveguide plane parallel to the surface).

3.3 Analytic solution of the transport equation

For a broad band spectrum of the perturbation, we may neglect the dependence ofSV (q,∆E)
on ∆E. The transport equation (17) then simplifies because the integration over the scattered
momentump′ is not restricted by energy conservation. Taking the Fourier transform with respect
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to both variablesr andp (with conjugate variablesk ands), it is simple to derive the following
solution

W̃ (k, s; t) = W̃0(k, s− h̄kt/m) e−iFext·st/h̄ ×

× exp
[
−γ
∫ t

0

(1− C(s− h̄kt′/m))dt′
]

(19)

Here,W̃0(k, s) is the double Fourier transform of the Wigner function at initial timet = 0, and
γ and the normalised spatial correlation functionC(s) are related to the correlation function of
the perturbation by

γC(s) =
1
h̄2

∫ +∞

−∞
dτ 〈V (s, τ)V (0, 0)〉, C(0) = 1. (20)

We also note thatγ is the scattering rateγ(p→ p′) for “forward scattering” processes where the
final momentump′ approaches the initialp. For a magnetic wave guide above a metallic surface,
the rateγ is essentially of the same order of magnitude as the spin flip rate shown in Fig. 4.

From the analytic solution (19), it is easily checked that in the absence of the perturbation , the
spatial widthδr2(t) of a cloud increases ballistically according toδr2(t) = δp2(0) t2/m2 where
δp(0) is the initial width of the cloud in momentum space (this latter width remains constant in
this case, of course).

3.4 Discussion

Spatial decoherence. More interesting information may be obtained for a nonzero scattering
rateγ. Note that the spatially averaged atomic coherence function is given by

Γ(s) =
∫

dDr ρ(r; s) = W̃ (k = 0, s) (21)

The solution (19) therefore implies that the spatial coherence decays exponentially with time:

Γ(s; t) = Γ0(s) exp
[
−γt(1− C(s))− iF · s t/h̄

]
(22)

The decoherence rate depends on the spatial separation between the points where the atomic
wave function is probed, and is given byγ(s) = γ(1−C(s)). It hence saturates to the valueγ at
large separations and decreases to zero fors → 0. The decay of the coherence function (22) is
illustrated in Fig. 7. One observes that at time scalest ≥ 1/γ, the spatial coherence is reduced to
a coherence lengthξcoh ∼ `. After a few collisions with the fluctuating magnetic field, the long-
scale coherence of the atomic wave function is thus lost and persists only over scales smaller
than the field’s correlation length (where different points of the wave function “see” essentially
the same fluctuations). For larger timest � 1/γ, decoherence proceeds at a smaller rate that is
related to momentum diffusion, as we shall see now.
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Fig. 7. Illustration of spatial decoherence in an atomic wave guide. The spatially averaged coherence
function Γ(s, t) is plotted vs. the separations for a few timest. Space is scaled to the field correlation
length ` and time to the scattering time1/γ. A Lorentzian correlation function for the perturbation is
assumed.

Momentum diffusion at long times. The behaviour of the atomic momentum distribution at
long times may be extracted from an expansion of the analytic solution (22) for small values of
s. Assuming a quadratic dependence of the field’s correlation function,C(s) ≈ 1 − s2/`2, as
one would expect for Lorentzian correlations, we find that the atomic momentum distribution
is gaussian at long times; it is centered atp0 + Fextt due to the external force, and its width
increases according to a diffusion process in momentum space

δp2(t) ≈ δp2(0) +
h̄2γt

`2
(23)

This was to be expected: the atoms perform a random walk in momentum space, exchanging a
momentum of order̄h/` per scattering time1/γ. The momentum diffusion coefficientDp =
h̄2γ/`2 that may be read off from (23) is consistent with this intuitive interpretation. Physically
speaking, the atomic cloud is “heated up” due to the scattering from the fluctuating potential. We
note that the rate of change of the atomic kinetic energy in the wave guide plane is the same as the
one for the tightly bound motion perpendicular to the metallic surface (see [9] for a calculation
of this rate).

Translating the width of the momentum distribution into a spatial coherence length, we find a
power-law decay at long times,ξcoh = `/

√
γt. Finally, a similar calculation yields the width of

the atomic cloud in position space: it increases “super-ballistically” at long times,δr2(t) ∝ t3,
as a consequence of heating.
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4 Conclusion

Particles in small traps close to macroscopic bodies are subject to fluctuating near fields that
show noise spectra orders of magnitude above the blackbody level. This is because the geometric
distances involved are typically much smaller than the electromagnetic wave lengths associated
with the relevant frequencies. As a consequence, the ground state of the vibrational motion
of trapped ions is unstable, and coherences between different oscillator levels decay. We have
developed a theoretical framework to compute the corresponding heating and decay rates. As a
second consequence, quasi-free matter waves in a linear or planar wave guide in the vicinity of
macroscopic bodies (substrates or wires) are scattered and lose their spatial coherence. We have
identified the relevant time scale and obtained analytic estimates for the behaviour of the atomic
coherence function at large spatial and temporal scales. These estimates should be useful, we
hope, to design integrated atom optical circuits with controlled decoherence.

Questions that could be addressed in the future pertain to detailed theories for trapped ion
heating, as well as to transport processes for condensed atomic samples. Finally, the inclusion
of interference effects in multiple scattering might provide a link to study weak and/or strong
localisation of matter waves in wave guides.
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