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DECOHERENCE AND MILBURN DYNAMICS OF OPEN SYSTEMS:
THE CASE OF THE LINEAR COUPLER
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Within the framework of the Milburn model of the intrinsic decoherence [G.J.Milburn, Phys.Rev.
A44, 5401 (1991)] which is based on the assumption of the existence of the fundamental time
step we study the dynamics of the linear coupler. We show that the evolution governed by the
Milburn equation can be significantly modified compared to the standard quantum mechanics.
Dicsussion about closed systems is also included.

PACS: 03.65.Bz, 42.50.-p

1 Introduction

Inspite of the success of quantum theory in accounting with striking accuracy for a vast variety
of physical phenomena there are still some unsolved epistemological and conceptual questions
concerning quantum theory. The feature of quantum physics that distinguishes it from classical
one is the existence of the linear superposition of physical states. Apparently, the superposition
principle doesn’t work on the macroscopic level though nothing in the present formulation of
quantum theory indicates this. Thus, the question is why we don’t observe quantum coherences

�

on the macroscopic level. There exist two basic approaches to explain this problem.
The first one says it’s difficult to prepare a closed system, i.e. each system is embedded in a

large system with many degrees of freedom and a constant temperature called reservoir. Quan-
tum coherences of a system interacting with the reservoir spread over its degrees of freedom what
we effectively observe as a process of the decoherence. It’s important to add, generally speaking,
quantum coherences decay much faster compared to the energy dissipation of the system.

The second approach to the problem seeks to modify the Schrödinger equation in such a way
that the coherences of a closed system are automatically destroyed as the system evolves – we
call this effect intrinsic decoherence. Most known models come from Ghirardi, Rimini, Weber
[1] and Milburn [2]. In this paper we analyze the Milburn model. He proposed a modification of
the Schrödinger equation based on the assumption that on sufficiently short time steps a closed
system doesn’t evolve continuously under unitary evolution but rather in a stochastic sequence
of unitary phase changes. Further, Milburn effectively introduces a minimum time step in the

�
Off-diagonal elements of the density matrix in the eigenstate basis of the total Hamiltonian of a closed system.
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universe
���

. The inverse of this time step is equal to the mean frequency of unitary steps, i.e.��� ���� . The smaller the value of � the bigger the deviation from unitary evolution is. Further,
Milburn derived the relation which we call the Milburn equation		�
���� 
�� ��� ������������� � !" �$# ���� 
�� �%�&���(')� � !" �$# � ��*� 
���+-, (1)

where ���� 
�� denotes the density operator of the system, � is its Hamiltonian and
!"

is the Planck
constant. We call � the parameter of the intrinsic decoherence. Expanding (1) to the Taylor
series to the first order in

�. we obtain the following equation		�
 ���� 
�� � ���!"$/ � , ��0� 
��21 � 34 !"05 � / � , / � , ���� 
��617198 (2)

The standard quantum mechanics is governed by the von Neumann equation		�
���� 
�� � � �!" / � , ��0� 
��21:8 (3)

If �<;>= the relation (2) becomes the equation (3), thus for �?;@= the Milburn equation
reduces to the standard von Neumann equation describing the Schrödinger evolution. The de-
scription of the evolution for �A;CB is discussed in detail in the following section.

Milburn in his paper discussed in detail a number of testable consequences of his model.
Nevertheless, he studied only closed systems. In this paper we analyze an open system, i.e. a
system interacting with its enviroment. We took a mode of the electromagnetic (EM) field as the
open system coupled with another mode of the EM field as its enviroment.

This paper is organized as follows: In Sec.II we present the solution of the Milburn equation
for the total Hamiltonian � of a composite system, the linear coupler is definied in Sec.III .
Standard and Milburn dynamics of the system under consideration is described in Sec.IV and V,
respectively. In Sec.VI we introduce Wigner functions of states of EM field modes. The paper is
concluded with a discussion.

2 General solution of the Milburn equation for composite systems

Let us consider a composite system governed by the Hamiltonian� � � �D ' � FE ' � FG , (4)

where � FD denotes the Hamiltonian of the open system, � HE is for its enviroment and � FG is the
interaction part of the total Hamiltonian � .

Let us denote� JI KML&N � O LPI KMLQN , (5)� � �D ' � FE � I RTS�N � U SVI RTS�N , (6)I KML&N � W SYX LS I RTS6N (7)
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and also the density operator��*� 
�� � W L � � � L � � 
�� I KMLQN���K � I � W S � � �� S � � 
�� I RTS�N�� R � I 8 (8)

We can rewrite (8) with the use of (7)� L � � 
�� � W S � � �� S � � 
�� � X LS ��� � X �� ��, (9)�� S � � 
�� � W L � � � L � � 
�� � X LS � � X �� ���8 (10)

The solution of the Milburn equation (1) in the eigenstate basis of the total Hamiltonian (5) then
reads � L � � 
�� � � L � � B � �����
	 � 
�� ������ ���!" � � O L � O � ��� � 3���� ,

(11)

where the matrix elements � L � � B � describe the initial state � 
 � B � of the composite system. Dia-
gonal elements are not affected, i.e. � L L � 
�� � � L L � B � . Off diagonal elements � L � � 
�� are reduced

gradually to zero with the factor

�%�&��� � 
��������! E#"%$�E'&() .+* � 3�,.- because /10
243 ;
I ����� � 0 � I65 3 .

If � ; B the exponential factor in (11) reduces to unity
5

and we get � L � � 
�� � � L � � B � . It means
the system effectively does not evolve, we say that the system freezes. According to Milburn for� ;CB the minimum time step

� � ; = and the system can’t make even a single evolution step.
Substituting (11) into (10) and using (9) for


 � B we get the solution of the Milburn equation
in the basis of the free Hamiltonian (6)�� S � � 
�� � W L � � � L � � B � ����� 	 � 
 � �����  ���!" � � O L � O � � � � 3 ��� � X LS � � X �� ��� (12)

� W L � � 78 W G � 9 �� G 9 � B � � X LG � � � X �9 ��:; �����
	 � 
<� ������ ���!" � � O L � O � ��� � 3���� � X LS � � X �� � � 8
By performing the trace over the enviroment we obtain the density operator of the open system
under consideration, i.e. �� D � 
�� � Tr

E �� D:E � 
�� .
3 Simple model of the open system: Linear coupler

Let us assume a simple model of a linear coupler - an effective device which allows a linear
EM interaction between two modes of the EM field. We assume one of the modes to play a role
of the open system (mode A) while the other to be in the role of its nondissipative enviroment
(mode B). The linear coupler is described by the Hamiltonian [3]� � !">= �?A@ �? ' !"6= �B @ �B ' !"1C � �?>@ �B ' �? �B @ ��, (13)D.EGFGHI�J�K%L�MONQPOR �I.S�TVUXW EGFGHI�J�K%L�P FGY R �I.S�TVU .
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where �? , �? @ and �B�, �B @ denotes annihilation and creation field operators for the modes A and B,
respectively. Further, we have assumed

= � � =�� � =
and we don’t take into account absolute

terms
�5 !">= in the Hamiltonians of single modes.

C
is the coupling constant. Introducing the

dressed modes�X � �? ' �B� 4 , �	 � �? � �B� 4 ,
(14)

the Hamiltonian (13) becomes� � !" � = ' C*� �X @ �X ' !" � = � C*� �	 @ �	 , (15)

which can be diagonalized as follows� JI �����
	� N � O ����	� I �����	� N ,�� � B , 8%8%8%,�� ,
(16)I �����
	� N � 	 3

� 4 � � 3
� � � � �&������� � $ �W��� � �W � � � � � 3 � � $ � 	 � � �� � 	 � � �

� � � � ' � ��� � � � � � � � ��� I � ' � ,�� � � � � N ,
(17)O ����	� � !"6=�� ' !"1C � � � 4 �9� 8
(18)

Relations (16)-(18) express the eigensystem of the Hamiltonian (13) in the Hilbert subspace (with�
excitations) generated by the composite Fock states

I � , B N , I � � 3 , 3 N ,�8%8%8 , I 3 ,�� � 3 N , I B ,�� N ,
where we denote

I � ,� N"! I �AN � I  N � .
I � N

denotes the Fock state with
�

photons.
In what follows we will consider the mode A initially prepared in the coherent stateI #TN � � ����� � # �? @ � # � �? � I B N � �%$W& � � X & I  N � �%$W& � � ����� � � I # I 54 � # &�  '� I  N � (19)

and the mode B in the vacuum state
I B N � .

4 Standard dynamics

4.1 Closed system

Let us firstly consider a single mode of the EM field (closed system) governed by the Hamiltonian� � !"6= �? @ �? and initially prepared in the coherent state
I #TN

. The unitary evolution of such a
system is described by the wave functionI ( � 
�� N � �) � 
�� I ( � B � N � �%�&� � � � � 
!" # I #�N � I # �%�&� � � � = 
�� N 8 (20)

The state of the system changes from
I #�N

into
I # �%�&� � � = 
�� N . The mean photon population in the

mode stays constant,
! � �*#MI � I #�N � �+# I �? @ �? I #TN � I #MI 5

where �? I #TN � #MI #�N
and

�*#MI �? @ � �*#MI # �
.
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4.2 Open system

The situation is different when we consider the linear coupler, i.e. two coupled modes of the EM
field where one of them (mode A) plays a role of the open system and the other is the enviroment
(mode B). We assume the mode A to be iniatially in the coherent state

I #TN
(in what follows we

assume for simplicity that
#

is real), the mode B in the vacuum. The wave function of the coupled
modes in the standard evolution then reads [4], [5]I � � 
�� N � ����� � � � � 
!" # I #TN � I B N � � I # � 
�� N � I � � 
�� N � , (21)

where

# � 
�� � # ����� � CQ
�� �%��� � � � = 
���, (22)
� � 
�� � � � # ����� � C 
�� �%�&� � � � = 
�� (23)

and the mean photon population in the modes reads! � � 
�� � # 5 ��� � 5 � C 
���, (24)! � � 
�� � # 5 ����� 5 � C 
���8 (25)

When the mode A (open system) is coupled with another mode B (
= � 3

) and governed by
the standard Schrödinger dynamics the state of the system (22) reconstructs with the period

5	�
 .
There is no loss of the phase information. Coherences are present. The energy exchanges period-
ically between the system (mode A) and its enviroment (mode B). The mean photon population
(24) reconstructs with the period

� 
 . This is also one of reasons why we chose the linear cou-
pler to test the Milburn dynamics. Because modes reconstructs after a certain time there is no
decoherence through the interaction between modes.

5 Milburn dynamics

5.1 Closed system

Firstly we again consider a single mode of the EM field (closed system) governed by the Milburn
equation (1) prepared initially in the coherent state

I #�N
. We find out that diagonal elements

of the density matrix are not affected by the evolution, i.e. all integrals of the motion stay
constant. For example, the mean photon population in the mode is constant. However, off-
-diagonal elements (quantum coherences) are influenced in the Milburn dynamics and decay at
the rate of the intrinsic decoherence parameter � what we effectively observe as the intrinsic
decoherence of the system. See relation (11) and the discussion below.

5.2 Open system

If we take into account the mode A (open system) coupled with the mode B the Milburn dynamics
is more complex because not only off-diagonal elements but also diagonal elements of the density
matrix are influenced due to the Milburn assumption of the fundamental time step. It implies
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Fig. 1. The mean photon population in the mode A as a function of the time plotted for 4 values of the
parameter � . The mode A initially prepared in the coherent state with the real amplitude ����� , the
mode B in the vacuum. The coupling constant is ���	��
�� . If we consider the real physical coupling
������������ MHz then ��������� corresponds to ���� ���!�#"%$&����'�( s, � �����)( to � �� ���*�+�,$-���

�/.
Hz, � �0���

to � �� ��� ���%$%���)1 Hz, � ��� to � �� ��� �2�3$-���)4 Hz and � �5��
�� to � �� ��� �2�%$%���6( Hz.

that all observables associated with the photon distribution – which directly depend on diagonal
elements – are strongly affected, too.

Further in this section we will present the numerical solution � = � 3 �
of the Milburn equation

for the mode A coupled with the mode B. Though there exists the exact analytical subscription
for the eigenvectors (17) and eigenvalues (18) of the linear coupler, from the computation point
of view it is more advantageous to use the method of the numerical diagonalization of the Hamil-
tonian (13) rather than to perform infinite multiple summations in the analytical solution. Tracing
over the mode B we obtained the density operator of the mode A�� � � 
�� � Tr

� �� � � � 
���8 (26)

The coherent state is the infinite superposition of the Fock states so we had to choose the
cut-off dimension for the Hilbert space under consideration. For the amplitude of the coherent
state

# � 3
we took the first 7 states

I # � 3 N �87�9& � � X & I  N , �+# I #TN ��7�9& � � I X & I 5 8�<B 8 :�:;:�:
,

i.e. the Hilbert space is spanned by 28 orthonormal vectors
I B , B N , I 3 , B N , I B , 3 N , I 4 , B N , I 3 , 3 N ,I B , 4 N , I < , B N , . . . ,

I B , <:N . For
# � 4

we took 13 states so the Hilbert space dimension was 91 and
the norm 0.9997 .

The temporal depence of the mean population in the mode A is plotted in Fig. 1 for 4
different values of the parameter � . The mean photon population oscillates with the same period
for different values of � . For the coupling constant

C � B 8 3 we observe no difference between
the standard and Milburn dynamics already for � � 3 B 9 . If we consider a strong interaction we
also have to rescale the value of � under consideration. The mean photon popullation in Fig. 1.
does not depend on the mode frequency

=
.
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Fig. 2. Wigner functions of a single mode of the EM field (� � � ) in 8 time instants for the standard
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Fig. 4. Wigner functions of the modes A and B in 8 time instants for the Milburn dynamics ( � �#��� ). The
mode A initially prepared in the coherent state with the amplitude � �+" , the mode B in the vacuum. The
coupling constant is � �2� 
�� .
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6 Wigner functions

The decoherence means a loss of the phase information. Quantum mechanics is usually formulated in
the Hilbert space but it is sometimes appropriate to reformulate it within the phase space formalism. The
Wigner function carries all the information about a quantum system decribed by the density operator

���� ���
and is defined in the phase space as follows� � ��� �	� ��� � �

" � ��

�

' 
���������  	� � ��� *�� ��� � "�� ���� ��� � ��� � " � 
 (27)

The Hilbert space under our consideration is generated by the Fock states, thus let us write the density
operator in this basis��!� �"� � W #%$ &(' #�& � ��� � )*� �,+ � 
 (28)

Substituting (28) into (27) we can write� � ��� �	� ��� � W #-$ &�' #�& � �"� � #�& � ��� �!��� (29)

where � #�& � ��� �!� � �
" � ��


�
' 
�����.�/�  	� � ��� *10 # � �-� � " � 0(2& � �(� � " �!� (30)

0 # �,3 � � �
� "

# )54  76� *98:�;
# �,3 � 6 � �����

	 � 6 3 D
"

�

 (31)0 # �,3 � denotes the wave function of the quantum oscillator (mode of the EM field) in � -representation.; # �,3 � is the Hermitte polynomial of the ) -th order, 6 �

�� ��� , where � is the EM mode field frequency
and � K is the dielectric constant.

After substituting (31) into (30) and integration we get� #�& � ��� �!� �
� � �<� #
� ��>= "

&
"

# = )?4+ 4
	 � 6 �(� � �

�� � 6 �
&
'

#
�

@ �.�/�
 � 	

� D6 �� D � 6 � D � �BA & ' ## 
"

	
� D6 �� D � 6 � D � � � (32)

where
A &

'

## �,3 � denotes the generalized polynomial of the ) -th order. For the numerical calculations we
used the values � ���C� �� ���C��� �5��
�� and 6 ��� .

At the beginning of Sec.4 and 5 we discussed the standard and Milburn dynamics of the single mode
of the EM field. For the standard evolution, we found out that the system evolves from the state � � � into� � �.�/� � � � � �"� � , i.e. the mode stays in the coherent state. When we considered the Milburn dynamics of the
single mode we found out that the mode was losing just its phase information but diagonal elements of the
density matrix stayed untouched (11).

In Fig. 2 we plotted Wigner functions of the time evolution of the single mode of the EM field iniatially
prepared in the coherent state � � �#� � for � �#��� ( what essentially corresponds to the standard dynamics.
We see that the system reconstructs with the period " � . There is no decoherence.
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In Fig. 3 we plotted almost the same situation but for � � � (Milburn dynamics). We see the rotating
effect of the Gaussian peak

.
but as the function rotates around the origin of the phase space the system

loses gradually its phase information which is mostly pronounced for � � 4 �� when the Wigner function
is almost symetrical around the origin of the phase space. We observe the intrinsic decoherence - the loss
of the phase information as the closed system evolves but diagonal elements of the density matrix of the
system are not affected.

Further, let us assume the linear coupler initially prepared in the state where the mode A is in the
coherent state � � � with the amplitude � ��" and the mode B in the vacuum. The interaction between the
modes is then performed by four photons (24,25).

If we consider the standard dynamics both modes stay in the coherent states (21) and the initial state of
the whole system recovers after ��� "6� � because there is no deceherence through the interaction between
the open system (mode A) with its enviroment (mode B). Thus, the Wigner functions of the modes are then
Gaussian functions differently centered as the amplitudes of the coherent states change (22,23).

If we take into account the Milburn dynamics ( � � ��� ) we see that the dynamics is different (Fig. 4).
The Wigner function of the open system (mode A) loses gradually its Gaussian shape and the system is not
able to reconstruct its iniatial state anymore. Although there is no decoherence caused by the interaction
between modes, diagonal elements of the density matrix of mode A are strongly affected and boths modes
get for ����� to the quasithermal stationary state with two photons in each mode.

In this paper we describe the Milburn dynamics of the open system and we propose a simple idea how
to verify experimentally its validity. We chose the values of the frequency � and coupling � in almost same
order � � � �C��� �#� 
 �<� because it provided us the possibility to present the effect of the phase rising and
coupling on the same time scale, see relations (22) and (23). If we tried to plot Fig. 4 with realistic optical
values ( � � � $&���

���
Hz, � ��� Mhz) then we would have to consider the time scale in microseconds (see

Fig. 1) where the rotating effect of the coherent state would be pushed by the coupling which is relevant on
this time scale.

7 Discussion

Milburn proposed a solution to answer the question why we don’t observe the linear superpostion of physi-
cal states on the macroscopic level, i.e. why the system loses quantum coherences (off-diagonal elements of
the density matrix in the eigenstate basis). In this paper we tested the Milburn dynamics on the open system
(mode of the EM field) that doesn’t lose quantum coherences through the interaction with its nondissipative
enviroment (another mode of the EM field). We showed that this dynamics gives different results from what
we know about the linear coupler governed by the Schrödinger equation with the same initial conditions.
We demonstrated the difference between these two dynamics on the temporal dependce of the mean photon
distribution and by plotting the Wigner functions of the states of the system under consideration.

In this paper we suggested the idea rather than a specific experimental test how to verify experimentally
the validity of the Milburn equation by measuring the mean photon distribution (or some other observables
associated with this distribution) in the linear coupler. The measurement on the open system interacting
with its enviroment could give us the real chance to measure disturbances caused by the Milburn equation
comparing to the standard dynamics on the realistic laboratory time scale by the suitable setting of the
coupling constant between the system and its enviroment.
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.
The Wigner function of the coherent state is the Gaussian function with the moved centre.
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