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A HAMILTONIAN FOR CAVITY DECAY ∗
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We derive from first principles the phenomenological Hamiltonian for high-Q cavity damping
that is often adopted in quantum optics and show that it is a far better approximation than was
previously thought. We also obtain an explicit expression for the coupling strength between
the discrete cavity quasimodes and the continuum that reveals the fast-time non-Markovian
nature of cavity damping and the limit of validity of the independent reservoir assumption.

PACS: 42.50.-p, 03.65.Bz

1 Introduction

A typical problem one often encounters in quantum optics is how to describe the damping of the
radiation field in a cavity. Since the early days of the laser, the conventional way of dealing with
this problem has been to adopt a phenomenological system-reservoir approach [1]. In an ideal
situation the damping is entirely due to leakage of radiation out of the cavity. Then the small
system consists of the set of quantized harmonic oscillators associated with the discrete modes
the cavity would have in the absence of damping. The reservoir is another set of quantized har-
monic oscillators associated with the continuum of external free-space modes. This conventional
approach has been very successfully applied to real experimental situations involving cavities
with a high quality factor (Q). One of the phenomenological parameters in this approach is the
strength of the coupling between cavity and outside modes. It is often assumed that this coupling
strength should be independent of the frequency of the free-space mode, if the output mirror
reflectivity is constant within the frequency range of interest. In this paper, however, we de-
rive this phenomenological approach from first principles and show that the coupling strength
depends on the frequency even when the reflectivity is frequency-independent. The main phys-
ical consequence of this frequency dependence is that for short times compared to one cavity
round-trip time, the reservoir (free-space) is no longer Markovian. Our explicit expression for
this frequency-dependent coupling strength unlocks this fast time non-Markovian regime that
had been previously inaccessible within the phenomenological approach.

A number of authors have looked for rigorous foundations for the conventional phenomeno-
logical approach to cavity damping. The first to do so were Lang, Scully, and Lamb in a paper
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[2] where they also introduced the modes of the “universe” approach. They showed that the
conventional approach is a good approximation for high-Q cavities but eventually breaks down
as the cavity Q decreases. A more thorough comparison between the phenomenological Hamil-
tonian and the modes of the “universe” treatment was done by Barnett and Radmore [4]. They
adapted the technique of Fano diagonalization [3] to deal with dressed operators, and diagonal-
ized the phenomenological Hamiltonian for the cavity model used by Lang, Scully, and Lamb [2]
where the outcoupling mirror is described by a delta-function permittivity. Barnett and Radmore
found that for this model the spatial distribution of the fields calculated from the phenomeno-
logical Hamiltonian already deviates from the exact one to first order in the transmissivity even
in the high-Q regime. As a by-product of our treatment, we show that this negative result is a
peculiarity of the delta-function model they have adopted for the outcoupling mirror and that the
phenomenological approach can be a much better approximation of the exact damping dynamics
for other types of outcoupling mirrors.

The problem of deriving the phenomenological approach from first principles was addressed
by Knöll, Vogel, and Welsch [5] who derived the phenomenological Langevin equations from a
modes of the “universe” treatment and by Van der Plank and Suttorp [6] who derived the phe-
nomenological master equation. However, master and Langevin equations provide only a partial
account of the phenomenological approach where the reservoir of external modes is eliminated
from the description. They also involve extra approximations such as coarse-graining. A full
account requires a Hamiltonian. Much of the appeal and usefulness of the conventional phe-
nomenological approach is that it can be described by a very simple Hamiltonian with a direct
physical meaning attached to each of its three terms (see Section 3). This phenomenological
Hamiltonian is the starting point, for instance, of the input-output theory developed by Gardiner
and Collett [7] that so successfully relates intra-cavity squeezing (what is often calculated) to
squeezing of the external field (what is often measured). Refs. [5, 6] do not provide a derivation
of this phenomenological Hamiltonian. Recently though, Dalton, Barnett, and Knight [8] have
made some progress in this direction. They consider modes of the “universe” that are solutions of
Helmholtz equation for idealized, rather than the actual, permittivity and permeability functions
describing the cavity walls. The idea is that by choosing the idealized permittivity and perme-
ability functions toapproachthose of perfect mirrors, the idealized modes of the “universe” will
fall at least in two categories: the ones they call cavity quasimodes that practically vanish outside
but are large inside, and what they call external quasimodes that almost vanish inside but are
large outside. Then generalizing a technique introduced by Glauber and Lewenstein [9], they
show that, despite not being the true modes of the system, their quasimodes can still describe
the quantum dynamics of the field exactly. But unlike the Hamiltonian for the true modes of
the “universe”, the new one is not diagonal: their quasimodes are coupled. This is very remi-
niscent of the phenomenological Hamiltonian where discrete cavity modes couple to continuous
external modes. However, as the ordinary modes of the “universe”, these idealized modes of the
“universe” still form a continuum. The general theory presented by Dalton, Barnett, and Knight
[8] does not single out explicitly which part of this continuum constitutes what they call cavity
quasimodes that approximate the discrete cavity modes, and which part constitutes the external
quasimodes that approximate the external continuum. In the approach presented here, on the
other hand, discrete cavity and continuum external modes are explicitly identified from the be-
ginning. This allows us to derive the phenomenological Hamiltonian in its widely used form with
cavity modes and external modes clearly separated, and also to obtain an explicit expression for
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the coupling strength.
In the next section, we describe the simple model of a cavity we adopt here and its exact

modes of the “universe” treatment. In Section 3, we discuss the key idea behind the phenomeno-
logical Hamiltonian approach and explain why the negative result of Barnett and Radmore [4]
is a peculiarity of the delta-function model they have adopted for the outcoupling mirror. Then,
in Section 4, we derive the phenomenological Hamiltonian from the exact modes of the “uni-
verse” treatment as an approximation and obtain an explicit expression for the coupling strength.
Finally, in Section 5, we discuss and summarize our conclusions.

2 Model

Our basic ideas should apply to a general cavity. For simplicity, however, we will restrict our
considerations here to a one-dimensional model where we consider only linearly polarized elec-
tromagnetic waves propagating in thex direction. The polarization of the electric field defines
the y axis and that of the magnetic field, thez axis. We re-scale the fields dividing them by
the square root of the transverse area in theyz plane as in Refs. [2]. The cavity consists of a
perfect plane mirror atx = −L and a semitransparent plane mirror of reflectivityr and trans-
missivity t atx = 0. Unlike most previous theoretical treatments of leaky cavities, we do not use
a microscopic model for the semitransparent mirror. As in Ref. [10], we only assume that the
semitransparent mirror is non-absorptive so that

|r|2 + |t|2 = 1 (1)

and

r∗t+ t∗r = 0. (2)

The microscopic model of a semitransparent mirror as a delta function permittivity is a special
case where, apart from (1) and (2),r andt also satisfyt = r+ 1. The advantage of not adopting
a microscopic model for the semitransparent mirror will become apparent in the next section.

A long but straightforward calculation shows that the intra-cavity fields are given in terms of
the modes of the “universe” by

Êin(x) = −i
∫ ∞

0

dk

√
h̄ck

πε0
eikLL(k) sin[(x+ L)k]â(k) +H.c. (3)

and

B̂in(x) = −1
c

∫ ∞
0

dk

√
h̄ck

πε0
eikLL(k) cos[(x+ L)k]â(k) +H.c. (4)

The global operatorŝa(k) satisfy the usual commutation relations for continuous annihilation
and creation operators, i.e.

[â(k), â(k′)] = 0 (5)

and

[â(k), â†(k′)] = δ(k − k′). (6)
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The intra-cavity field strength for a global mode is

L(k) =
∞∑
l=0

t
(
−rei2kL

)l
=

t

1 + r exp(i2kL)
. (7)

Analogously, the external fields are given in terms of the modes of the “universe” by

Êout(x) =
∫ ∞

0

dk

√
h̄ck

4πε0

{
e−ikL + eikL

[
r − tei2kLL(k)

]
â(k)

}
+H.c. (8)

and

B̂out(x) =
1
c

∫ ∞
0

dk

√
h̄ck

4πε0

{
−e−ikL + eikL

[
r − tei2kLL(k)

]
â(k)

}
+H.c. (9)

The Hamiltonian is the total energy

Ĥ =
∫ 0

−L
dx Ûin(x) + lim

δ→0+

∫ δ

−δ
dx Ûstm(x) +

∫ ∞
0

dx Ûout(x), (10)

where

Ûα(x) =
ε0
2

{
Ê2
α(x) + c2B̂2

α(x)
}

(11)

with α = in is the energy density inside the cavity and withα = out is the energy density
outside, and̂Ustm(x) is the energy density inside the semitransparent mirror. Unfortunately, we
do not know the energy density inside the semitransparent mirror because we are not adopting
a specific microscopic model for this mirror as the popular delta function bump in the dielectric
permittivity [2]. We can, however, still find an expression for the integral ofÛstm(x) over the
semitransparent mirror that appears in (10) using the energy conservation relation [11]

∂

∂x
Ŝ +

∂

∂t
Û = 0, (12)

whereŜ is the Poynting vector, which is known both inside (α = in) and outside (α = out)

Ŝα(x) =
ε0c

2

2

{
Êα(x)B̂α(x) + B̂α(x)Êα(x)

}
. (13)

From (12) we find that

d

dt

{
lim
δ→0+

∫ δ

−δ
dx Ûstm(x)

}
= Ŝin(0)− Ŝout(0). (14)

Integrating in time, we obtain

lim
δ→0+

∫ δ

−δ
dx Ûstm(x) = − h̄c

2π

∫ ∞
0

dk

∫ ∞
0

dk′
√
kk′
( â(k)â(k′)

k + k′

{
L(k)L(k′)

× ei(k+k′)L sin[(k + k′)L]
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+
i

2
[−1 + {r − tei2kLL(k)}{r − tei2k

′LL(k′)}]
}

+
â(k)â†(k′)
k − k′

{
L(k)L∗(k′)ei(k−k

′)L sin[(k − k′)L]

+
i

2
[−1 + {r − tei2kLL(k)}{r − tei2k

′LL(k′)}∗]
})

+H.c.

(15)

Using (11) and (15) in (10), we find that the Hamiltonian for the global operators is given by the
familiar expression

Ĥ =
h̄c

2

∫ ∞
0

dk k{â†(k)â(k) + â(k)â†(k)} (16)

which shows that each mode of the “universe” is equivalent to an uncoupled harmonic oscillator.

3 The high-Q regime and the phenomenological Hamiltonian

The key idea behind the phenomenological approach to high-Q cavity damping is the assumption
that for very weak damping the cavity modes are essentially the same as if the cavity was perfect
(i.e. of infinite Q), and that the only noticeable consequence of a finite Q is the appearance
of a coupling between these perfect cavity modes and the continuum modes of the reservoir
responsible for the damping. For the ideal case that we are considering here where the damping
is entirely due to electromagnetic radiation leaking to the outside, this reservoir is the set of
continuum outside modes obtained when the cavity outcoupling mirror atx = 0 is assumed to
be a perfect reflector. The Hamiltonian that is often adopted in quantum optics to describe this
phenomenological approach has the general form

Ĥph =
h̄

2

∞∑
n=1

{
â†nân + ânâ

†
n

}
ωn +

h̄c

2

∫ ∞
0

dk
{
b̂†(k)b̂(k) + b̂(k)b̂†(k)

}
k

+ h̄

∞∑
n=1

∫ ∞
0

dk
{
Vn(k)â†nb̂(k) + V ∗n (k)b̂†(k)ân

}
, (17)

whereân is the annihilation operator for the mode of frequencyωn of the fictitious perfect cavity,
b̂(k) is the annihilation operator for the external mode of frequencyck, andVn(k) is the coupling
strength between thenth cavity mode and thekth mode of the external continuum. Each term
in this very simple Hamiltonian has a direct physical meaning. The first two terms on the right
hand side of (17) represent the uncoupled cavity and outside, i.e. stand for the energy stored in
the cavity and external modes. The third term represents the coupling, i.e. the exchange of energy
between cavity and external modes: one photon in a cavity mode can be annihilated leading to
the creation of a photon in an external mode and vice-versa.

An important restriction on the coupling strengthVn(k) is that it must be of first order in the
output mirror transmissivityt for (17) to yield the correct electromagnetic energy loss rate from
the cavity due to the leakage of radiation to the outside [1]. Now it can be shown that the coupling
with the outside will introduce a shift (analogous to the Lamb shift) in the cavity resonance
frequencies, at most of second order int and, ifVn(k) is broad enough, this second order shift
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will even vanish [4]. One way to check the validity of the phenomenological Hamiltonian (17)
is to calculate exact cavity resonances. These resonances can be obtained by a simple inspection
of the square modulus of the functionL(k) that occurs in the exact modes of the “universe”
expression for the cavity field (3). Using Poisson’s sum formula [12] and assuming thatr andt
do not depend onk (this is often the case for most real cavities in the frequency range where they
are designed to work), we can rewrite|L(k)|2 exactly as [13]

|L(k)|2 =
1
L

∞∑
n=−∞

γ

(k − kn + ∆)2 + γ2
, (18)

whereγ = − ln |r|/(2L) is the cavity loss rate due to the leakage of radiation to the outside,
kn = (π/L)n is the perfect cavitynth resonance, and∆ = [arg(r) − π]/(2L) is a detuning.
This detuning is of first order int for the delta-function permittivity model [2] that is often
adopted for the semitransparent mirror [4]. In this case the phenomenological Hamiltonian (17)
strictly fails because the key idea behind it cannot be realized: the only way to get the correct
shift is to assume that the cavity modes are not perfect modes so that their resonance frequencies
are already shifted. This shift of first order oft, however, is a peculiarity of the delta-function
model for the semitransparent mirror. It is a consequence of the extra condition,t = r + 1, that
such delta-function mirrors have to satisfy. Real mirrors are not restricted by this extra condition
at all and that is why we refrain from using a microscopic model for the semitransparent output
mirror here and adopt, as in Ref. [10], just the two general conditions (1) and (2) that every
non-absorptive mirror has to obey.

4 Deriving the phenomenological Hamiltonian

We have seen in the previous section that the coupling strengthVn(k) in (17) must be of first
order int. If this coupling with the outside is to be the only first-order correction due to non-
vanishing transmissivity, i.e. if the cavity modes are to be identical to perfect modes for small
transmissivity, the reflectivity must remain that of a perfect reflector at least up to second order
in t. If the reflectivity were to differ from that of a perfect reflector already in first order int (the
case of the delta-function model for the semitransparent mirror), the cavity modes would become
different from perfect modes already in first order int which is the same order of the coupling
strengthVn(k) in (17), thus violating the key idea behind the phenomenological approach.

To make sure that the cavity modes deviate from the perfect-cavity ones only to second order
in t, we choose frequency-independentr andt with r = −1 + O(t2). Conditions (1) and (2)
then give

r = −
√

1− ε2 (19)

and

t = iε, (20)

whereε is a real positive number much smaller than one.
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So up to first order inε, we must be able to describe the cavity field in terms of perfect cavity
modes and the usual expressions

Êin(x) = −i
∞∑
n=1

√
h̄ckn
ε0L

(
ân − â†n

)
sin [(x+ L)kn] (21)

and

B̂in(x) = −
∞∑
n=1

√
h̄kn
cε0L

(
ân + â†n

)
cos [(x+ L)kn] (22)

for the electric and magnetic fields in a perfect cavity must be equivalent to (3) up to first order
in ε. Eqs. (21) and (22) then define the discrete operatorsân in terms of the global annihilation
operatorŝa(k). Substituting (21) and (22) in (3) and (4), we find

ân =
∫ ∞

0

dk
{
α∗n1(k)â(k)− αn2(k)â†(k)

}
, (23)

where

αn1(k) =
1√
πL

√
k

kn

sin [(k − kn)L]
k − kn

e−ikLL∗(k) (24)

and

αn2(k) = − 1√
πL

√
k

kn

sin [(k + kn)L]
k + kn

e−ikLL∗(k) (25)

We can repeat the same procedure for the external fields. Up to first order inε, these fields
must correspond to the fields in free-space with a perfect mirror at the origin,

Êout(x) = −i
∫ ∞

0

dk

√
h̄ck

πε0

{
b̂(k)− b̂†(k)

}
sin(kx) (26)

and

Êout(x) = −
∫ ∞

0

dk

√
h̄k

πcε0

{
b̂(k) + b̂†(k)

}
cos(kx). (27)

From (8), (9), (26), and (27), we obtain the following expression for thekth external mode
annihilation operator

b̂(k) =
∫ ∞

0

dk′
{
β∗1(k′, k)â(k′)− β2(k′, k)â†(k′)

}
, (28)

where

β1(k, k′) = δ(k − k′) +
1
π

∣∣∣∣1 + r

t

∣∣∣∣
√
k

k′
e−ikL cos(kL)L∗(k) lim

δ→0+

1
k′ − k + iδ

(29)
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and

β2(k, k′) =
1
π

∣∣∣∣1 + r

t

∣∣∣∣
√
k

k′
e−ikL cos(kL)L∗(k) lim

δ→0+

1
k′ + k − iδ

. (30)

It follows from the orthogonality relations for the perfect cavity and external modes and from
the well-known equal-time commutator between the electric and magnetic fields thatân, â†n,
b̂(k), andb̂†(k) obey the usual commutation relations taken for granted in the phenomenological
approach, namely

[ân, â
†
n′ ] = δnn′ , (31)

[ân, ân′ ] = [b̂(k), b̂(k′)] = [ân, b̂(k)] = [â†n, b̂(k)] = 0, (32)

and

[b̂(k), b̂†(k′)] = δ(k − k′). (33)

Now, as the perfect intra-cavity modes and the perfect external modes used in the field expan-
sions (21), (22), (26), and (27) must together be sufficient to describe any spatial configuration
of the fields correctly up to first order inε, we must be able to reconstruct the global “universe”
operators by making a proper linear combination of the cavity and external mode operators. To
be more precise, the inverse of relations (23) and (28),

â(k) =
∞∑
n=1

{
αn1(k)ân + αn2(k)â†n

}
+
∫ ∞

0

dk′
{
β1(k, k′)b̂(k′) + β2(k, k′)b̂†(k′)

}
,(34)

has to hold up to first order inε, withαn1(k),αn2(k), β1(k, k′), andβ2(k, k′) given by (24), (25),
(29), and (30) respectively [14]. This can be verified by calculating the commutation relations
of â(k) andâ†(k) using eqs. (23) to (25) and (28) to (34). This straightforward but rather long
calculation shows that eqs. (5) and (6) are recovered up to first order inε so that (34) is indeed
valid up to this order.

Now, if we substitute (34) in the Hamiltonian (16), we obtain, after another long but straight-
forward calculation, an approximate Hamiltonian for smallε involving the perfect cavity and
outside mode annihilation and creation operators rather than the global modes of the “universe”
operators. This approximate Hamiltonian, which is valid as long as (34) holds (i.e. up to first
order in ε) has the same form as the conventional phenomenological Hamiltonian (17) with
ωn = ckn and

Vn(k) = − ε

2h̄
√
πL

e−ikL
sin [(k − kn)L]

(k − kn)L
. (35)

The Hamiltonian (17) with (35) can be used to study the decay of the cavity. One readily
obtains the result

d

dt
〈â†nân〉 = −Γ〈â†nân〉, (36)

with Γ = |ε|2/(2cL). However, it is more interesting to study the properties of the outside field.
The explicit Hamiltonian allows us to study the quantum properties of the radiation field leaking
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out of a cavity containing a non-classical field initially. Moreover, the derivation indicates that
for low-Q cavities, the operators for the cavity field and the outside can no longer be expected to
commute. The modes needed to describe all possible fields inside, including the correct boundary
conditions, must be expected to be non-orthogonal.

5 Conclusions

So we have derived the phenomenological Hamiltonian (17) from first principles and shown that
it is an approximation of the exact Hamiltonian up to first order in the transmissivity. We have
established a definite criterion for the validity of this Hamiltonian. We have shown that the
approximation it entails, where the cavity modes remain perfect modes with the finite transmis-
sivity only introducing a coupling to the continuum of external modes, is possible only when the
reflectivity of the outcoupling mirror remains 100% up to first order in the transmissivity. When
the outcoupling mirror reflectivity already differs from 100% to first order in the transmissivity,
the cavity modes will differ from perfect cavity modes already in that order and the effect of a
finite transmissivity will not be limited to the introduction of a coupling between perfect cavity
and external modes: the modes themselves will have to be corrected. This latter situation is the
case of the delta-function model of the semitransparent mirror investigated by Barnett and Rad-
more [4] and others [2] before. This explains why they have found that the phenomenological
resonance frequencies had a small shift of first order in the transmissivity when compared with
the actual resonance frequencies for such outcoupling mirror.

We have also obtained an explicit expression for the coupling strengthVn(k) in (17). This
expression shows that contrary to the usual assumption, frequency-independent reflectivity and
transmissivity coefficients do not lead to a frequency-independent coupling strength. There are
two physical consequences of this frequency dependence. First, it shows that the reservoir of
external modes is intrinsically non-Markovian. However, as the sinc function in (35) has a width
of the order ofπ/L, the non-Markovian dynamics can only be resolved on the fast-time scale
of π/(Lc), i.e. when the round-trip time is also resolved. This fast-time scale is inaccessible
in master equation and white-noise Langevin treatments because it is outside the regime where
the coarse-graining approximation is valid. The second consequence is that because sinc func-
tions corresponding to different cavity modes overlap, the effective reservoirs associated with
each cavity mode are not completely independent. Since the early days of laser physics, when-
ever there is a need to account for more than one cavity mode, it is often assumed that each
cavity mode has its own independent reservoir responsible for its damping [15]. Our approach
shows that there is only one huge reservoir for all the cavity modes, the reservoir formed by
the continuum of external modes. However, as the overlap between sinc functions of succes-
sive cavity modes is small, occurring only at their wings, the independent reservoir assumption
works in most practical situations. Any departure from this assumption can only be noticed in
the fast-time non-Markovian regime, where the slowly varyingk dependence of|Vn(k)|2 can be
resolved.

A similar phenomenological Hamiltonian arises in solid state physics, in the one-dimensional
problem of tunneling of electrons through a finite narrow barrier that divides an infinite potential
well into two symmetrical regions. It was introduced by Bardeen [16]. Analogously to (17),
Bardeen’s Hamiltonian is the sum of three Hamiltonians, one describing the electrons on the
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left-hand side of the barrier, another describing those on the right-hand side of the barrier, and a
third one describing the tunneling. Prange [17] has shown how to derive Bardeen’s Hamiltonian
from first principles using a perturbation treatment. It would be quite convenient if Prange’s
methods could be applied to the cavity problem. Unfortunately, they cannot. The main reason
for this is that Prange relies on the existence of a first quantized Hamiltonian where both the
infinite potential well and the tunelling barrier are defined and from which the second quantized
form is derived in the standard way. For the electromagnetic radiation field, however, there is
no first quantized Hamiltonian to start from. Another important difference between the cavity
problem and Prange’s is that in Prange’s case there is no dissipation. Dissipation only arises
when one of the regions is infinite as in the cavity problem.
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