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DECOHERENCE AND DISSIPATION OF ATOMIC SCHR ÖDINGER CATS∗
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We investigate the time development of a superposition of macroscopically distinct quantum
states (Schr̈odinger cats) in an ensemble of two-level atoms. The system is interacting with a
thermal environment of a macroscopic number of photon modes. The final equilibrium state
of the atomic subsystem is diagonal in the energy eigenstates, and is determined by the Boltz-
mann distribution. The time scale of decoherence is, however, generally much shorter than
that of dissipation. The initial fast regime of the time evolution associated with the decoher-
ence is directed towards a classical state which is different from the thermal equilibrium. For
general initial conditions the distance between the actual state of the system and this classical
state is decreasing fast, suggesting an appropriate measure of decoherence.

PACS: 42.50.Dv, 42.50.Fx, 03.65.Bz

1 Introduction

In the present paper we investigate the effect of decoherence [1, 2] on a system of Rydberg
atoms in a resonant cavity. As it is well-known, these atoms show collective behavior. If the
product state of the atoms was initially invariant with respect permutations of the atoms i.e. it is
a superposition of the totally symmetric Dicke states [3], dipole interaction with a resonant field
mode would not destroy this symmetry. Therefore we may restrict our investigation for theN
atom system to the totally symmetricN + 1 dimensional subspace of the whole2N dimensional
Hilbert-space. The time evolution of the atomic subsystem is governed by the superradiant master
equation [4, 5, 6]. We present results of numerical computations of the solution of the master
equation, with the initial state of the system being in a superposition of two macroscopically
distinct atomic coherent states [7]. In analogy with the optical case [8], we shall refer to these
states as atomic Schrödinger cats [9, 10].

Although decoherence and energy dissipation are both related to the coupling of the system
with its environment, their time scales differ by orders of magnitude. Based on this fact, we
∗Presented at 7th Central-European Workshop on Quantum Optics, Balatonfüred, Hungary, April 28 – May 1, 2000.
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show how one can make a clear distinction between the decoherence and the flow of the energy
between the atomic subsystem and the environment.

The classical statistical mixture resulting from decoherence is generally associated with well-
localized quantum states. Furthermore, for certain initial conditions decoherence is shown to
drive the system very close to the mixture of the initial coherent states.

We shall introduce two plausible definitions for the characteristic time of decoherence and
conclude that these times have the same order of magnitude. For certain special initial conditions
our results are in consent with the slower decoherence of these special cat states [10, 11].

2 Description of the model

Let us consider an ensemble of two level Rydberg atoms in a resonant cavity which has low qual-
ity mirrors. In this case the thermal equilibrium of the electromagnetic field in the cavity is not
appreciably modified by the atomic emission, because the emitted photons are absorbed soon by
the mirrors [6]. From a slightly different point of view, this means that the thermal field modes
play the role of an environment containing a large degrees of freedom. This static reservoir con-
tinuously interacts with the atomic subsystem influencing its dynamics until eventually thermal
equilibrium is reached. Besides the energy transfer between the reservoir and the atoms, the
continuous ”monitoring” [12] of the atomic subsystem results in the total loss of the coherence
of its quantum superpositions. So the physical system described above also serves as a specific
model of decoherence.

Supposing a low-Q cavity one is allowed to write a master equation for the reduced density
matrix of the atomic subsystemρ alone [4, 5, 6]. Recalling that the totally symmetricN + 1
dimensional atomic subspace is isomorphous to the angular momentum eigensubspace labeled
by j = N/2, the interaction picture master equation reads [5, 6]:

h̄2 dρ(t)
dt

= −γ
2

(〈n〉+ 1) (J+J−ρ(t) + ρ(t)J+J− − 2J−ρ(t)J+)

−γ
2
〈n〉 (J−J+ρ(t) + ρ(t)J−J+ − 2J+ρ(t)J−). (1)

Here〈n〉 is the mean number of photons in the environment andγ denotes the damping rate.
The presence of quantum coherence is probably the most striking when the quantum system

is in a superposition of two macroscopically distinct states. This classically unexpected (and
unobserved) phenomenon can be modeled by the quantum superposition of two atomic coherent
states [7]. A single atomic coherent state can be expanded in terms of the|j,m〉 Dicke states as
follows:

|θ, φ〉j =
j∑

m=−j

√(
2j

j +m

)
sinj+m

θ

2
cosj−m

θ

2
e−i(j+m)φ|j,m〉. (2)

Here theθ andφ parameters represents polar and azimuthal angles, in the sense that|θ, φ〉j can be
regarded as the quantum counterpart of ah̄

√
j(j + 1) magnitude classical angular momentum

pointing in the direction defined byθ andφ. Hereafter we shall concentrate mainly on the
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solution of Eq. (1), provided the atomic subsystem is initially in an atomic Schrödinger cat state
[9, 10]:

|Ψ12〉 =
|θ1, φ1〉j + |θ2, φ2〉j√

2(1 + Re j〈θ1, φ1|θ2, φ2〉j)
. (3)

It can be shown that the classical mixture of energy eigenstates representing thermal equilibrium
with the environment is a stationary solution of Eq. (1). The corresponding stationary density
matrix is clearly diagonal in the energy eigenstate basis. The population of the|j,m〉 states are
defined by the Boltzmann factors related to the energy ofh̄ωam, whereωa denotes the transition
frequency between two atomic levels.

However, as it will be seen in the next section, there is also a different process, which is
extremely fast compared to the dissipation of the atomic subsystem’s energy. By the aid of an
appropriate measure of decoherence we shall be able to distinguish between the energy transfer
and the process of decoherence.

3 Measures of decoherence

In order to be able to determine the characteristic time of decoherence for different initial density
matrices it is necessary to characterize the process of decoherence quantitatively. We require
the decoherence measure (also called “decoherence norm”, [11])M to be general, i. e. in the
case of an arbitrary density matrix ,ρ, the real numberM(ρ) has to answer the question to what
extent quantum coherence is present inρ. For some special initial density matrices the effect
of decoherence on the matrix elements is clear. The decoherence measure has to reproduce the
expectations based on these special cases. It also should be independent of the particular choice
of basis in terms of whichρ is expanded.

We shall deal with two possible decoherence measures here. First let us consider the fol-
lowing definition:M1(ρ) = Tr(ρ2), which is clearly invariant with respect to the change of
basis. Note thatM1 was used to describe decoherence also in [13]. Ifρ represents a pure state,
M1(ρ) = 1; on the other hand, forρ = I×1/(N+1), whereI represents theN+1 dimensional
identity matrix,M1(ρ) = 1/(N + 1), which is negligible if the number of atoms is large.

It is worth noting that the linear entropyS of the atomic subsystem can be simply expressed
in terms of the normM1:

S = Tr(ρ− ρ2) = 1− Tr(ρ2) = 1−M1(ρ). (4)

As the first application ofM1, let us consider Fig. 1 which shows that the decoherence is a
much faster process than dissipation:M1 (ρ(t)) changes rapidly while the dissipated energy is
just a fraction of the whole amount of energy to be transferred. This implies that the beginning
of the time evolution is dominated by decoherence but later the energy dissipation becomes
more important. In the next section we shall use this fact to define the characteristic time of
decoherence.

For the second measure of decoherence to be considered we shall drop the requirement of
generality by concentrating on a narrower class of initial density matrices. In return we gain
physical insight into the decoherence of the particular systems described by these matrices.

Touching upon the general theory of decoherence we recall that the interaction with a large
number of degrees of freedom naturally selects the so-called pointer basis [12]. The effect of
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Fig. 1: The energy of the atomic subsystem (in units ofh̄ωa) and the trace ofρ2 as a function of time. The
parameters of the initial Schrödinger cat state (3) wereθ1 = 0.5π, φ1 = 0; θ2 = 0, φ2 = 0. The number
of atoms isN = 500 and the average number of photons is〈n〉 = 1.

decoherence is claimed to favor the constituent states of the pointer basis in the sense that pro-
vided there are no other processes, the system ends up in a classical statistical mixture of these
states. However, in our system, apart from the initial period of the time evolution, the dissipation
of the energy is the dominant process. (Although all density matrices finally arrive in thermal
equilibrium with the environment, the energy eigenstates clearly can not always be considered as
the constituents of the pointer basis.) On the contrary, for special cat states (3) (see Fig. 4 of the
next section) it is possible to determine two pointer states, namely the coherent states from which
the initial cat state is composed. At this point it is instructive to introduce the classical density
matrix ρcl(θ1, φ1, θ2, φ2) which corresponds to the classical statistical mixture of two coherent
states:

ρcl(θ1, φ1, θ2, φ2) = c (|θ1, φ1〉jj〈θ1, φ1|+ |θ2, φ2〉jj〈θ2, φ2|) , (5)

where the factorc provides normalization. Now the scheme of the decoherence can be written in
the following manner:

|Ψ12〉〈Ψ12| → ρcl(θ1, φ1, θ2, φ2). (6)

Therefore it is plausible to define a second measure of decoherence,M2(ρ) as the distance (in
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Fig. 2: The comparison of the two decoherence norms. (Initially:θ1 = 0.5π, φ1 = 0; θ2 = 0, φ2 = 0.)
The number of atoms isN = 500 and the average number of photons is〈n〉 = 1, td ≈ 6× 10−5/γ

the sense ofM1) between the current density matrix andρcl:

M2 (ρ(t)) = Tr
[
(ρ(t)− ρcl)2

]
. (7)

Having defined two measures of decoherence, we may ask whether they really characterize
the same property of the physical process. We can perform the comparison in the regions of the
atomic system’s phase-space (see the marked areas in Fig. 4) where the application of bothM1

andM2 is relevant. Fig. 2 shows that the characteristic times based on the two measures are
approximately the same. In addition even the initial slope of the two curves are very close to
each other.

So we can conclude that the measureM2(ρ), which has clear physical meaning, supports the
applicability of the general measureM1(ρ) on the whole phase-space.

4 Characteristic time of the decoherence and the pointer basis

In this section we shall define the characteristic time of the decoherence and examine the depen-
dence of this decoherence time on the initial conditions.

Returning to Fig. 2 we can see that the slope of theM1 (ρ(t)) curve changes rapidly at
a well-defined time, denoted bytd in the figure. This implies that the dominant underlying
physical process changes at this time. Similarly the graph ofM2 (ρ(t)) exhibits a sharp and
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Fig. 3: The dependence of the characteristic time of the decoherence on the initialθ1, θ2 parameters of the
Schr̈odinger cat (3) states. (Note thatφ1 = φ2 = 0.) The number of atoms isN = 50 and the average
number of photons is〈n〉 = 3.

very deep minimum at abouttd. The rapid decrease of theM1 (ρ(t)) curve at a certain time is a
general feature of this norm, provided the number of atoms is large enough and the temperature
is not too low.

From these facts it follows that in general it is reasonable to define the characteristic time of
the decoherence as the instant when the time derivative of the functionM1 (ρ(t)) appreciably
decreases.

Now we can turn to the investigation of the dependence of the characteristic time on the initial
conditions. Roughly speaking we shall answer the question “ How long does decoherence take
provided the system was initially in the superposition of two particular atomic coherent states?”
Fig. 3 shows the contour plot of the decoherence time versus theθ1 andθ2 parameters of the
initial atomic Schr̈odinger cat states (3). For the sake of convenienceφ1 = φ2 = 0 were chosen.
As we can see, the effect of decoherence is remarkably slower whenθ1 ≈ θ2 which was expected
taking into account that in this case the overlap of the two initial coherent states is not negligible,
so these states can not be considered as “macroscopically distinct” any more. The fact that cat
states which were initially symmetric with respect to theθ = π/2 plane (i. e.θ1 ≈ π − θ2 ) also
decohere slower, is more surprising [10] but it is in accordance with the analytical estimations of
Braun et. al. [11].

Besides the characteristic time of the decoherence the question of the pointer basis is also of
great importance. By definition, the reduced density matrix of the atomic subsystem is diagonal
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Fig. 4: The minimal distance betweenρ andρcl during the time evolution. The initial state of the system
was an atomic Schrödinger cat (3) labeled byθ1, φ1 = 0; θ2, φ2 = 0. The number of atoms isN = 50 and
the average number of photons is〈n〉 = 3.

in the pointer basis attd. This allows us to compute the numerical expansion coefficients of the
pointer states. However, the physical interpretation of these vectors is a rather involved proce-
dure. Nevertheless, we have obtained that the initial coherent states themselves are the pointer
states to a very good approximation, provided the process of decoherence is fast. The thick
solid lines in Fig. 4 enclose the initialθ1, θ2 parameter ranges, for which the minimal value of
M2 (ρ(t)) that is the minimal distance between the current density matrix and the corresponding
ρcl is practically negligible. So if the parameters of the two initial coherent states fall in the
marked area, the scheme (6) is clearly valid.

The time evolution can be suggestively mapped onto the phase-space even when the de-
coherence is slow. The corresponding spherical Wigner functions reflect the dynamics of the
atomic subsystem. Using these functions we shall visualize the decoherence and dissipation of
the slowly decohering atomic Schrödinger cat states in a subsequent publication.

5 Summary

We have considered the time evolution of atomic Schrödinger cat states during the interaction
with an environment of photon modes. We have solved numerically the corresponding master
equation of the atomic subsystem in the case of different initial conditions and number of atoms.
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We have investigated two possible measures of decoherence and determined the range of their
applicability. We have demonstrated that both measures provide the same characteristic time of
decoherence.

Based on the more general measureM1 we verified the slower decoherence of the Schrö-
dinger cat states which were initially symmetric with respect to theθ = π/2 plane.

We have shown how one can distinguish between the dissipation of the atomic subsys-
tem’s energy and the process of decoherence. Considering a special class of the initial atomic
Schr̈odinger cat states we have found that the initial coherent states are approximate pointer
states.
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