acta physica slovaca vol. 50 No. 1,1 —-198 February 2000

EXTENDED QUANTUM MECHANICS

Pavel Bona!
Department of Theoretical Physics, Comenius University,
Mlynska dolina F2, SK-842 48 Bratislava, Slovakia

Received 10 November 1999, in final form 10 January 2000, accepted 13 January 2000

The work can be considered as an essay on mathematical and conceptual structure of non-
relativistic quantum mechanics (QM) which is related here to some other (more general, but
also to more special and “approximative”) theories. QM is here primarily reformulated in an
equivalent form of a Poisson system on the phase space consisting of density matrices, where
the “observables”, as well as “symmetry generators” are represented by a specific type of real
valued (densely defined) functions, namely the usual quantum expectations of correspond-
ing selfadjoint operators. It is shown in this paper that inclusion of additional (“nonlinear”)
symmetry generators (i.e. “Hamiltonians”) into this reformulation of (linear) QM leads to a
considerable extension of the theory: two kinds of quantum “mixed states” should be dis-
tinguished, and operator — valued functions of density matrices should be used @iethe r

of “nonlinear observables”. A general framework for physical theories is obtained in this
way: By different choices of the sets of “nonlinear observables” we obtain, as special cases,
e.g. classical mechanics on homogeneous spaces of kinematical symmetry groups, standard
(linear) QM, or nonlinear extensions of QM; also various “quasiclassical approximations” to
QM are all subtheories of the presented extension of QM - a version of the extended quantum
mechanics (EQM). A general interpretation scheme of EQM extending the usual statistical
interpretation of QM is also proposed. Eventually, EQM is shown to be (included into) a
C*-algebraic (hence linear) quantum theory.

Mathematical formulation of these theories is presented. The presentation includes an
analysis of problems connected with differentiation on infinite — dimensional manifolds, as
well as a solution of some problems connected with the work with only densely defined un-
bounded real-valued functions on the (infinite dimensional) “phase space” which correspond
to unbounded operators (generators) and to their nonlinear generalizations. Also “nonlinear
deformations” of unitary representations of kinematical symmetry Lie groups are introduced.
Possible applications are briefly discussed, and some specific examples are presented.

The text contains also brief reviews of Hamiltonian classical mechanics, as well as of QM.
Mathematical appendices make the paper nearly selfcontained.
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4 1 Introduction

1 Introduction

We present in this work a straightforward, and a “very natural” theoretical extension of traditional
(linear) quantum mechanics (QM), providing a general framework of several physical theories. It
contains QM itself, its (almost all up to now published) nonlinear modifications and extensions,
and also its “semiclassical approximations”, together with the Hamiltonian classical mechanics
(CM). This is made formally by a geometrical reformulation of QM and by its subsequent nonlin-
ear extension (containing the unchanged linear QM as a subtheory); an interpretation scheme for
this extended theory is also proposed here. Although rather “trivial” from a certain point of view,
the obtained extended quantum mechanics (EX@dems to offer new insights into conceptual
foundations and also possible applications of quantum theory. It renders also alternative views
to different approximations and modifications of QM like, e.g., the time dependent Hartree Fock
theory, WKB approximation, or the “nonlinear Sékiinger equation”, which are just subtheories

of EQM.3 The presented theory provides also a global view onto solutions of dynamical equa-
tions of many of its subtheories including a specification of ways to obtaining their solutions.
Having its origin in mathematically well defined models of infinite quantum systems described
by traditional (hence linear!) nonrelativistic quantum field theory (QFT), cf. [130, 31, 185, 186],
no mathematical inconsistencies could be expected in the basic structure of EQM.

Next Section 1.1 contains a description of the present author’'s motivation, including some of
his presently accepted philosophical ideas, and his mostly personal view on the history of this
paper. The author is aware that motivation and history of writings can be considered either from
a subjective point of view of the author, or from the point of view of more “objective” history
based on a review of existing published works connected in some way with the contents of the
presented work. The second point of view, if taken seriously, would need considerable historical
effort of experts in the related fields, and we shall not try to present it in this work; we shall add,
however, some comments and references to compensate partially this gap, cf. also Remark 1.1.1.

Many important papers relevant to the contents of the present work became known to the
present author only after writing his own “independent” version of the “stérit’is, however,
important to have in sight also independently written works on the considered subject, since
alternative approaches to formulation of similar theories might provide also some alternatives
for interpretation and/or application of the developed formal theory. This is even more valid
taken into account that the author's formulation of the presented results was rather “indirect”,
obtained as a byproduct of other (a priori unrelated) investigations. We are trying to give here all
the relevant citations and credits we are aware of.

The Section 1.2 contains a heuristic description of the general construction of main concept-

2The obtained EQM provides rather “metatheoretical framework” for a broad class of physical theories than a specific
theory of a given class of physical systems.

3L et us note here that, for general dynamical systems (resp. systems of differential equations), “(non-)linearity” is
not an unambiguous specification: Any linear equation can be transformed into a nonlinear form by a change of variables
and, conversely, many nonlinear equations can be rewritten into a form of linear ones, cf. e.g. &&Rbemam [9,
Chap. 5§22], or the “Koopmanism” in e.g., [152] and Remark 3.3.14. Linearity in QM is determined in our work with a
help of structures on the projective Hilbert spaeeH).

4This explains also some omissions of citations of some relevant earlier published papers in the author’s previous
works: The present author would like to apologize to the authors of those omitted papers in this way.

51n spite of this, the bibliography remains probably rather incomplete, and the present author has to apologize repeat-
edly to authors of unnoticed relevant works.
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s, mathematical structures, as well as interpretation problems, and possible applications of the
presented nonlinear extension of quantum mechanics (NLQM). The Section 1.3 contains some
notes on organization of the paper. We include also into this chapter sections describing briefly
general structure of CM (cf. Section 1.4), as well as of QM (Section 1.5), because it provides a

starting framework for forthcoming theoretical constructions.

1.1 Notes on Motivation, Background Ideas, and History

The present author is aware of problematic nature of claims about “the originality” of ideas in
Science, and of the corresponding “priorities”. Even if written in the author’s relative isolation,
the ideas might come indirectly into the author’s mind, through various cultural and social man-
ifestations, or simply by reading also scientific papers not manifestly related to the considered
problem. The author will not try to do complicated introspective psychological considerations
on origins of his own ideas, what would be necessary to give quite honest (but in any case sub-
jective) answers to questions on “the originality”, or at least on “the independence”, of obtaining
the presented results. We shall try, in the next paragraphs, to describe as honestly as possible in
a brief exposition the genesis and history of ideas resulting in this paper. That might be useful
also for better understanding of place of the presented theory in the framework of contemporary
theoretical physics.

1.1.1.Remark (On contexts and contributions of this work)et us mention here at least some
references considered by the author as important for a sight on the present work in the broader
scientific context . The presented work can be put in a connection with attempts at specific non-
linear generalizations of QM (NLQM) considered as a Hamiltonian field theory on the projective
Hilbert space as the “phase space” with a specific (quantum) statistical interpretation; the present
work generalizes and unifies such theories. A pioneer work in this direction was, perhaps, the
short paper [147] by T.W.B. Kibble, containing a sketch of nonlinear pure—state dynamics and
also suggestive motivation directed to applications and generalizations in relativistic QFT and
general relativity (GR). Trials (unsuccessful) to formulate quantum statistical interpretation of
such theories, as well as some dynamics of mixed states contains the proposal [273] by S. Wein-
berg. In the papers by R. Cirelli et al., eg. in [63, 67], the authors formulate in a mathematically
clear geometrical way standard QM, and they are looking for general principles for possible gen-
eralizations of (pure state) quantum kinematics. The papers by M. Czachor et al. [70] contain
also proposals for description of dynamics of density matrices in NLQM (accepting essentially
the author’s proposal from [24]), and also there are investigated methods to solutions of dynami-
cal equations for some classes of generators. The author’s paper [24] contains all the essentials of
the here presented theory. Connections with older formulations of NLQM and with semiclassical
approximations, as well as some proposals for a search for generalized (pure state) kinematics
are contained in [11].

Any of the (to the present author) known published papers do not contain consistent proposals
of definitions and of quantum statistical interpretatiomoflinear observables® such a defini-

6This seems to be true also for the papers [78, 169] by Doebner, Golitikelet al.; their “Doebner-Goldin” NLQM
(DG) appears to be non-Hamiltonian, hence it does not fully “fit” into the kind of presently analyzed theories: For testing
the belonging of DG to the here analyzed class of NLQM, one should, e.g. to check, whether the r.h.s. of [78, Eq. (1.2)]
can be rewritten in the form of the r.h.s. of (2.1.26), resp. in a f()ﬁrpw + fO(Pw)) -1, with o a closed one—form on

P(H),andé& € L(H), = T} being its operator form (cf. page 49).
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tion and interpretation of observables is given in this work. It is given here also an inclusion of
the introduced (nonlinear) EQM into a linear theory of a bigger system described in framework
of algebraic QT, cf. also [31, 86]. Work with unbounded generators is proposed here in a flexible
way: One can restrict attention to a certain set of submanifolds of the “quantum phase space”
S.:= the space of all density matrices, the union of which is not necessarily desse Two

kinds of “mixed states” are introduced, what is a natural consequence of nonlinear dynamics, cf.
also [145, 70]. A unitary representation of a Lie grakifis chosen here as a “parameter” serving

to specify all the general elements of the theory: the domains of definitioss Xiwf unbounded
generators, the sets of generators, of symmetries, of observables, and of states of the described
system; it specifies th& G-systemX . This allows us to determine also the concept of a

U G—subsystenmof a givenG-systemX; also a general definition of a subsystem of a phys-
ical system in NLQM was not satisfactorily established in the known literature. We shall not,
however, look here for generalized kinematics (i.e. alternatives. taf. [63, 67, 11]), neither

we shall try to formulate here a solution of the “problem of measurement in QM” (understood,
e.g. as a dynamical description of the “reduction of wave packé?’).

This work is a modified and completed version of the preprint [24]he author decided
to publish it now also because of recently renewed interest in nonlinear QM (NLQM) (see, e.g.
[145, 49, 144, 15, 11, 67, 57], or [78, 70, 109, 169Bs well as in foundational questions of
connections of QM with CM, cf. e.g. [52, 197, 198, 111, 217, 286, 162, 44, 66, 193], or also
[202, 98, 113, 257, 94, 233, 249].

Moreover, it can be assumed that ideas contained in this work will be useful for construction
of some (not only physical) models.

1.1-a On initial ideas and constructions

The idea of a natural nonlinear generalization of QM (leading to the paper [24]) appeared to the
present author after an equivalent reformulation of QM in terms of CM on (infinite dimensional)
symplectic manifold?(H) in the works [26, 27]. This was, in turn, a result of trials to understand
connections between QM and CM more satisfactorily than via the limits 0:'° A part of the

effort was a formalization of the Bohr’s beautiful argumentation, e.g. in [21, 22], on necessity of
using CM for a formulation of QM as a physical theory, combined with the author’s requirement

"The author is deeply indebted to Vlado Rk for his strong encouragement in the process of the author’s decision
to prepare and publish this new version of [24], as well as for the kind support and also for the effective help he rendered
in the process of preparation of the publication of this work.

8The author is indebted also to (that time) PhD students, esp. to M. Gatti and #k@néo helped him to make
clear some technical features of the presented work, cf. [241, 244, 102, 112, 206].

9M. Czachor and his coworkers are acknowledged for their repeated interest in the author’s work, as well as for the
kind submissions of information about the progress of their work. The author expresses his dues also to S.T. Ali, P.
Busch, V. Biek, G. Chadzitaskos, R. Cirelli, Zerry, H.-D. Doebner, G.G. Emch, M. Fecko, G.A. Goldin, K.R.W.
Jones, N.P. Landsman, J.T. Lewis, E. Lieb, Wicke, H. Narnhofer, P. Psaajder, E. Prugowi, A. Rieckers, G.L.
Sewell, R.F. Streater, W. Thirring, J. Tolar, T. Unnerstall, R.F. Werner, A. Zeilinger, Bkek, and other colleagues
and friends for discussions, and/or for providing him with their relevant papers, and/or for giving him moral support.

10For a review and citations on various approaches to “quantization” and “dequantization” with their rich history

beginning with the advent of QM see e.g. [79, 255, 100, 245, 97, 141, 256, 161]; some connections of CM and QM via
h — 0 could be seen from [132, 123, 146]; for a recent trial to define the fimit 0 in a mathematically correct way
cf. also [206].
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on “universality” of quantum theory (QT, the effort possibly hopeless if taken too literalfy.

The papers [26, 27] resulted from the recognition of quantum pure—state Bijateas a
natural symplectic (even adtler) manifold; this personal “finding” was gradually reached at s-
tudying of generalized coherent states (GC®) QM, [149, 199, 17, 166, 242, 71, 200], in look-
ing for their possible usage in describing connections between QM and CM. We benefitted also
from the description of symplectic structure on (finite dimensional) complex projective spaces
[7]. Works on their quantum mechanical connections/applications [16, 56, 133, 221, 212, 222]
was encouraging in this effort. As the author can judge today, many important results have been
obtained in the literature. Unfortunately, not all of the details of the cited works were clearly
seen by him during the time when he formulated his theory: There was a variability of languages
and interpretations in various papers, as well as a lack of sufficient mathematical rigor which ob-
viously was an obstacle for a better understanding. There were also important unnoticed works
containing some of the author’s later results, e.g. [251, 147, 154].

Conceptually important in the search of QM CM connections was appearance of symme-
try groupsG allowing a unified theoretical description of “changes of objects with a specified
identity”, cf. mainly [69, 275, 281, 138], and givig a framework for description of physical
quantities; we have restricted our attention to Lie groups, where distinguished one—parameter
subgroups correspond to specific physical quantities (cf. Galileo, or Péigeamnps). The cit-
ed papers using sets of GCS used them either as a tool for description of some “quasiclassical
approximations” to QM in various specific situations, or as a formulation of a “quantization”
procedure, cf. also more recent literature, e.g. [4, 3, 161].

Generalized coherent states were usually considered as submanifolds of the Hilbert space
determined either as some more or less arbitrary parametrically determined manifolds (usually
finite dimensional), or as orbits of continuous unitary representations of a Lie grofp essen-
tial rdle is ascribed to a symmetry Lie groGpalso in the present paper: This corresponds to the
accepted (hypothetical) point of view according to which observables in physics are necessarily
connected in some way with a group of symmetties.

1.1.2.Interpretation. This “philosophy” can be substantiated by the following simple intuitive
consideration: Physical situations (e.g. different states of a physical system) corresponding to
different values of a “physical quantity” should be connected by some transformations which

We distinguish here QM from QT, the later including also mathematically well defined parts or versions of QFT, e.g.
the nonrelativistiaC*-algebraic theory of systems “with infinite number of degrees of freedom”. In this understanding,
QT can describe also macroscopic parameters of “large” quantal systems, composing their classical subsystems.

12The intention of the author was even to formulate a general model of the measurement in QM, being up to now an
unsolved fundamental problem of QM (if QM is considered as a “universal theory”), [28]. This author’s effort started in
1961 at Charles University and/or Czech Technical Univer§iyT) in Prague (the Faculty of Technical and Nuclear
Physics — FTJF — was administratively moved between these two universities in those years), later continued also in a
small seminar formed by J. Jéks V. PetFilka, J. Stern, and the present author; in the framework of this seminar was
formulated a simple (unpublished) proof of impossibility of information transmission by “reduction of wave packets”
corresponding to the EPR-like quantum measurements according to the traditional (Copenhagen) formulation of QM,
cf. Note 1.5.9 on page 39.

13The author is indebted to P.Brejder for turning his attention to GCS.

4For the citation [154], as well as for some other useful notes made during the correspondence concerning [27] the
author is obliged to K.Hepp. The author obtained the citation [64] from K.R.W.Jones. About the citation [147] was the
author informed by N.P.Landsman.

15A possible generalization of this point of view might lead to the assumption, that observables are determined by
local groups, [148], or gruppoids, [161]; the Landsman’s book [161] contains also other relevant ideas and techniques,
as well as citations.
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make possible to assure that the different values are really “values of the same quantity”; the
assumption of transitivity and invertibility of these up to now unspecified transformations seems
to be natural for quantities without some exceptional values in their range. This results in the
hypothesis of presence of a group defining physical observables (resp. quantities); some further
“physically natural” continuity requirements then end at a Lie grug.

1.1.3.Remark. The presence of a Lie grou@ in the following considerations has, however,

also a technical function: it offers us an easy possibility to work with specific unbounded observ-
ables described by not everywhere defined functions on the symplectic maRifsigi such
observables correspond (in the linear case) to usual unbounded operators describing physical
quantities in QM. The corresponding technical tool is the existence o€t G)—domains

(e.g. theGarding domains) of strongly continuous unitary representatidigG’) of any Lie
groupG.'7 @

The importance of Lie group representations for QM was stressed already by founders of
QM, let us mention especially Weyl and Wigner [280, 275, 281, 282]; applications of Lie groups
in fundations of QM was afterwards elaborated by many others, e.g., cf. [167, 168, 148, 267,
5, 104, 75]. Also Prugoviki’'s and Twareque Ali's papers, e.g. [213, 214, 2, 215, 216], were
stimulating for the present author’s work: Some intuitively convenient statistical interpretation
of GCS in QT was also looked there for. The Weyl's book [275] contains, in an implicit way (as
it was perceived by the present author), some of the main ideas concerning connection of QM
with CM formulated in the papers [26, 21].

In our presentation, orbits of coadjoint representations pfay an important@le. They ap-
pear naturally in QM as orbits of expectation functionals corresponding to GCS, which are calcu-
lated on generators of the considered Lie group representfétiaf; these generators are usual-
ly interpreted in QM as distinguished sets of quantummechanical “observables”. The canonical
symplectic structure on thestl*(G)-orbits is described, e.g., in the monograph [148], cf. also
Appendix A.4. The general coordinate—free differential geometric formalism of Ellie Cartan and
its applications to CM is described, e.g. in [1, 151, 258, 61], cf. Appendix A.3.

Generalized coherent states determined by continuous unitary represeritgtionsf finite
dimensional Lie groupé& provide a “semiclassical background” to approximate descriptions of
guantum theory. Points of the manifolds of coherent states can be canonically parametrized in
many cases by points of an orbit of the coadjoint representaltifiG). In these cases, a canon-
ical Poisson structure corresponding to that one existing od#i€éG)—orbit can be defined on
the manifold of coherent states. It is possible to determine canonically a specific “projection”
of quantum mechanical (=quantal) dynamics to such a “classical phase space”, [27]. Some

16 As concerns a general gnoseological approach of the present author to Theoretical knowledge, it is close in a certain
feature to that of K. R. Popper, [209, 210], cf. also [127]; we accept, e.g. that each scientific assertion can be considered
just as a hypothesis: There is no “final truth” in our Knowledge. Moreover, any “meaningful” assertion concerning pos-
sible empirical situations should be falsifiable by some empirical tests. Let us add, however, that one should distinguish
different “degrees of certainty” of various claims: Although mathematically formulated, claims on empirical contents
should undergo our identification with specific “extratheoretical” situations, and this process cannot be fully formalized.

17For an application of this kind of ideas cf. also the theory of “Op*-algebras”, [163].

18The above mentioned inspiring “ideas”, “stimulations”, etc. are difficult to specify and formulate clearly: They were
often hidden in the stylistic form of presentation of otherwise “quite simple facts” by the cited authors; e.g. the Weyl's
considerations on “Quantum Kinematics” in [275, Chapter IV.D], presently known to every physics student as CCR,
were perceived by the present author as very stimulating — much later than during his student’s years.
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satisfactory (unambiguous, and general) interpretation of these canonical “classical projections”
is, however, still missing?

Methods of the “time dependent Hartree—Fock description” of fermionic systems, or more
generally, of the “time dependent variational principle” in QM, [154], can be reduced in many
cases to specifications of the general procedure of the mentioned “classical projections”. The
“classical projections” of quantum dynamics to orbits of coherent states can lead, in some formal-
ly chosen cases (i.e. chosen regardless to existence of any possibility of a physical interpretation
of the considered dynamics), to such a classical dynamics which has little in common with the
original quantum system. This left an open question to us, in what cases “classical projections”
are “close” to the projected quantum dynamics, [27].

The dynamics of an individual subsystem of the infinite quantum system in mean—field theory
(MFT) is described exactly by such a kind of “classical projections”, [33, 31]. In this is hidden a
connection of our EQM with a (linear) QT of infinite quantum systems, cf. also Subsection 1.1-b.

We shall show, in Section 3.6, that the dynamics in NLQM (modified with respect to that of
Ref. [273] for the cases of evolution of “mixed states”) can also be described in this way. We
obtain a mathematically correct and physically consistently interpreted standard type of quantum
theory (i.e. aC*-algebraic theory) in the case of such a mean-field reinterpretation of the “clas-
sical projections of QM". We shall describe these theories in a form of a generalized quantum
mechanics of autonomous physical systems. “Observables” in the presented theory are express-
ible as operator-valued functiofis: F — f(F) of a classical field with valueF' appearing
in corresponding interpretation also in MFT. In models of MFT the “classical fieldan de-
scribe, e.g. collective variables describing macroscopic quantum phenomena like superconducti-
vity, or other “global observables” describing a large quantum system. The classicdF field
(cf. Definition 2.2.17) aquiring values ihie(G)* > F is here present in &te of a “macro-
scopic background” of the considered quantum system. The (nonlinear) dynamics, as well as
the probabilistic interpretation of the theory can be described, however, independently of any
use of “background fields”: The introduction of the fidldwhich is a function of the quantum
statesp € S.(L(H)) appears like an alternative description (or an “explanation”) of the dy-
namics which can lead to simpler solutions of problems. We have not specified unambiguously
a physical interpretation of dependence of the operg{@$ on valuesF of the macroscopic
field F. It can be suggested, e.qg. thiatakes part in determination of “physical meaning” of the
guantum observables: For each vakuef I, “the same” quantum observaljlés described by
a specific operatof(F'). We have introduced, however, a standard prescription for calculation
of probabilities of measured results of observables represented by the operator — valued func-
tionsf : F — f(F) which is consistent with the traditional one, cf. formulas (2.3.4), (2.3.9),
and (2.3.10). We also expect that traditional foundational problems in physics like the “quan-
tum measurement problem”, or the question on “origins of irreversibility” might be fruitfully
reformulated in the presented framework.

19We have known the “mean-field” interpretation of such quantum motions, cf. Subsection 1.1-b, and Section 3.4;
physical origin of such a classical “background field” might be looked for in hypothetical, or sometimes even known, ex-
istence of some “long—range forces”, representing an influence of, e.g. (let us allow some visions to ourselves) Coulomb
forces with quantum correlations of distant stars to the considered microsystem, cf. [285].
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1.1-b Relation to infinite systems

An important element in building the presented scheme of EQM was construction of classical
quantities of an infinite quantal system. This was done in uStiahlgebraic language [91, 76,

77, 227, 196, 42, 254], cf. also [27]. The author was especially inspired by the papers [131,
130, 16], the monographs on quantum-theoretical description of systems “with infinite number
of degrees of freedom” [91, 42], some general ideas of Einstein, Bohr, Heisenberg and other
thinkers expressed in many, nowadays difficult identifiable, places (as introductions to books and
papers, popular and philosophical writings, quotations by other people, etc.), as well as by some
other, both “technicall\& ideologically” composed papers, like the review [284] on “large N
limits” in QM.

Let us describe briefly the obtained picture of kinematics of an infinite quantum system in
which a commutative (“classical macroscopic”) subalgeliraf observables is determined by
a unitary representatioti (G) of a Lie groupG. Let the large quantum system consistsN\of
copies of equal systems described in separable Hilbert sfiageby algebras of observables
L(H.),m = 1,2,...N. Then the algebra of observablds, of the composed system is i-
somorphic tol(®Y _,H,,), and nothing essentially new is obtained: It has only one “reason-
able” irreducible representation (up to unitary equivalence). The so caliethductive limit
for N — oo of Ay, cf. [227], however, is an algebtd of a different type: It has uncountably
many mutually inequivalent faithful irreducible representations. Subsets of these representation-
s could be parametrized by some “classical quantities”, which can be themselves realized as a
(commutative)C*-algebra in the centef of the double duald** of A. But the centeiZ is an
incredibly big algebra which cannot be, probably, used as a whole to some useful description of
macroscopic properties of “the syste#i. Here was used a Lie grouf for obtaining a spec-
ification of a subalgebra of of a “reasonable size”. The use of a Lie gradpallowed also a
natural introduction of a Poisson structure [274, 177, 7], and consequently classical dynamics
into the “relevant part” ofz.2%

These constructions were motivated by some attempts to understand possible quantumme-
chanical basis of classical description of macroscopic bodies, cf. [131, 27, 28], as well as of
interaction of that bodies with microscopic systems described by QM. This effort included trials
to solve the old problem of modeling the “measurement process in QM” [131, 28]. Although
this questions were extensively studied during the whole history of existence of QM, cf., e.g.
[189, 14, 276, 168, 50], no approach to their solution, hence no answers, are generally accepted
up to now. In the process of modeling of interaction of microsystems with macroscopic bodies in
QM framework, a quantum description of macroscopic bodies was a necessary preliminary step.
The simplest possibility was a study of kinematics of an infinite set of equal quantum systems
in the framework oiC*-algebraic theory. This is formulated in [27]. One of the most important
questions was a “proper” choice of observable quantities of such a big s¥sténis was done

20A Poisson structure is, however, always present in any noncommugatisaigebra in the form of the commutator
of any of its two elements, cf. also [86]. This can be used to obtain, by a certain limiting procedure, cf. [31, 32, 86],
also a Poisson structure on some subsets of the commuiitivalgebraZ. The Poisson structure obtained in this way
is identical with that one connected with a Lie group action. Lie groups are, however, useful (besides for technicalities
in dealing with unbounded generators) for interpretation of abstract “observables”, and for determination of “proper
subsets” of the huge cent.

21That a choice of “observable observables” is a nontrivial task also from a quite different point of view is claimed
in [191].
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by a choice of the kinematical Lie group mimicking macroscopic motions of the large (com-
posed) quantum system: The representdliofy) acted equally on any “elementary subsystem”
described byC(H,,),m =1,2,... 0.

The resulting formulation of nonlinear quantum dynamics in the presented extension of
QM can be connected with the specific form of the author’s formulation of dynamics of infi-
nite quantum systems [31, 33, 264, 265, 86] with interactions of “mean—field type”, having its
roots in [130]. 22 Our citations of works relevant for the theory of microscopic description of
macroscopic phenomena in quantum systems are incomplete; some other relevant citations can
be found in [42, 43, 247, 238].

Many modifications and generalizations of the sketched description of classical quantities of
infinite quantum systems, including their dynamics, are possible. Some of them will probably
lead to the same “microscopic” nonlinear dynamics, as it is in the case of MFT. The present-
ed results can be considered as just a first step in investigation of macroscopic dynamics from
quantum-theoretical point of view. There were performed already some works containing more
sophisticated description (than ours) and more detailed results in this direction, cf. e.g. Sewell’s
papers [239, 240], or some works in algebraic quantum field theory (&F&y. in [99].

We shall briefly return to some technicalities of the description of “macroscopic subsystems”
of large quantum systems in Section 3.4.

1.1-c Questionable “subsystems”

A general interpretation of EQM considered as a “fundamental theory” is not formulated in this
work. It can be, however, conjectured that a viable possibility for its interpretation is (by admit-
ting the linear QM as “the fundamental theory of simple systems”) a description of “relatively
isolated systems”, i.e. “ordinary” quantal systems moving in an external field which is in turn
influenced by (or correlated with) these quantal systems. Let us give here some motivation and
background to this rough idea.

One of the most basic concepts of contemporary physical theories, and, perhaps, of the
methodology of the whole Science, is the concepisofated systemthe description of which
is especially “simple™: It is supposed, that there are specific “circumstances” under which we
can deal with phenomena independently of the rest of the world. Examples are: idealized bodies
“sufficiently distant from all other bodies” described in CM in framework of an “inertial coor-
dinate system”, realized, e.g., by atoms in a dilute gas during a certain time intervals. More
generally, we are used to think about any specific “object” as determined “relatively indepen-
dently” of other objects (except of some generally accepted “background”, e.g. inertial frame,
or vacuum). Mere possibility to formulate such concepts of various “isolated systems” which
approximately describe some observed phenomena can be considered as one of the miracles of
human existence. More detailed investigation (and specification) of any phenomenon usually
shows that such a simple description is of a restricted use, and better results might be obtained
by consideration of a “larger piece of the world”; the identity of the “considered (sub-)system”

22From the personal author’s point of view, it was obtained in a sense “occasionally”. The resulting dynamics of the
infinite mean-field systems [27, 31] was a natural result of a simple quegfion:to define a microscopic Hamiltonian
dynamics on the infinite quantum system leading to a given (arbitrarily chosen) classical dynamics on the part of the
centre Z specified with a help of the mentioned representation U (G) ?

23This is the theory formulated by Araki, Haag, Kastler, and others, cf. [122, 37, 6, 118, 81, 82, 83, 120, 38].
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can be then, however, lo&t.

An often used “first step” to describe some “influence of other systems” onto the “consid-
ered one” is an introduction of an appropriate (possibly time dependent) “external field”. This
procedure corresponds to the formal construction (and logic) of nonrelativistic CM: The motion
of a body interacting with other ones can be expressed in CM as its motion in a time depen-
dent “external field” (determined by a known motion of “other bodies” in the presence of “the
considered one”). Subsystems in CM are, in this sense, clearly definable (they are continually
described by a point in their phase sub-space), and we can consider thelatiasly isolat-
ed They move according to certain nonautonomous evolution laws (as if they have their own —
time dependent — Hamiltonians), what can be intuitively understood as “just a (time dependen-
t) deformation” of a background of formerly isolated system, leaving the identity of the system
“essentially untouched® and this has introduced a change into the dynamical law of the system.

The determination of isolated systems, as well as of subsystems in QM is much more prob-
lematic than in CM. Sclidinger equation describes, in analogy with CM, dynamics of a physical
system in a given external field: Systems described in this way can be considered as “relatively
isolated”. This formulation was very successful in description of scattering and motion in exter-
nal (macroscopic) fields, of dynamics of atoms and small molecules, as well as in approximate
descriptions of a lot of phenomena in many—particle systems. QM time evolution of mutually
interacting systems occurring initially in uncorrelated pure states (i.e. in a pure “product—state”)
leads usually in later times to an “entangled” state of the composed s¥$tdrhe states of
constituent subsystems are described in such a state just by density matrices (which are math-
ematical objects also used for description of “mixed states” in a common sense interpretation,
i.e. in the “ignorance” interpretation which is common in classical statistical physics), and time
development of these (obtained by taking the “partial trace” of the evolving pure state of the w-
hole “isolated” system) need not be Hamiltonian (e.g. [71, 54, 252]). Since nontrivial interaction
(and also entanglement) between states of charged microscopic particles and quantum states of
macroscopic bodies (if considered as quantum many—particle systems) is present also in systems
whose constituent subsystems are separated by cosmic distances, cf. [285], an empirically realiz-
able definition of isolated systems in QM remains a problem. We assume that EQM provides also
a possibility of an approximative Hamiltonian evolution for some of such “basically entangled”
situations.

Another problem of QM connected with the problem of determination of subsystems is the
classical “problem of measurement in QM”, cf. [189, 14, 276, 50, 28]. It can be, perhaps, con-
sidered as an (up to now unknown) process of “entanglement” of the states of the measured
microsystem with macroscopically distinguishable states of the app&fafudetermination of

24 A version of the concept of an “isolated system” necessarily appears in any kind of reproducible reflection in human
thinking. Its specification, however, varies with accepted “paradigms” [156] (let us stay with a mere intuition on these
ambiguous philosophical concepts), e.g. the meaning of the physical system representing a falling stone was different for
Avristotle from that of Galileo, and also it was different for Einstein from that of Mach, [170].

251t is an analogy to “external” gravitational field in general relativity acting on a “test body”: it is a “deformed”
inertial frame corresponding to the background determined by massive bodies (e.g. by distant stars) — in a sense similar
to that of the Mach’s approach to CM [170, 270].

26Theoretical, as well as experimental investigation of “entangled states” in QM is quite intensive in last years, cf.
e.g. [268, 165, 137, 54, 252, 55, 286, 217].

27Recently are quite popular “solutions” of the quantum measurement problem via “decoherence”, cf. [288], resp.
via “decoherent histories” approach, cf. [193, 84]; the present author considers them at most as preliminary attempts to
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a clear cut between “microscopic” and “macroscopic” is missing in both of these problems. Per-
haps, the only available, formally well defined formulation of the “micro—macro difference” can
be found in the framework of th€*-algebraic formulation of QT, [91, 42, 238]. In this frame-
work, also some models for the measurement process in QM were formulated, [131, 28, 278];
the process needed there, however, an infinitely long time interval for its completion. We expect
that EQM provides a way also for description of the mentioned micro—macro “entanglement”.

1.1-d Some basic building blocks of EQM

Our Extended Quantum Mechanics contains many theories as exact (i.e. obtained without any
“approximations” in a usual sense) subtheories. They are considered usually as different (but in-
equivalent) possibilities of descriptions of the same system, e.g. one of the theories is considered
as an “approximation” of another one. Examples are WKB, Hartree—Fock, or classical me-
chanical approximations to descriptions of some problems in QM, or CM and QM themselves.
All these subtheories are obtained from the general scheme of EQM by specifying three sub-
sets (which are, however, mutually consistently interconnected) of corresponding three general
building sets of theoretical objects.

In classical mechanics [277, 1, 258, 7, 172] (CM) as well aguantum theories (QT)

[172, 74, 189, 168], three main (mutually interconnected) classes of fundamental objects (cor-
responding to basic concepts of the theory) are useadbggrvables (i) states and (iii) sym-

metries. A one parameter subgroup of symmetries specifies a chiys@mics of the system,

and the corresponding parameter is calledtitme.2® The mathematical representation of these
classes and formulation of their mutual connections do not always use “physically motivated”
properties only; some clarity in expression of connections between constructs of formalized the-
ories and empirical and conceptual analysis of phenomena is often reached by a subsequent
specification and interpretation of the used mathematical objects. Any fundamental theory of the
process of measurement of an arbitrary mathematically defined “observable”, considered as a
dynamical process within QM is not known; we are not able generally decide which mathemat-
ically defined “observables” are accessible to empirical identifications; similar comment applies
to “states”, and also to “symmetries”. This lack of “bijective correspondence” between classes
of known empirical situations and objects of a theory could make the theory, on the other hand,
more flexible.

We shall reformulate and extend the formalism of QM so that it will include QM and a class
of its (nonlinear) generalizations. Such an EQM contains much larger variety of “observables”,
“states”, and “symmetries” than does the traditional QM. These extended sets of fundamental
objects contain different subsets representing different “subtheories” of the extended QM. Be-
tween these subtheories we shall find, in addition to ordinary (linear) QM, also, e.g. Hamiltonian
CM with phase spaces being homogeneous phase spaces of Lie ¢freapsral existing formu-

attack the problem.

28Other conventional relations between CM and QM are “quantizations”, and “dequantizations”, the later understood
usually as a limiting procedure denoted by 0”.

291n the considered specific theories the time parameter is in a sense “global”, so that it is meaningful to speak about
states and observables of the (total) syst&emtimet € R.

30 A homogeneity requirement on phase spaces with respect to some topological group seems to us natural from an
“epistemological” point of view, cf. Subsection 1.1-a, resp. Interpretation 1.1.2, and Remark 1.1.3. There would be
no problem, however, to find in EQM also Hamiltonian CM on a general, not necessarily specified by a group action,
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lations of nonlinear quantum dynamics, cf. Subsection 3.3-e, and [11], and also the frequently
used approximations to quantum dynamics consisting of its specific restrictions to manifolds of
generalized coherent states of the considered system, or also the WKB-approximation [11] are in
our extension obtained as “subtheories” (without making any approximations). The mentioned
specifications are obtained by corresponding choices of subsets of “observables”, “states”, and
“generators” of symmetry groups, and are usually mainly determined (cf. Section 2.2) by a choice
of a unitary representatioli(G) of a Lie groupG in the Hilbert spacé{ corresponding to the
traditional quantummechanical description of the considered sySteng., QM corresponds

to the choiceG := {e} (a one-point set), cf. Section 3.3 (this does not exclude a use of other
group representatiori§(G ) in the description of “microscopic observables”, and “symmetries”

in QM; V(G,) will play, however, anotherde than the picked odf (G) in the theory!); CM of

N scalar particles is specified by the Saflinger representatioli (G) of the6N + 1 - dimen-

sional Weyl-Heisenberg grou@, and by additional restrictions to the sets of “permitted” (or
“physical”) states, generators and observables, cf. point 3.1.4. Another approaches to incorpora-
tion of classical observables into an extended quantum formalism were published, e.g., in [203],
cf. also our Section 3.4, Appendix B, and [31, 32, 28].

The dynamics (generally nonlinear) of EQM on the “quantum phase spdoean be re-
covered as aubdynamics of linear dynamics of a larger quantal syst€his can be seen from
Section 2.3, where in Definition 2.3.3(ii)@*-algebra of observableX” was introduced such,
that our evolutions in EQM are (linear) automorphism groups of Hisalgebra, cf. also Sec-
tion 3.4. Looking on the obtained EQM “from a side”, we could recover similarity between
our transition from QM (resp. NLQM) to EQM (and its linear realization on @ealgebra
C%), and the “Koopmanism” in CM (cf. Remark 3.3.14): While in the Koopman transition the
CM was “linearized” by transferring the phase spég¢; 2) as a sort of “spectrum space” (cf.
Appendix B, Example B.3.5) into the infinite—dimensional Hilbert spaééM, g ), and its
(nonlinear) dynamics into a (linear) unitary group, in our consideration of EQM (leading to non-
linear evolution on the “quantum phase spa8&g;i.e. in a “restricted Sclidinger picture”) as
a C*-algebraic theory we obtain (in the corresponding “Heisenberg picture”) a linear quantum
dynamics on &@'*-algebra (namelg®), cf. [35]. The state space of thig*-algebra is, however,
much larger thais,., or even than the spacge(,(S.) of probability measures o, (of which
is S, the subspace of Dirac measures, in a canonical way).

1.2 A Brief Description of the Contents

For better orientation of readers in the contents of the following text, we shall give here also a
brief and heuristic explanation of some of the main points of the contents of this paper, as well
as some of their interconnections. Some notes on the placing of different parts of the contents in
the text can be also found in Section 1.3.

Let us introduce first some notation used in this paper:

1.2.0. Notation. (i) We use usually different fonts (e.g. ff,f, f, f f, f) for different kinds of
mathematical object®¥ By & is denoted the logical conjunction “and”.

symplectic submanifold oP (7).

31The groupG cannot be generally identifieslith the group of symmetries of the system!

32Bold form of symbols will be used sometimes, mainly in their definitions, however, also for the otherwise nonbold
ones, which are of the same typographic form.
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(i) The relation A(z) = B(x) expresses (usually) assertion, that values of the two functions
and B are mutually equal on the intersectidn(A) N D(B) (> z) of the domaind(A) (resp.
D(B)) of definition of the functiond and B.

(iii) The symbolf (-, y) denotes the function — f(z,y). ¢

1.2.1 (QM, and NLQM). QM is traditionally formulated in terms of selfadjoint operatdfson

a complex Hilbert spacg( which play the doubledle of the “observables”, as well as of the
“generators” of symmetry groups in the theory. QM can be equivalently reformulated in terms
of (infinite dimensional) classical Hamiltonian mechanics on the phase $p@¢g consisting

of one-dimensional complex subspases, ... of H.33 Linear operators{ = X* onH then
correspond to the functiorisy : x — hx(x) := Tr(PcX) = (x| X|z)/{x|z) on P(H), where
P.:=P, (0+#z¢€xC D(hx),cf. (2.2.1))is the orthogonal projection ontoThe Poisson
bracket is

{hx, hy}(X) = Z'T’I“(]D:(c [X, Y]) =: hi[XA,Y] (X)7 (121)

where[X,Y] := XY — Y X is the commutator. The Sdbdinger equation is then equivalent to
Hamiltonian equations corresponding to 1.2.1Ifs the Hamiltonian operator of a QM system,
then the evolution of the “observablek’ is described by the Heisenberg-Hamilton (resp. von
Neumann-Liouville) equations

4 (07%) = {har, b a P R 1.2.2
g x (e x) = {ha, hx }(ey'x), x € P(H), t € R. (1.2.2)
wherep! is the “Hamiltonian” (resp. “Poisson”) flow o () corresponding to the unitary
evolutiont — exp(—itH )z of vectorsz € H, i.e. a one-parameter group of transformations
of P(H) conserving Poisson brackets which can be determined from (1.2.2). This immediate
rewriting of QM differs from an “ordinary Hamiltonian CM” o (H) by a specific restriction of
the setF(P(H)) of differentiable real valued functions used as “observables” and “generators™:
QM uses only thos¢ € F(P(H)) that have the fornf = hx (X = X*). Let us call thesé x
affine functions (or also “Kahlerian functions”, [63]) o?(H): They can be considered as affine
functions defined on all convex combinatians= >, \; P; € S, of the pure states; € P(H);
they can be characterized, however, in a “purely geometrical way” in the framewdrk7&j
with a help of canonical metrics on it (cf. [63, 26, 27]): affine functigns F(P(H)) are exactly
thosef which generate Poisson flows conserving the metrics (equivalently: conserving transition
probabilities, (1.2.4)), and, in that case, they are expressible by linear opeXatoes f = hx.
We shall sometimes call the affine functiofiglso “linear functions”. Othef € F(P(H)) will
be calledhonlinear functions on P(H). The “equation of motion” (1.2.2) for general functions
f,h € F(P(H)) has the form

%f(wiLX) = {h,f}(¢}x), x € P(H), t € R, (1.2.3)

where the Poisson bracket is the unique extension of (1.1) to more general real-valued functions
h, f,... on P(H) (cf. Sec. 2.1).

33Such a scheme should be supplied by an interpretation scheme extending the probabilistic interpretation of QM.
Such an interpretation is given later, cf. Interpretation 2.3.11.
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The formal transition from QM to NLQM consists (in our “classical-like” rewriting of
QM) in the addition to affine “generators” of QM of also the nonlinear ones. Such an infinite-
dimensional classical mechanics Bfi) is developed in Sections 3.2, 3.3-a. Inclusion of these
nonlinear functions between generators implies, however, a sequence of problems for quantum
theory.&

1.2.2 (Evolutions and mixtures). The basic Wigner theorem (cf. Proposition 3.2.6) states that
to any bijective transformatiop of P(H) onto itself conserving the “transition probabilities”,
ie.

Tr(PxPy) = Tr(PoxPyy), (1.2.4)
there exists a unitary or antiunitary operatdon H such, that
P,y = Py,,with 0 # z € x, Vx € P(H). (1.2.5)

The corresponding operatdis are unitary for continuous familigs— ¢, (0o := idp))
of mappingsy satisfying (1.2.4). The unitary operators in (1.2.5) are determined essentially
uniquely by, up to numerical factors. This means, thdtom (1.2.4) with a unitary/ uniquely
determines &@-automorphismy, of the von Neumann algebu&(7) of bounded operators on
H. Such an automorphism, in turn, determines the dual mappjrat affinely and bijectively
maps the spac8.. of all density matrices onto itself and extends the mapginga;x = ¢x.
On the other side, [42, Theorem 3.2.8, Corolary 3.2.13, Examples 3.2.14 and 3.2.35], if a one
parameter familyp(¢) of bijections of the pure stateB(7{) onto itself can be extended by a
“sufficiently continuous” familyt — a’;( £ of affine bijectionsx;(t) of S, onto itself, then there
is a one-parameter family gtautomorphismsy,, ;) of L(H) represented by unitary operators
U(t) such thatP,,x = U(t) PU(t)* . It can be shown [63] (cf. also Proposition 3.3.1) that the
transformationsy := ¢ (¢t € R) solving (1.2.3) satisfy (1.2.4) iff there is soni& = H* such
thath = hy . Hence, evolutions determined from (1.2.3) for nonlinkarecessarily violate
(1.2.4), andp? cannot be (for alk) extended by affine mappings 6% onto itself. This also
means thap!" cannot be extended into a transformation of density matgces >~ \; Py, =:
>~ Ajx;, conserving affine combinations, i.e. for any such extengipthere is

PLo# ) Ajprx;. (1.2.6)
J

This has consequences described in Note 3.3.3, and in Interpretation 2.1.24, as well as in
Subsection 2.1-e: An evolutiop® of density matrices cannot be expressed by “the same” evo-
lution ¢! of pure components of their decompositions. This has several further consequences.

)

1.2.3 (Emergence of nonlinear observables)The evolutiony! (in the “Heisenberg picture”)

of affine “observablesh x does not lead identically to affine observables, i.e. thermamich

one parameter sets of operatéfét)* = X (t), X (0) := X thathx (¢}y) = hx ) (y). for non-
linear h. Hence, inclusion of nonlinear generators implies necessity of inclusion of also “non-
linear observables” into the theory. The probabilistic interpretation of such observables is not
possible in a traditional way, cf. Interpretation 2.1.24. The interpretation inspired by “mean—field
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interpretation” is described in Interpretation 2.3.11, where the expression of nonlinear functions
h = hs, hs(x) := Tr(Pcf(F(x))) with a help of conveniently chosen operator-valued functions

f is used (see Definition 2.2.17 f@l). A restriction of possible choices of the functiohs as

well as of nonlinear generators, can be determined by a choice of the represefitaiipnct.

also Definitions 2.2.26, 2.3.2-2.3 4.

1.2.4 (Two kinds of mixtures). Impossibility of a unique extension qf? (determined by the
function h defined onP(H) only) to a mappingy? on S, leads to necessity of investigation

of a natural “Poisson structure” and a consequent definitiop/ofor “Hamiltonian functions

k" defined now on the wholé&,, cf. Section 2.1. This provides a solution of problems arising

in the earlier trials to formulate NLQM with connection of evolution of mixed states, cf. also
[273, 272]. These facts lead also to necessity of distinction of two kinds of “mixed states” in
nonlinear extensions of QM. These are introduced in Subsection 2.1-e, and in Definition 2.3.5.
The elementary mixturesorrespond to density matrices considered as points afldraentary
phase spacé,; these elementary mixtures are transformed by Poisson fidwas points of

S., independently of their possible convex decompositions. Another kind of “mixed states” is
described by probability measurgson S,, which are not concentrated in one point: these are
called thegenuine mixturegcorresponding to the term “Gemenge” used in [50]). Evolution of
states described hy's is given by evolutions of points in the supportof This offers, e.g., a
possibility to distinguish between the state described by an elementary mixture — e.g. the density
matrix oy of a subsystem | (obtained as the “partial trace” [71]) of a composed system I+1l being
as a whole in a pure statebelonging to the manifold®(+; ® H;r) on one side, and, on the
other side, a state with the same barycentre [g2{expressed now by a probability measure

17 on Sy,) obtained after some “reduction of the wave packet”, cf. [189, 276, 28]: in the last
case the different states occurring in the support of the measwethe microsysteni are cor-
related with macroscopically distinguishable states of the measuring apparatus (usually declared
as “pointer positions”); this correlation can be reflected in a description of states by genuine
mixturesiiy. &

1.2.5 (Unbounded generators) Another (rather “technical”, at first sight) complication arising

in our process of reformulation and extension of QM in geometrical terms is connected with
the necessity of a use of unbounded selfadjoint operaXom the Hilbert spacé{ in QM.

It is a generally known mathematical theorem that such operators are defined on dense linear
subsetsD(X) of H certainly different from the wholé{. Hence, our extension to nonlinear
theory requires to use of also (“linear”, or not) functiof®n S, in a dle of generators that

are not defined everywhere on the corresponding manifold of quantum states, and also are not
locally bounded oib, ; such nonlineaf’s could be obtained, e.g. as some nonlinear perturbations

of the (only densely defined, unbounded) function corresponding to unbounded. The

main technical advantage of the use of the representdfi@r) is that it offers a possibility

of definition of a class of nonlinear unbounded generatogenerating Poisson flows? on

S. that extends the set of affine (unbounded) generdtgrgthe later generate projections of

the common unitary flow#/(t) := exp(—itX)). This is done in Section 2.2 with a help of

the “macroscopic field™, cf. Definitions 2.2.17 and 2.2.26. The representafiofG) enters

34Hamiltonian evolutions ob; — linear, or not — are, however, rather rare consequences of evolutions of the composed
systeml + I1; these evolutions should be rather specific in those cases.
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into the determination of the set of “relevant generatdtstaking part in determination of the
“considered physical system” in this way, the usd/gf7) has not only “technical&le”, but it
has also a “physical meaningh

1.2.6 (Structure of observables).Section 2.3 is devoted to definition of observables, to inves-
tigation of their algebraic properties, and of their transformation groups. It is proposed, in the
geometrical setting, to describe observables by functjons. x S. — R, (g;v) — f(g, v)

of two variables the first one is callethe quantum variabland the functionf(-, v) is affine.
The observables are related to the choic& ¢fr) that determines (cf. Definition 2.2.17, Defi-
nition 2.2.26, and Proposition 2.2.32) an affine map@ngD(F)(C S.) — &r(C Lie(G)*)
describing a “classical field”. The dependence of observgldeshe secondrhacroscopit (or
“classical”) variable- can be restricted to an “indirect dependence” f(@, v) = Tr(of(F(v)))

for some operator-valued functigron (a subsef of) Lie(G)*. Restriction to such a type of
dependece on the quantum states S, provides a tool for dealing with the above mentioned
(see 1.2.5) unbounded functions. We see that a general type of “quantum fiells— L£(H)
enters naturally into the game, cf. Definitions 2.2.26, 2.3.3, as well as Interpretation #3.11.

1.2.7 (Possible applications) The presented theory is still in a preliminary stage: Its mathemat-
ical form is more elaborated than its possible physical interpretations. As a consequence, we
restrict our attention in this work to existing theories and their incorporation into our conceptu-
al scheme. We give here some general technical procedures to approach solutions of nonlinear
dynamical (Schisdinger) equations (Section 3.5). We propose also a general mechanism for “de-
linearizations” of unitary group representations in Proposition 2.3.20. A general interpretation
scheme of EQM is proposed, cf. e.g. Subsection 2.1-e, Interpretation 2.3.1, Definition 2.3.5, and
Interpretation 2.3.11.

As concerns some proposalsredw application®f the EQM (in addition to all ones of QM),
they could be found alswithout requiring a “fundamental nonlinearityin laws of Nature (i.e.,
now in QT). We consider here description of systems, which can be considered as “relatively
closed” subsystems of larger (linear) QM systems. Such might be some “mesoscopic systems
of large molecules, of “trapped” Bose—Einstein condensates, etc. As concerns (non-)linearity
of physical laws, it can be suspected that pervasive scientific thinking is nowadays “generally
linear”: Even if dealing with nonlinear equations, mappings or “effects”, we express them even-
tually in terms of linear spaces (real numbers, additive operations = commutative groups, “lin-
earizations” of different kinds, etc.). Linearity seems to be one of the present time “paradigms”
of our thinking. As is shown in several places of this work, any of considered nonlinear theories
can be extended to a linear theory “of a larger system” (generalized “Koopmanism”). Hence,
conversely, we can expect nonlinear behaviour by specific restrictions of dynamics to subsys-
tems. Possibilities of various interpretations of the presented general theoretical scheme of EQM
are left open here for further developmedt.

1.2.8 (Notes on a Weinberg’s proposal)ln some papers, [273], S. Weinberg posed a question
on a possible nonlinear modification of QM (motivated by his aim to formulate a way to testing
fundamental principles of QM), and sketched a specific proposal of “nonlinear quantum mechan-
ics” (NLQM). Trials to obtain a consistent generalization of the traditional interpretation of QM
to this theory led, however, to difficulties connected mainly with the appearing lack of conserva-
tion of the “transition probabilities” under nonlinear transformations in QM. There are difficulties
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with appearing possibility of superluminal communication via Einsten-Podolsky-Rosen (EPR)-
type experiments, difficulties with the statistical interpretation of the formalism (as will be shown

in Subsection 3.3-a) and also difficulties with description of composed sydteM&inberg’s
description of evolution of mixed states of subsystems (it was basis dependent), as well as statis-
tical interpretation of predictions (it was based on an approximation motivated by KAM theory)
were even mathematically and conceptually ambiguous.

We shall reformulate here NLQM in the mathematically unambiguous terms of symplectic
reformulation of QM discovered some time ago, cf. [251, 26, 62, 27, 63] by extending it sub-
sequently by “nonlinear quantities”. This formulation admits the interpretation suggested by a
specific formulation of quantum mean-field models: the given QM system is considered as an
individual subsystem of an infinite collection of equal quantum subsystems interacting mutually
via a very weak, long range, and permutation invariant interaction; its dynamics can be described
as a quantum dynamics of an individual subsystem moving in the time dependent “external”
classical field given by actual values of intensive quantities of the infinite system. Mathematical
unambiguity of this MFT ensures such property for our EQM. Since also more realistic interac-
tions than that of MFT, e.g. the Coulomb interaction, are “of long range” and lead in specific
limits to validity of a certain forms of MFT, cf. Thomas—Fermi theory [260], one can expect
existence of applications of the presented theory in realistic situations.

We shall return to a reformulation of a part of Weinberg'’s theory in Section#s.6.

Let us note that we shall not present in this work any review of mean—field theory (MFT),
in spite of its (at least “ideological”) importance for understanding of some constructions of the
present paper, as well as of their proposed interpretation; for a brief review of MFT cf,, e.g., [33],
the introductory sections of [32], or in [265, 264, 263]; cf. also Section 3.4.

1.3 Remarks on the Text

The text is divided into three Chapters, including this introductory one, and of three appen-
dices (numbered alphabetically) divided to (sub)sections. The second chapter entitled “Extended
Quantum Mechanics” contains the general formal and interpretational scheme of the present-
ed theory, the EQM. The last one: “Specifications and Applications” contains a description of
some more specific theories which are included as subtheories into EQM. Chapters are divided
into sections, numbered separately in each chapter. Subsections, formulas, and assertions (of all
kinds, consecutively, including Definitions, Theorems, Remarks, Interpretations, some unnamed
paragraphs, etc.) are numbered within each Section separately. For better orientation at reading,
the end of text of Theorems, Propositions and Lemmas is denot&d bgd of Definitions and
Notations is denoted by, and that of Interpretations by; Notes, Remarks, lllustrations and
Examples are finished By, and some other unnamed numbered paragraphs are ended by the
signé.

The appendices are written in a language, which is not always strictly rigorous from mathe-
matical point of view, what is due to the author’s desire to make the mathematical text easier to

35There are, however, works devoted to search of some observable deviations from the QM predicted by the Weinberg
formulation of NLQM; in some of these works also proposals for experimental tests of predictions of this formulation of
NLQM were given.
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read for more readers. The contents of (sub)sections is briefly seen from the Table of contents.
Phrases and formulas typbdldfaceare usually newly defined expressions. The bibliography is
far from complete; this is also due to many sources and connections of EQM.

The text is written as ahysically motivated mathematical modeiended, however, to pro-
vide a framework for solution of actual physical problems. Hence, it is not gunyesically
neutral as a purely mathematical text, perhaps, should be. There are included paragraphs de-
noted by “Interpretation” containing some of these author’s ideas and proposals, but also some
(perhaps) generally accepted parts of quantum theory (QT).

We did not try to use some “up to date mathematics”, and the level is “slightly graduate”. Ap-
pendices might help readers to refresh some mathematical concepts and facts. They contain some
technical prerequisites on topology, differential calculus on Banach spaces and differential ge-
ometry (also on Banach manifolds), on Lie groups, basic facts'ealgebras, andl’ *-algebras,
and their representations and automorphisms (i.e. symmetries), as well as a brief information on
unbounded symmetric operators and their symmetric and selfadjoint extensions. The appendices
can serve, together with Sections 1.4, and 1.5 presenting briefly general schemes of CM and QM,
to fix notation, and also to pedagogical purposes (independently of Chapters 2, and 3).

The given scheme of EQM contains also Hamiltonian classical mechanics (CM) as a sub-
theory in an obvious way, as it is mentioned in the paragraph 3.1.4. In Section 3.1 also other
subtheories and some invented applications of EQM are listed, and an “itinerary” of the Chap-
ter 3 is there given. It is not mentioned there a possibility of an application to a formulation of
connections of the theory of general relativity with QT, since the present author is not acquainted
with the actual status of these probleffisEqually it is not discussed a hypothesis on possi-
ble application of methods close to the presented ones to the “algebraic quantum field theory”
(QFT): Let us just mention that a “self-consistent approach” could be, perhaps, useful in dealing
with such classical objects like “domains in Minkowski space” in a framework of any quantum
theory.

We were not intended to criticize here in details the Weinberg's formulation of a non-
linear modification of QM; some relevant criticism was presented in published papers, e.g.
in [106, 272]. The Section 3.6 is devoted to just a reformulation of our NLQMPOH) in
terms close to those used in the Weinberg’s paper [273]. This allows us to compare in mathe-
matically clear terms the two approaches to a generalization of QM, which might be considered
(up to the used interpretations) practically identical on the set of vector states, res§Hon
Some useful algorithms for solution of these nonlinear 8dimger equations might be found in
Section 3.5. A reduction of solutions of a class of nonlinear &dinger equations connected
with a group action or?(H) to two “simpler” problems: to solutions of classical Hamilton’s
equations (possibly, finite dimensional), and to solution of a linear time—dependeitBcfar
equation is described in that Section 3.5.

Other theories described here as subtheories of EQM entered to NLQM as “approximate
theories” to problems of linear QM: It might be rather interesting how nonlinearities enter into
approximated linear theories of QM. We shall present, e.g., (partly elaborated) cases of time—
dependent Hartree-Fock theory in 3.3-d, and a class of nonlinead@ifer equations known
also from traditional attempts to formulate nonlinear modifications of QM, cf. Subsection 3.3-e.

361t might be assumed that works by, e.g. C.J. Isham and/or A. Ashtekar contain relevant attempts of this kind.
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A connection of EQM with “quantum theory of large systems” (i.e. with a class of nonrel-
ativistic QFT) is sketched briefly in Section 3.4. This connection seems to us crucial from the
interpretational point of view, since the presented EQM appears (in a slightly different form) as
a well formulatedinear QT of large quantal systemS&uch a linear QT contains also classical
macroscopic observables in a natural way, esrssequence of local quantum kinematigkere
a specific 8le of symmetry groups and a “mean—field” dynamics can be introduced, to point
out those of the obtained (unnecessary huge) set of “observables” which are interpretable, hence
“useful”.

At the beginning of the Chapter 2, in Subsections 2.1-a, and 2.1-b of Section 2.1, the main-
ly “kinematical structure” of the theory is described, whereas the next two Subsections 2.1-c,
and 2.1-d describe the way of constructing “dynamics”, and also more general one—parameter
symmetry groups. Only bounded and differentiable, hence “nice” objects are considered in de-
tails in these subsections. The following Sections 2.2, and 2.3 consist, perhaps, the most tech-
nical parts of the paper containing also important interpretation proposals. They contain both
a solution (and some hints for alternatives) of the technical problem of dealing with unbound-
ed nonlinear generators (“Hamiltonians”), as well as definitions and interpretation proposals for
“observables”. The Section 2.3 contains the basic definitions of a variety of described (sub—
)systems, and also a description of “nonlinear realizations” of symmetry Lie groups.

Before starting with a description of tools for our generalization of QM to EQM, let us,
however, present in the next two sections brief reviews of traditional CM, and also of QM, a
knowledge an understanding of which is a necessary prerequisite for successful reading of Chap-
ter 2.

1.4 A General Scheme of Hamiltonian Classical Mechanics

We present a brief review of geometric formulation of classical mechanics in this section. The
presented scheme is standard [1] and represents an important part of intuitive and technical back-
ground for our subsequent constructions. The language used will be that of a simple version of
global differential geometry: We want to avoid as much as possible a use of coordinates for sake
of transparency and formal and conceptual simplicity; this will be our “policy” in all the follow-

ing text. Some review of a necessary minimum of mathematical background is presented in the
Appendix A.

1.4-a Classical phase space and dynamics

Let us first mention basic general concepts, and subsequently some examples will be given.
The space otlassical “pure states”in a model of Hamiltonian mechanics, i.e. thease
space(M; ), is a differentiable manifold/ of finite (even) dimension endowed with a sym-
plectic (i.e. nondegenerate and closed) two-féInThe specification of the forif? is equivalent
to a specification of a nondegenerate Poisson structuid dre. to definition ofPoisson brack-
ets{f,h} onthe setF(M) (> f, h) of infinitely differentiable real valued functions av.
The equivalence between Poisson and symplectic structures on a (symplectic) manifold is
only the case, however, ofreondegenerate Poisson structurei.e. that one satisfying all the
five following defining properties:
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1.4.1. Definitions (Poisson structure)Let M be a differentiable manifold, and let a mapping
{'}: F(M) x F(M) — F(M) be given. Assume the following propertieq of }:

(i) {-, -} isantisymmetric: {f,h} = —{h, f};

(ii) {-,-}isbilinear: {f, h1 + Aho} = {f, h1} + M f, ha};

(i) {f,-}is, for any fixedf € F(M), aderivation: {f, h1ha} = {f, h1}he + h1{f, ha};
(iv) Jacobi identity: {h1,{ho, h3}} + {h3,{h1,ha}} + {ho,{hs, hi}} = Ois fulfilled;

(v) {-, -} is nondegenerate If, for a fixed f € F(M), there is{f,h} = 0forall h € F(M),
thenf = const. on each connected component\éf

If {-,-} satisfies first four properties (i) - (iv), then it is called?@isson structureon M.

A manifoldM endowed with a Poisson structure is calle@aisson manifold [274].

Relation of a general Poisson manifald to its canonically determined symplectic subman-
ifolds is such that\/ decomposes uniquely to union of disjoint manifalds each of them is
endowed with a uniquely defined symplectic strucfeé determined by the Poisson structure
{-,-}, and canonically determining it on correspondifd,. The dimensions of theymplec-
tic leaves M, might be mutually different. Any € F(M) determines a uniguklamiltonian
vector field v, on the wholelM by the formula

df (vi) = vi(f) == {h, f}, forall f € F(M). (1.4.1)

The same formula can be obtained for a symplectic manifold by combjhid )with (1.4.3)
Corresponding Hamiltonian flows leave each the symplecticAéahvariant.

This allows us to ascribe to each functibre F(M) a unique (local) flowy" on M repre-
senting solutions of Hamilton’s dynamical equations

d, .

£ :{hvft}7 Wlth .ff(x) = f((p?l'% tG]R, IEM? (142)
with the Hamiltonian functiork: for the initial stater(0) := = € M the state in atime € R is
expressed by (t) = /x. This is done in the following way: The symplectic fofidetermines
theHamiltonian vector fields;, on the phase spadé corresponding to an arbitrary differentiable
functionh € F(M) := C*(M,R), by the formula

Q. (v, w) = —d h(w), forallz € M,w e T, M. (1.4.3)
Then thePoisson bracketis defined by
{fih} = Q(vy,vn), foh,€ F(M), (1.4.4)

and the right hand side of the equation (1.4.2) isyustf;). The solutions:(¢) = ¢}z of (1.4.2)
needn’t exist for all timeg € R for any initial conditionz € M, andy” represents in general

just a collection ofocal flows If " exists for allt on M, it is called the (global Hamiltonian)

flow of the vector field v;,. A vector field with global flow is calledomplete vector field
General criteria for deciding what Hamiltoni&non a given(M; ©2) has complete vector field

vy, are not known, although some criteria are known for specific classes of (possibly symplectic)
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manifolds; especially, on compagf all vector fields are complete. Let us note that “complete-
ness” of a Hamiltonian vector field &fon a dense invariant subsetidf is equivalent[1, 2.6.14,

and 2.6.15] to essential (anti-)selfadjointness of a densely defined linear operator on the complex
Hilbert spaceH := L2(M, duq)(> f), cf. Appendix C. Here the measutg used in the defini-

tion of the square integrability in the Hilbert spakieis then-th power of(, cf. Appendix A.3,

if dim(M) = 2n:

pa(A) = /A AT (1.4.5)

The mentioned antiselfadjoint operator acts on differentiable functfoasH as the differ-
ential operator determined by the vector fielg

fr=va(f) = df(vn).

A symplectic transformation of (M; ) is a diffeomorphismp of M onto itself conserv-
ing the formQ, i.e.: ¢*Q = Q. Hamiltonian flows are one-parameter groups of symplectic
transformations (hence, they conserve the measure (1.4.5) - thislifothalle theorem used
in classical statistical mechanics). Conversely, each one-parameter group of symplectic trans-
formations defines its (at least local — in open neighbourhoods of all poirts)diamiltonian
function generating the given flow [1, 7]. Any symplectic transformation can be considered as
a (kinematical) symmetry of the considered classical system. If the dynamics is described by
the Hamiltonian, with the flow ", and a symmetry one-parameter group is described by the
flow / corresponding to its “Hamiltonianf, and if, moreover, the Poisson bracket of the cor-
responding Hamiltonians vanish€sf, h} = 0, then the two flows mutually commute:

or ool =l oyl

In this case, the functiofi represents aimtegral of motion, resp. aconserving quantity of the
system, cf. eq. (1.4.2). If there is a Lie groGp(cf.A.4) acting onM transitively (i.e. for any
z,y € M there is gy € G such, that its action transformgo y) by symplectic transformations,
the phase spac¥ is called asymplectic homogeneous space 6f.

Let us give now some simple examples:

1.4.2.Examples

(i) The linear spacé/ := R2" of 2n—tuples of Cartesian coordinatég, . .. q,, p1,...p,) is
endowed with the symplectic forfa := Z?Zl dp; A dg;. The Poisson bracket is in the given
coordinates expressed in the standard form

_N~(0f 0h _ 0h Of
{f.h}=>" <apj 50~ o, aqj) : (1.4.6)

Symmetries of this space contain linear symplectic transformations descriBeckBy. matrices
commuting with the matrixS' with elements (in the considered “canonical” basis), = 0,
except ofS; ;1 = —Sj4n; =1 (j = 1,2,...n), but also affine transformations consisting of
arbitrary parallel shiftg : 2 — ¢(z) = x+a, for any fixeda € R?". Symmetries are, of course,
all the symplectomorphism of the forgy (the above mentioned linear transformations, as well
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as affine ones, are also of this form; e.g. shifts are generated by lindgithe = Z?:1 (cjq;+

d;p;); quadratich’s correspond to groups of linear transformations). Let us mention explicitly,
that specific quadratif’s describe the dynamics of “harmonic oscillators”, whereas thcdse
which contain (in their Taylor expansion, e.g.) terms of higher than the second order in the
standard canonical coordinat@s ¢) lead to nonlinear canonical flows dd.

(i) The complex projective spac€P™ := P(C"™*!) constructed from the linear spa€®+!

as the factor-space consisting of its one-dimensional complex subspaces can be considered as
2n-dimensional real manifold endowed with a canonical symplectic structure [7, Appendix 3].
This is a special case of complex projective Hilbert spde€X) considered in Section 3.2, and

finite dimensional examples in specific charts can be straightforwardly constructed.

(iii) Cotangent bundles: Lef) be any differentiable manifold ant/ := T*Q = T7Q be its
cotangent bundle, cf. also Appendix A.3. Hence, point&/oére linear functionalp € T, Q :=
(T,Q)* “attached to pointsy € @; the natural projection : 7*Q — Q mapsp € T,Q to
7(p) = q € Q. The derivative (i.e. the tangent mapping)rof

To =T7:TM :=T(T*Q) — TQ.
The canonical one form«} on the cotangent bundle = 7*( is defined by:

U :p(e M) =19, € T, M,

(1.4.7)
Uyt v(€ET,M) —U,(v) :=por(v).
ThenQ := ddJ is a symplectic form onM/, the canonical symplectic form onT*Q. |If
{¢1,42,-..,q,} are local coordinates of, thenp € T*Q = M is expressed (in the corre-

sponding chart od/) asp = Z;‘Zl p;jdg;. In this coordinate neighbourhood one has

n n
9= ijdqj 0Ty = ijT*dqj,
j=1

Jj=1

and from commutativity of pull-backs with exterior differentiation d, and from the basic property
d o d = 0, we have the canonical expression fbin that neighbourhood :

Q:=dv = dej A Tdg;.

j=1

Hence, any cotangent bundle is a symplectic manifold in a canonical way. T@kiagR", we
obtain the example (i), where the coordinafes, p, } € R?*" can be chosen global (correspond-
ing, e.g. to a trivial coordinate (linear) chart gh= R™). ©

1.4.3.Remark (On the notion of “chaos”). The Liouville theorem on noncontractibility of the
phase volume, cf.(1.4.5) and the text following it, implies nonexistencattodictors, [1], of
Hamiltonian flows. The attractors, especially so cafigdange attractors”, [243], are usually
connected with the notion ahaos [10, 269, 116], in dynamical systems. This does not mean
that in Hamiltonian systems does not occur a chaotic motion. The “chaoticity” of motion is char-
acterized rather by its instability with respect to choices of initial conditions than by presence of
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some attractors. Such instabilities seem to occur generically in Hamiltonian systems. This fact
remained hidden for most of physicists for several decades: Mainly so ¢atetpletely) in-
tegrable systemswvere described in university textbook literature: These are, roughly speaking,
systems the dynamics of which can be fully described on surfaces of given values of integrals
of motion, in conveniently chosen coordinates, as systems of independent linear harmonic os-
cillators; parameters of the oscillators might depend on values of the integrals of motion; the
“integrals-of-motion surfaces” decompose the energy submanifolds and all they are diffeomor-
phic to tori 7", or to cylinders, [7, 8, 1]. This was, perhaps, due to the fact that all known
explicitly solved & integrated) models were of this kirid. It was proved [176], however, that

the set of integrable systems is in a well defined sense rare in the set of all possible Hamilto-
nian systems. In the cited paper [176] no restrictions to dynamics coming, e.g. from observed
symmetries of physical systems were considered; such restrictions could, perhaps, enlarge the
“relative size” of integrable systems. But, on the other hand, some “physically realistic” systems
in classical mechanics were proved tortmmintegrable, e.g. the three (and more) body problem

in celestial mechanics (i.e. in the nonrelativistic model of planetary systems with point masses
moving inIR? and interacting via the Newton potential) is nonintegrable, P1].

1.4-b Observables and states in classical mechanics

Also CM can be formulated in terms familiar from QM. This formal analogy is useful for
description of classical subsystems in the quantummechanical framework. Concepts intro-
duced in this subsection are useful also in formulation of classical statistical mechanics, see
e.g. [158, 262, 224, 225].

As a set of classical observables can be chosen, e.g."thedgebra (without unit, ifAf is
not compact)Cy (M) of all complex—valued bounded continuous functions on the phase space
M tending to zero at infinity, cf. Appendix B. ThiS*-algebra can be completed by unit(
I = 1 =identically unit function on)M), and this completion will be called the€* —algebra
of classical observablesdenoted by4,.;.>® The algebraic operations are defined pointwise on
M: for f,h € A one hag f()(m) = f(m)h(m), (f + Ah)(m) = f(m) + Ah(m), f*(m) =
f(m), and the norm is the supremal one, ilgf|| := sup{|f(m)| : m € M}. The spectrum
space ofA4,; is just the one—point compactification &f. Further extensions of the algebra of
observablesd,; could lead us to abelian von Neumann algebras: Let, e.g. the Borel measure
wo on M be given, and consider the Banach spaéél/, i) of integrable complex—valued
Borel functionsf on M, with the norm|| f||1 := pa(|f]) = [ |f(m)|ua(dm). Its topological
dual, cf. [218, 41],L>°(M, uq) consisting ofug—essentially bounded Borel functions & is
aW*—algebra containingl.;. It can be interpreted as the maximal commutative von Neumann
algebra of bounded operators4iiH), namely the operators @ff—pointwise multiplication by
functionsf € L>(M, ug) of elements of the Hilbert spadé := L2(M, ug). The mentioned
duality is realized by the sesquilinear relation

(f;h) = / Fm)h(m)pa(dm), Vf € L>(M, po), h € L' (M, pg). (1.4.8)

37This seems to be generally believed, cf. also [7].
38For the concepts and properties@f-algebras and von Neumann (redg* —) algebras see the standard books [76,
77,227,228, 254, 42], and also our Appendix B.
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This last definition of a (complexified, linear) set of “classical observables”1a5"aalgebra
of observableshas an advantage that this"-algebra contains also projections fi{H) rep-
resented by multiplication operators by characteristic functions of the Borel subskfs loy
which is it generated. Hence, (also unbounded) “observgblesuld be defined alternatively by
projection-valued measuresE; (with values in multiplication projections ifi(L?(M, uq)))
on Borel subset8(R) of R:

Ef: B(€ B(R)) — Ef(B) = xs-1(5) € L(H),

with the characteristic functiog, of a Borel setA := f~1(B) C M considered as an element
of L°(M, pua) C L(H).

The (mathematically defined, [77, 227, 4@)assical) statesS(A.;) on theC*-algebra4,,
are just the probability measuress M 1 (M) on M, and the(classical) pure statesire all the
the Dirac measure§,,, : m € M U {oco}}, withd,,(A) =1 < m € A:

i f(€ Aw) > p(f)(E T), u(f) == / F(m)u(dm).

If one takes, on the other side, thié*-algebral>* (M, uq) as theC*-algebra of observables ,
the set of all states on it will be “much larger” th&{.4.;) (which is included there as a proper
subset), but the normal states bt (M, 1) restricted to the subalgehrh,; are just measures in
M1 (M) represented by elements bf (M, pq), i.e. just themeasures absolutely continuous
with respect tQug.

1.4.4.Interpretation. In any case, the Dirac measurgs, m € M, represent “pure states”,
resp. in mathematical language, the extremal points of the convex set of all Borel probability
measures o/. Other probability measures of this set have nontrivial, unitjue decompo-
sitions into the extremal Dirac measures. Their physical interpretation is probabilistic, in the
sense of statistical ensembles of Gibbsian statistical mechanics, [134, 115, 158]: In the ensem-
ble described by a measurec M1 (M), the fraction of otherwise equal physical systems
having pure (=“microscopic”, but classical) states represented by points in the Borel Aubset
of the phase spac®/ is equal tou(A). This interpretation is conceptually consistent, due to
the uniqueness of decomposition @6 into the extremal points. This point hides an essential
difference between CM and QM1 (M) is asimplex, what is not the case of the state space
S. (or of S) of QM. ¢

1.4-c Symplectic structure on coadjoint orbits

We shall mainly restrict our attention to such classical phase splcés this work, which
are homogeneous spaces of a connected, simply connected Lie @rampwhich the action
g:m— g-m (g€ G me M) of G consists of symplectomorphisms:

fo(m) == f(g-m), Vf,h € Coo(M,R) : {fy,hg} ={f, h}g

In these cases, the phase spétg () is (locally) symplectomorphic to an orbit of the coad-
joint representation (see Section A.4, and below in this subsection) eitli&rafof its central
extension by the additive Lie grou, cf. [148,§15.2, Theorem 1].
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Any (noncommutative) Lie group provides a canonical example of Poisson manifold. Also
the most common case of tRe-dimensional symplectic linear space of the Example 1.4.2(i)
can be considered as coming in this way from2het 1-dimensional Weyl-Heisenberg group.
This will be described in Subsection 3.3-b. Let us describe here the general construction.

Let G be a finite dimensional connected (for simplicity) Lie group with its Lie algebra
g := Lie(G), and with the exponential mappirgp : g — G,£ — exp(£). The canonical
symplectic manifolds will be found in the dual spageof g. The duality will be alternatively
denoted byF'(§) =< F;¢ >, F € g*. The adjoint and the coadjoint representation&ain its
Lie algebrag (resp. on its duag*) are defined in Definition A.4.10.

Let us fix any elemenE’ € g*. Then the subset (a submanifol@)-(G) of the linear space
g* defined by

Op(G) = {F' €g*:3g € G,F = Ad*(¢)F}

is called thecoadjoint orbit of G through F. The spacg* is decomposed into coadjoint orbits
of (in general) various dimensions (as submanifolds).

Let us consideg™ as differentiable manifold in which, as in any linear space, the tangent
spacel’rg* in any of its pointsF' is canonically identified with the linear spagg itself. The
dual spacd’;.g* then contains canonically (resp. for finite dimensio@ais identified with) the
Lie algebrag, which isw*—dense (i.es(g**, g*)—dense) in the second dugil* of the Lie algebra
Lie(@G), cf. [41, Chap.I\§5.1]. This allows us to define canonically a Lie algebra structure on the
second duag**. Let us denote this structure again by the bragket Let f,h € C*°(g*,R).
Then their differentialslz £, ..., are elements of .g* ~ g**, and their commutator (i.e. the
canonical Lie bracket) is defined. Then we defineRbésson structure ong* by

{£,h}(F) == —(F;[dp f.dph]), VF € g*, f,h € C™(g",R). (1.4.9)

The Hamiltonian vector fields/¢,vy,..., cf. (2.1.16) are then tangent to all the orbits
Or(G), [148, 274].

The simplest examples of functiorfsc C>(g*,R) are f = f¢, & € g, defined byf: (F') :=
F(&) = (F;¢). Their Poisson brackets are trivially

{fe: fo} = —fiem (1.4.10)

The functionsf; generate, if used as Hamiltonian functions, the actions of one—dimensional
subgroups in theld*(G)-representation, i.e. the Hamiltonian flow ffon g* is

ol F = Ad* (exp(t¢))F, VF € g*, £ € g, t € R. (1.4.11)

1.4.5.Example. Let us give a simple example of coadjoint orbits of a Lie group. Get=
SU(2), the covering group of the rotation gro)(3). These are 3—dimensional Lie group-

s with the Lie algebra generated by elemefitsi = 1,2, 3, corresponding to one parameter
groups of rotations around tree fixed mutually orthogonal axes, and satisfying the relations (with
the summation convention)

5, &k] = €&ty €k = —€kji = €rij, €123 = 1.
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The it is possible to show, that the coadjoint orbits (in the dual bas{gtp) are just all the
spheres centered at origin. Hence, in this simple case, all the (symplectic) @) are
two—dimensional except of their common centre, which is a unique zero—dimensional orbit. The
flows corresponding to the generatggs are just rotations around the chosen axes(i3)*. ©

1.5 Basic Concepts of Quantum Mechanics

We shall give here a review of an abstract scheme of standard quantum mechanics used for
description of such systems, “classical analogs” (or “classical limits”) of which are described by
CM with finite—dimensional phase spaces.

The basic intuition and terminology of QM comes from CM (supplemented with a “nonclas-
sical” statistical interpretation). This is due to the history of physics, but also, on more fundamen-
tal level, due to the intuitive necessity to express empirical statements of QM (as well as of an
arbitrary theory) in terms describing macroscopic bodies of everyday life, or in terms of (again
macroscopic) laboratory instruments. And states of macroscopic systems (resp. “macroscopic
parameters” of physical systems) are described by classical concepts. Mathematical formalism
of QM in its traditional form looks, however, rather different from that of CM. It will be shown
in later sections of this work, in what aspects these two formalisms can be made almost identical,
and it can be also seen, where differences are essential.

The presentation in this section will not be quite “parallel” to that of CM in Section 1.4,
because we want to stress and to describe also some technicalities specific to QM.

1.5-a Pure states and dynamics in QM

The Ble played in CM by a phase space plays in QMaxmed complete (linear) space with
norm determined by a scalar produebver complex numbers, a separable Hilbert spéc&he
correspondence to classical phase space is not, however, faithful enough, since there are classes
of vectors inH corresponding to the same physical state: All vec{org;0 # A € C} with

any choserd) # ¢ € H, correspond to the same physical state. The space of these classes is
the projective Hilbert space P(H); it is no more linear. Linearity seemed to be, however,
important in historical development of QM, [45, 46, 232, 74, 159], and it is still important in
many experimental projects due to its intuitively appealing content. We shall return briefly to
this point later® The points of the projective Hilbert spaédH) are faithfully represented by
one—dimensional projection operatdfs, 0 # ¢ € H, Py = ¢. As will be shown later, the
spaceP(H) is a symplectic manifold (of the real dimensidimg P(H) = 2dim¢ H — 2) in a
canonical way.

1.5.1.Interpretation (QM—CM “correspondence”). In QM—description of many phenomena,

it is customary to introduce into theoretical, as well as into experimental considerations a vague-
ly defined concept of @lassical analogueof the considered system described by QM, i.e. a
classical-mechanical system in some way “corresponding” to the considered phenomena (resp.
to QM-system). So, e.g., for a hydrogen atom described by vectors in the infinite—dimensional
Hilbert space := L?(R®, d%q), the corresponding “classical analogue” is the Hamiltonian sys-
tem on the (12—dimensional) phase—sp#&¢®S, with the canonical symplectic structure (cf.

391t is still possible to define a “superposition of states” also in this nonlinear setting, cf. e.g. [208, 57, 67].
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Examples 1.4.2(i), and (iii)) the dynamics of which is described by the Hamiltonian

2 2 2
P P e
h Q. P)=—+— — ——:
(4,15 @, P) 2m  2M  |q— Q|

q,p,Q,P € R3.

The classical observablds;,p;, Q;, Pj, j = 1,2,3; h € C*(R'?)} help to interpret the
points P,, of infinite—dimensional symplectic “phase spade(#/) as states of the (“real”, or
“genuine”) QM hydrogen atom:

We associate with any of these classical functions on the phaseRpaaeselfadjoint linear
operator orn{ in such a way, that the “corresponding” operatérsc {q;,p;,Q,,B;, 7 =
1,2,3} determine specific functionkx on (a dense subset of) the phase—spa¢H) (in an
analogy with the observables in CM):

hx(Pw) = T’I’(Pw}:), VPw S P(H)

These functions satisfy “the same” commutation relations (i.e. Poisson brackets relations) as the
corresponding classical phase space variallles {¢;,p;,Q;,P;, j = 1,2,3}, as we shall

see later. They also form, surprisingly (cf., however, Subsection 3.3-b), an “irreducible set of
variables” on the infinite—dimensional manifalt{’+) (i.e., in some sense, they generate a com-
plete set of “coordinate functions”), if a noncommutativegroduct” between these functions

(cf. also [97] for alternatives)

hxl * hxz = hx1x2,

is defined!® In this way, the functiongiy (whereQ) are algebraic expressions consisting of

the above introduced operatde} form a noncommutative (infinite—dimensional) algebrdts
elements are interpreted in such a way, that a “correspondence” with finite dimensional phase
spaceR!? remains valid as a “many-to—one” mappifig P(+) — R!2, defined in coordinates

by
FX : P¢, — hx(Pw) = T?“(Pd,%) =: Fx(Pw), X = qj7pj7Qj7Pja j = 1,2,3.

This mapping is theinterpreted statistically asexpectation of “observables’X in the pure
states P,,. Values of higher degrees (with respect to #iproduct) of these functions are then
interpreted as higher momenta of statistical distributions of these “obserzdblddence, dif-
ferent QM-state$’;, with the same expectatiofisy (Py) = hx(Py) (for all X) differ mutually
by probability distributions of some of these observabies

A specific feature of QM in description of such “finite systems” as the hydrogen atom is
thatthere are no pure statesP,, € P("H) with zero dispersion of all observables in an “ir-
reducible set”, in our case formed byq;,p;,Q;, P;, j = 1,2,3}. This means that for any
Py, € P(H) there is at least on& < {q;,p;,Q;, P;, j = 1,2, 3} such that for the correspond-
ing quantum observable one has nonzero dispersion, i.e.

hx * hx(Py) # hx(Py)*.

40That these functions oR () are not differentiable in the usual sense (they are not even everywhere defined) is not
important in the considered connections: they could be replaced by some of their bounded “versions”; we can work, e.g.
with bounded operators from the algebra generated by projection measures (cf. Appendices B, and C) of the (unbounded)
operatorsX.

41For a possibility of mathematical definition of such algebras of unbounded operators see, e.g. [163].
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The statistical interpretation of (even pure) states in QM differs from interpretation of states
in classical statistical physics. This difference can be expressed roughly (cf. [14, 136, 172, 180])
so that in QM there is no (in some sense “natural”) “phase space” (resp. a “space of elementary
events” — in terminology of Kolmogorovian probability theory) consisting of points representing
some (at least fictitious) dispersion—free states, such that probability measures on it would de-
termine the quantum states. Pure states are interpreted in QM as in a sense “the most detailed
possibility” of a description of states of “quantum objects” (resp. “systerttsn what sense,
in the case of the absence of any dispersionless states, these “objects really exist” is still a dis-
cussed problem: “Object” is characterized by its state which contains just statistical predictions
on possible outcomes of its interactions with other bodies at specified initial conditions, leading
each time to a stable trace (i.e. a reproducibly verifiable “macroscopic change of environment”
in each single case of the repeatedly obtained cases of “events of detection”); such a process, if it
is correlated with values of a physical quantity, is called a “measurement in QM”. The formalism
of QM does not contain “single events$

The quantal time evolution of vectors i is supposed to be such, that it transforms, by a
family of transformations

¢ (t €R): P(H) — P(H), Py +— ¢1(Py),

the classes of the vectors 1 corresponding to the same physical interpretation, i.e. the points
of P(H), bijectively onto P(H). Traditionally, there is another general requirement to these
transformationsy, (Py): They should conserve theansition probabilities, i.e. the values of
the nonnegative function

Pr: P(H) x P(H) — R, Pr(Py,P,) =T _ el
r: — Ry, Pr(Py, P,) :=Tr(PyP,) = TEIEEE (1.5.1)
It is required:

Tr(¢¢(Pp)¢e(Py)) = Tr(PpPy). (1.5.2)

Considerations on possible physical interpretation of this requirement are postponed to later sec-
tions, cf. also [35]"* According to a Wigner’s theorem (cf. Proposition 3.2.6), the additional
requirement of the group property of— ¢, i.e. ¢, 1+, = @+, © ¢r,, and of continuity of the
functions

t > Tr(Py¢1(Py)), YPy, P, € P(H),

42Cf,, e.g. [71] for comparison of dispersions of observables in “mixed states” with those in their pure convex
summands.

43This requirement can be connected with teduction postulate of Dirac and von Neumann, [74, 189], stating
that, by measuring a quantity on a considered system, after obtaining a restlihe system suddenly “jumps” into
a dispersionless state of the quantKyin which that quantityhas the the value’; or alternatively, that the statistical
ensemble representing the system in the initial state (i.e. all members of the ensemble are initially in the same quantum
state) jumps during the measurement into the statistical ensemble consisting of systems occurring in such quantum states
that are all dispersionless &f with values equaling to the measurement restflfthese systems occur in the ensemble
with the frequencies of the occurrence of the corresponding reguttistained by the measurement.
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suffices to imply the existence of a strongly continuous one—parameter unitaryigreup(t¢)
on’H such, thatitis

ot (Py) = U@)PypU(—t) = Py(iyy-

Then the Stone’s theorem, cf. [218, 220] and Theorem C.3.2, gives the existence of a (unique, up
to an additive constant multiple of identify,) selfadjoint operatoff such, that

U(t) = exp(—itH). (1.5.3)

This leads to th&chrodinger equationfor evolution of vectors)(t) € ¢.(Py) C P(H):

Y1) = U0(0) = i L0(0) = How),  9(0) € D(H), (15.4)
with D(H) being the domain of the selfadjoidf, cf. Appendix C.2. Let us stress the trivial
fact, that the Sclidinger equation makes no sense for “improperly chosen” initial conditions
¥(0) & D(H).

This is the general form of time evolutions in QM. The operdiois called the Hamiltonian
and it is interpreted (cf. next subsection) as an operator describing the energy observable. It
should be stressed, that mere symmetry of the opefat@re. (o, Hy) = (Hp,¥), Vo, €
D c D(H),D = H) is not sufficient to define a one—parameter group by (1.3733hould be
selfadjoint to generate a group, Appendix C. On the other hand, between selfddljgjratnd
strongly continuous one—parameter unitary grolipg’s there is a canonical bijection expressed
by (1.5.3), cf. Theorem C.3.2.

1.5-b States and observables

States in QM (let us denote the whole set of themShyform a convex set, with “pure states”
described by one dimensional projectidisas its extremal (i.e. indecomposable into nontrivial
convex combinations) points. Convexity of the state space can be traced back to the classical,
essentially macroscopic notion sfatistical ensemb]ecf. Interpretation 1.4.4, in which expec-
tations of all observables are expressed by the same convex combination of their expectations
in subensemblesthat intuitively correspond to “maximally specified ensembles” (in CM these
“pure ensembles” are dispersion—free for all observablés) was pointed out above thatin CM

such a “maximal decomposition” is unique. This means, that the classical stateHp&gée

forms asimplex, cf. [60, 182, 224, 42].This is not the case of QMvhat is one of its deepest
differences from CM. The “shape” d, is closely connected with the set of “observables”, cf.
[183]. We shall not go into interesting details of these connections, but we shall rather review the
standard traditional setting.

The set ofbounded quantum observableds taken (in the theory without superselection
rules, [279, 143]) to be the set of all bounded selfadjoint operatofg,are. £L(H),, and as the
C*-algebra of quantum observableswill be taken£(H). Theset of quantum stateswill be
for us here just a part of the set of all positive normalized linear functionaly ®f), namely the

44Importance of the convex structure of state spaces, and its relation to other theoretical concepts was stressed and
analyzed, e.g. in [168, 183, 114].
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normal statess, consisting of functionals expressible in the (defining) faithful representation of
L(H) by density matricesonH, i.e. by positive operators oK with unit trace:

0ES. = 0= NPy, A\ >0, ) N\=L (1.5.5)
J J

The expression (1.5.5) represents one of infinitely many differend ¢¢ Py, for anyy €

H \ {0}) extremal decompositions ofc S.. Hence, a “statistical interpretation”, like in Inter-

pretation 1.4.4, of density matrices is questionable, cf. also [34] for a more detailed formulation.
Unbounded observables are usually given as unbounded selfadjoint operators on (a dense

domain of)H.%> They are faithfully expressible byrojection valued measuregPM, cf. [267,

Ch.IX.4]) on the real linéR: To any selfadjoint operatot = A* corresponds a unique projection

valued mapping

Ea: B(€ B(R)) — EA(B) = Eo(B)* = Eo(B)*(€ L(H))

such, that for countable number of pairwise disjoint Borel ggts= B(R) is £ 4 additive (the

sums converging in the strong topology4ifH)), andE 4 (R) := I, cf. Definitions B.1.1. Such

a correspondence between PM and selfadjoint operators is bijective, hence we can (and we often
shall) as an observable in QM consider a PM. The standard useful formula connéatiit

E 4 is expressed by the strongly convergent integral, cf. Theorem B.1.3, and Proposition C.3.1:

A:/R)\EA(dA).

1.5.2.Note. A generalization of PM leads tpositive operator valued measurePOV (or
POVM), which also represents a selfadjoint operator, but it is not determined by that operator
uniquely. It represents a generalization of the concept of observable given by PM. Any POVM
onR is a positive—operator valued function

A: B(e B(R)) — A(B)(€ L(H),), 0<A(B) < Iy,

which is also countably additive (in strong topology) with respect to the additions of disjoint sets.
In this case, contrary to PM, differett(B) (B € B(R)) need not mutually commute. POVM

can be used to modeling of imperfect measurements, reflecting nonideal sensitivity of measuring
apparatuses, [71, 29, 53, 73]. We shall not go into details of this refinement of the concept of
“quantummechanical observable”; see also Definition BQ2.1.

Let us turn now our attention to time evolution of general states (the &8ahger picture”),
and also of observables (the “Heisenberg picture”). It is naturally defined from that of pure
state space described in Subsection 1.5-a, due to linearity and/or affinity of all relevant relations.
Hence, for the one—parameter unitary grdufy) := exp(—itH) describing the evolution of
pure states, or also vectors#f the corresponding evolution of density matrices from (1.5.5) is

t— 0 = ¢u(0) == U(t)oU(—t) = Z NU(t)Py,U(—1), (1.5.6)

45The forthcoming technical concepts are briefly described also in Appendices B, and C.
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what is valid for all possible decompositions (1.5.5) of the density matrikhis description of
time evolution corresponds to ti8ehrodinger picture.

TheHeisenberg pictureof the time evolution in QM is the dual (=transposed) transformation
group¢* to that ofg; : S, — S., since the algebra of observablégH) is the (topological) dual
space of the complex linear space spanned by density matrices and completed in the trace norm
llell1 :== Tr(]o|). Since the duality is realized by the bilinear form

(0; A)(€ Si x L(H)) — (A;0) = Tr(0A) =: (A),, (1.5.7)
the time evolution of thel’s in L(H), (¢; A) — A; := ¢} (A) is determined by the requirement

(Ag; 0) = (07 (A); 0) := (A; ¢e(0)),

and we haved; = ¢; (A) := U(—t)AU(t). Let us note that, according to the introduced
definition of ¢;, one has the following invariance:

(924(A); ¢e(0)) = (A5 0). (1.5.8)

Let us notice similarity of the equations (1.5.8), and (1.5.2), what will be of importance in the
subsequent nonlinear extensions of QM, cf. [35].

Interpretation of statemndobservables is given by determination of a formula expressing the
probability of obtaining resulta € B (:= a subset of the spectrum, i.e. of the set of possible
values ofA) by measuring of an observahleof a system occurring in the stage This proba-
bility will be denoted byprob(A € B;p). It can be also useful to introduce the corresponding
probability measurag‘ on the real lineR of values of the measured quantiy

prob(A € B; o) = il (B) := Tr(Ea(B)o). (1.5.9)

This formula allows us essentially to express all empirically verifiable statements of QM. The
expectation (mean value) is given by (1.5.7).

The assertion on nonexistence of dispersion—free states for all observables can be made pre-
cise in a form of generadfieisenberg uncertainty relations

1.5.3. Proposition. Let A, B be two bounded selfadjoint operators (representing two quantal
observables), and letd), := T'r(pA) be the expectation of measured values of the arbitrary
observabled in any statep, o € S.. LetA,A := /Tr(o(A — (A),)?) be the dispersion of the
measured values of in the same statg. Then

A,A-A,B > %|TT(Q(AB — BA))| = %|<i[A,B]>Q|. & (1.5.10)

This proposition can be generalized to unbounded operators, with corresponding restrictions
for the statep € S.. This shows that noncommutativity of two observables leads to nonexis-
tence of their mutually sharp values in states with nonvanishing expectation of their commutator.
Remember that for the operatans, 3; corresponding in QM to the classicatth position and
linear momenta coordinates, one A5, Px] = ihllxd,; (on a corresponding dense domain in
H). Hence the “observableg;, P;” cannot be both sharply determined in any state S..

The formula (1.5.9) leads also to convenient realizations of (elemeritsiofjerms of numerical
functions.

46For a discussion and citations on various interpretations of (1.5.10) see e.g. [51].



34 1 Introduction

1.5.4.Remark (“Representations” in QM).It might be useful to comment and formulate here,

in some more general terms than is it usually presented, what is traditionally named “the re-
presentation theory” according to Dirac, [74]. Physicists often work with specific realizations of
Hilbert spaceH, according to specific physical systems to be described. Elements of the “Hilbert
space of a given physical system” are often expressed as “wave functions”, i.e. complex valued
functions of “configuration variables” (e.g. positions of described particles). Since all infinite—
dimensional separable Hilbert spaces are isomorphic, different realizatidhsani be specified

only by an additional mathematical structure. This is done by a choice of a “complete set of com-
muting observables”, i.e. by specifying a maximal commutative von Neumann subalgebra [227,
p.11217 in £(H) generated by (mutually commuting) projection valued meastitresz, . . .,

of a setA, B, ..., of mutually commuting selfadjoint operators. These operators represent in
QM some “simultaneously measurable observables”. The von Neumann aRgjeraerated by

a set

Ro :={Ea(B1), Eg(B2),...; B1, Ba,--- € B(R)}

of bounded operators (projections)khicontaining the unit operatds, € £(H) is obtained by
taking the double commutant, according to famous von Neumann “bicommutant theorem”, [187,
227,254, 42]R = Ry, in L(H).*® Here, the commutarR} of R, is given by

b =1{B€L(H):[B,A] =0,VA € Ro},

andRy := (Rg)’, for any subseR, C L(H). Any commutant inC(H) is aC*-algebra closed

in weak—operator topology af(), and suchC*-algebras are calleebn Neumann algebras

or W*-algebras. Thé¥V*-algebraR is maximal commutative iffR = R’, what is equivalent
with the situation when the commutatiVE*-algebra has a cyclic (then also separating) vector
1o in H, cf. [218]. Let M% be the (compact Hausdorff) spectrum space (cf. Example B.3.5) of
R, hence the algebra of continuous complex valued functiofi&/r ) is isomorphic (denoted

by ~) to R. If 49 € H is cyclic forR ~ C(Mg), then (denoting the operatorsR by 7o (f),

for the corresponding functions € C(My)) the integral, i.e. the positive linear functional on
C(Mr) (according to the Riesz—Markov theorem, [218])

f (€ C(MR)) — p*(f) = (o, mo(f)tho) (1.5.11)

determines (if), is normalized) a probability measyr& on Mz, and the mapping
Ur : mo(f)vo (€ H) — f € C(Mg) C L*(Mg, p™) (1.5.12)

can be uniquely extended to an isomorphism of Hilbert spaces, [227]. Moreover (cf. [101, Chap.
1.9]), all the functionsf € C(Mz) are just all the (elements of equivalence classeg’®f
essentially) bounded Borel functions o, i.e. C(Mg) = L= (u®).49

47TA commutative algebra of bounded operators7dris maximal commutativé its arbitrary nontrivial extension
by addition of an operator violates its commutativity. Such an algebra is always weakly cloggdtin i.e. it is a
W*-algebra. cf. also Appendix B.

48¢f. also Appendix B for technicalities.

491 et us note, that these functioffs€ C(Mz ) can be considered either as element0f.2(Mz, u®)), or as
elements of the Hilbert spade? (M, 1) itself. Let us also note that the constant unit function an element of this
Hilbert space representing a cyclic vector with respect to the maximal commutative algighfa ) of operators.
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The spectrum spack/r of an abeliani¥*-algebraR has a rather “wild” topology, since
any W*-algebra is generated by its projections which are, in the commutative case, continuous
characteristic functions of clopen subsetsiéf, which in turn form a basis of the Hausdorff
topology of Mz, cf. [L01]. As a consequence of thitremely disconnectedtopology (cf.
[254, Chap. III.1]), the function realization & in (1.5.12) needn’t seem to be practically
convenient. If, however, there is R a strongly dense unitél*-subalgebrad = Az with some
“nice” spectrum spacé/ (e.g.,M could be connected), then we can write for the corresponding
isomorphismlx, instead of (1.5.12):

Ur : mo(f)ho (€ H) — f € C(M) C L*(M, p™), (15.13)

where the measupe* is defined, now fromd, by the same way (i.e. via Riesz—Markov theorem)
as it was done in (1.5.11) froR, since Ay (A := mo(C(M))) is again dense if.

Let R be generated by projection measure§E 4,, E4,, ..., E4, }, €.9. spectral measures
of (possibly unbounded) selfadjoint operatdtd;, j = 1,...n}; i.e. R is the minimalW*-
algebra containing these projections, and it is maximal commutative with a cyclic vagcter
‘H. Then the spectrum spadd = M4 can be chosen homeomorphic to a compact subset
of a compactification oiR™, namely the support of the product—-meashke (what is again a
projection measure) of the spectral measurgs, j = 1,...,n, cf. [20, Chap. 5§2, Theorem
6; Chap. 6,55, Theorem 1]. We have theh?(M, u*) = L?(R™, u*), and each operator
UrA;Ux" acts onL?(R™, u) as “multiplication by thej—th variable”:

UrA;jUg'o(q) = q50(q), q € R",p € L*(R™, u).

We can speak now about tte-representation, resp.{A; : j = 1,2, ..., n}-represen-
tation, of (Quantum Mechanics represented in) the Hilbert sfiéce

Let us assume, that the product—-meastife is absolutely continuous with respect to the
Lebesgue measurE'q onR", i.e. absolutely continuous are all the probability measures

B(e BR")) — (4, Er(B)Y), V¢ €H, |[¢f =1
Hence also all the probability measures
B(e B(R)) = puf (B) == (1, Ea,(B)¥), Y eH,[lY|=1, j=1,...n,

are absolutely continuous with respectd on R.°° Since the vectog), € H is cyclic and
separating ford” = A’ = R, the measure.” is absolutely continuous with respect to the
Lebesgue measutE'q onR". Let

_ det
-

d A
(@), o cL'(R",d"g)

T (ER") = fu(a) i

be a version of the Radon—Nikodym derivative (cf. [187, 218])-6fwith respect to the Lebesgue
measure. Thed? (M, u*) can be mapped onto a subspacd.&fR”, d"q) by the unitary map-

ping
U(q) = (@) feo (@), Vo € L*(M, ), ¢ e R*(D M). (1.5.14)

50We do not formulate here sufficient conditions for absolute continuity-gf
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In this setting, onH represented by (a subspace dfj(R",d"q), the operatorsd;,; =
1,2,...,n, are realized as multiplication operators by the coordingtes = 1,2,...,n, with
{q1,92, - -, qn} = q € R™.?! The probabilities (1.5.9) have now the form

prob({4;} € BCR"; Py) =Tr(Er(B)Py) = /B lv(q)|*d"q, (1.5.15)

with ||| = 1. A special case of this situation is the usually used “position representation” of the
state vectorsQ

1.5.5.Example (Position representation)Let .4 be the subalgebra of(7{) generated by the
unit operatorl;; and by the operatorg(Q1,Q2,...,Qs3n), with the functionsf from the
Schwartz spacé(R3"), where the standard position operat@ys,j = 1,2,...,3N, of the
irreducible representation @ty for an N—particle system (cf. Subsection 3.3-b), were intro-
duced. Then the spectrum spakkis the one—point compactification 82" with the “usual”
topology. The weak closurR of A in L(H) is an abeliariV *-algebra containing also projection
operators belonging to the spectral decomposition@ &, i.e. elementszy, (B) of their PM’s.

If there is a cyclic vectot), for R in H, themyy is cyclic also forA. Then we can use the unitary
transformation/r : H — L?(R*Y,d*N¢) determined from (1.5.13), and (1.5.14) dyonly.
HenceH ~ L2(R3*VN,d3Nq). This is the usual “position-coordinate representation{of

1.5-c Symmetries and projective representations in QM

The time evolution described in Subsection 1.5-a was an example of a continuous transformation
group in QM. It can be considered as a representation of a specific group R) of symmetries

of a physical system, namely a representation of the observed (or postiiatedpeneity of

time: This symmetry, described by formulas expressing fundamental laws of physics indepen-
dent of the time variable, can be considered as just an expression of possibility of formulation of
such laws. The invariance is encoded in the group property of the set of time—evolution opera-
tors, what corresponds to time independence of its generator (the Hamiltonian): “Dynamics” is
time—independent, and differences in various possible (or observed) evolutions of the system in
its “various occurrences” are ascribed to differences in “initial conditions”, [281, 138], resp. in
“boundary conditions” (including also “external fields”).

The relevance of symmetries in physics was probably (at least) intuitively clear since the ad-
vent of any considerations which now we call “physical”. Their formalization came, however,
much later: Although importance of symmetries for human activities was claimed already by
Leonardo da Vinci (according [281, 275]), clear understanding of their importance for formula-
tion of geometry and laws of nature came only at about the beginning of 20th century, e.g. in
works of F. Klein [150], G. Hamel [125], H. Poin@af204], E. Mach [170, 171], P. Curie [69],

A. Einstein [89, 88], and other.

Their importance is clearly seen, e.g. in formulation of classical — mechanical problems on
integrability (connected with the question of stability of Solar system), in Einstein discovering
of relativity theories, in Gibbs formulation of statistical physics [158], etc. Clear mathematical

511f the spectrum of somd ; is not the whol€R, then’ is represented by a proper subspé&éésupp(Ex ), d"q) C
L2(R™,d™q).
52Many historical notes on symmetries can be found in [179].
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connection of variational equations with symmetries and with integrals of motion was formu-
lated also due to the theorems by Emmy Noether [192]. Nowadays is generally accepted the
connection between Lie group invariance of “action integrals” (or/and Lagrangians) of classical
physics, cf. ,e.g., [157, 160, 1], with conservation of some nontrivial functions on phase space
with respect to the time evolution determined by the corresponding variational problem. These
integrals of motion determine submanifolds in phase space left by the time evolution invariant.
This leads to practical advantage of “lowering dimensions” of solved problems. Intuitively, this
also allows a better specification of the (self)identity of moving physical systems.

A “quantum-—field—rephrasing” of the mentioned principles was one of the leading tools in
formulations of (heuristic, but successful) quantum theories of elementary particles, with quan-
tum electrodynamics as their prototype. Also in foundations of mathematically clear (but, up to
now not very successful) “axiomatic” algebraic formulation of quantum field theory (QFT), cf.,
e.g. [250, 120, 38], symmetry principles play a kéier

1.5.6.Note. We can suspect even more general meaning of “invariances” with respect to some
group of transformations in physics: They help us to determine physically (hence operationally)
meaning of “physical quantities”; very pictorially expressed, symmetry meansdhs mutu-

ally different things (states, observed values of something), arein a certain sensequal, [69],

what might help us to specify how to measure them. A very fruitful principle in physics is, as
is generally known, the requirement of invariance with respect to Galileo, resp. Rogrcaips,

cf. also Interpretation 1.1.20

The symmetry considerations in QM are even more important and useful than in classical
physics. This is, perhaps, due to the “more mathematical” and less intuitive nature of quantum
theories. The a priori linear formulation of QM offered a natural application of (linear) represen-
tation theory of groups to solution of specific classes of problems in QM, esp. in classification
of “elementary systems” (these might be “elementary particles”, but also molecules), of their
spectra and interactions, in scattering theory etc., cf. [275, 280, 281, 282, 250, 118]. One can say
that symmetry considerations are lying now somewhere “in the heart” of QM. They belong, e.g.,
to the main tools in the search for new fundamental interactions of elementary particles.

We shall restrict now our attention to a rather specific technical question connected with
appearance of symmetry considerations in mathematical formulations in QM. Symmetry groups
are usually specified either from observations of specific motions of macroscopic bodies (e.g.
translations and rotations of “rigid” bodies), or by some theoretical hypotheses coming from
an interplay of presently accepted theoretical scheme and observations connected with it (e.g.
the isospin group, and other symmetries of elementary particle theories). Groups appear then
in formalisms of physical theories in a form of their “realizations”, cf. [148], i.e. in a form
of their actions on spaces of physically relevant theoretical objects like “states”, “observable
quantities”, “state vectors”, etc. In traditional formulations of QM, symmetries are formalized
as transformations of Hilbert space vectors. It is important in some considerations to understand
connections of the transformations of vectorgfmvith corresponding transformations of quantal
states.

The usually required general restrictions to the set of symmetry transformations of the states
of a QM—system are the same as figrin Subsection 1.5-a, esp. in (1.5.2). There is, however,
an additional complication for general (more than one—dimensional) continuous geoaps
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transformationsy(€ G) — «, : S, — S.. Let us assume that (1.5.2) is again fulfilled:
Tr(ag(Py)ag(Py)) = Tr(PyPy). (1.5.16)

Then a trivial adaptation of arguments following (1.5.2) (by the assumptions of the group prop-
erty and continuity, as above) leads to the conclusion (cf. also [267, 148]) that a continuous
family

9(e G) = Ulg)(€ L(H))
of unitary operators exists representing the mappirg o, as
ay(Py) =U(g)PyU(g)" (1.5.17)

This determines, however, the unitary operators up to phase factors, and we obtain (for details
see [267, Chaps.IX, and X, esp. Theorem 10.5])

U(g1-92) = m(g1,92)U(91)U(92), (1.5.18)

wherem : G x G — S' ¢ Cis amultiplier for the groupG satisfying the following identities
implied by associativity of group multiplication:

m(g1, g2-93)m(g2, g3) = m(g1-g2, 93)m(g1,92), Vg; € G,

1.5.19
m(g,e) =m(e,g) =1, VgeG, eg=g. ( )

Multipliers for G form a commutative group (by pointwise multiplication; cf. (3.3.10) for addi-
tive notation) with the unit elemeiitg, ») = 1. If the multiplier can be removed by multiplying
U(g) — a(g)U(g) by some “phase factorsi(g) € S' :=the complex numbers of unit modulus
then it issimilar to I, or exact Two multipliersmy, mo are mutually similar, if the multiplier
my-my ' is similar tol. The unitary family satisfying (1.5.18) is callegeojective representa-
tion of G with the multiplierm. All projective representations @f obtained from the same.
have mutually similar multipliers, and, to any projective representdtionith a multiplier m,
and to each multipliem’ similar tom, there is a projective representati@hwith the multiplier

m’ leading to the same¢ according to (1.5.17) as.

Hence, if the multiplier in (1.5.18) is exact, it is possible to choose a unitary representation
(i.e. with m = 1) corresponding to thews. Otherwise, it is possible to find another group
G, containingG as a normal subgroup,@ntral extensionof G by the commutative group
S! corresponding to the multiplier,, and such that the formula (1.5.18) determines its unitary
representation: Elements 6f,, are couplegg; \) € G x S! with the group multiplication

(915 A1)+ (925 A2) = (91-g2;m(g1, g2) A1 A2). (1.5.20)
The corresponding unitary representatlb(Gm) is
U(g;A) :=A""U(g), VYgeG,reS"

The check that/(g; A) leads (for allx € S*) to the same symmetry transformatiog of the
states than the elemetit ¢) of the projective representatidn(G) is straightforward.
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1.5.7.Examples (i) Only projective representations of the inhomogeneous Galileo group with
nontrivial multipliers can be interpreted, [267], in the usual interpretation schemes of QM, as
transformations of states of systems in QM representing the corresponding (relative) motions of
macroscopic background. The unitary representations of this group are all “unphysical”.

(ii) The most basic application of group representations in QM is, perhaps, the case of canonical
commutation relations (CCR). These relations determine a Lie algebra structure in a set of basis
elements (i.e. of “elementary observables” completed by the “trivial element”) in a “Hamiltonian
system orR?""— both quantum and classical. These relations are expressed in CM by Poisson
brackets between canonical position and momenta coordinates, and in QM they are commutators
between “corresponding” selfadjoint operators (representing in some way also physical position
and momenta observables). The connection with group representations is, that these operators
are generators of a projective representation ofdb@mutative group of translations in the
classical flat phase spad®?™, or they are generators (together with a unit operator)wfitary
representatiorof a one—dimensional central extension of this commutative group, i.e. of the
2n + 1-dimensional (noncommutative) Weyl-Heisenberg graypz.>3 All such (nontrivial,

i.e. more than one—dimensional) irreducible projective representations are parametrized (up to
unitary equivalence) by all nonzero reals, [287, 148]. Remarkalysical feature of CCRIis,

that they can correspond, to reach agreement of theoretical predictions with experiment, just to
one of the infinite number of mutually inequivalent representations of classical shifts in phase
space, and namely the “correct” choice of the representéikies the value of Planck constant

h; cf. also Section 3.3-b for corresponding technicalities.

(iii) The (covering group of the) connected component of the Poingeoup isrigid, i.e. it has

no nontrivial multipliers, [267, 283, 148]. It follows that any projective representation of the
(connected) Poincargroup can be obtained from the corresponding unitary representation of its
covering group®

1.5-d On the causality problem in QM

With discussions on Einstein causality in NLQM, cf. [106, 169], or also Interpretation 2.1.24,

it is interesting to pose such a question also in frameworkmeéar QT. In a renewal of such

a discussion [128, 48] (initiated probably by Fermi in 1932 [96]), there was discussed a simple
mathematical theorem with impressive consequences for possibilities on “instantaneous spread-
ing of wave packets” in QM. It can be formulated as follows:

1.5.8. Theorem (Long distance action in QM).Let a selfadjoint lower bounded operathr =
H* on a Hilbert spaceH be given: H — ¢oll;; > 0. Assume that, for a bounded operatBr
0 < B € L(H), and for a vector) # ¢ € H, thereis: Tr(PyB) = 0. Let us define
P(t) := exp(—itH), Yt € R. Then either

() Tr(PynB)=0foralltecR,or

(i) Tr(PywB) # 0forallt € Ty p C R, with 7, p open and dense iR, and of the total
Lebesgue measufe: m(R\ 7, 5) =0. &

Let, e.g.P be a state of a composed systém /] (say, consisting of two mutually spatially
distant atomd and/I), and letB = B* = B2 # ( be a projection on a subspacel¢f Assume

53Remember that commutative groups have only one—dimensional irredunitéey representations.
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that the vectors oB’H correspond to those stateslof 11 in which the aton? [ is in its excited
state (we assume a possibility of determination of such states-afl). ThenT'r(PyB) # 0

can be interpreted as excitation in time> 0 of the formerly not exited atond/ “due to an
influence of the atomi”. The theorem can be then interpreted so that if there will be some
influence at all (sometimes, in the mentioned sense), theraltviays immediate i.e. there is
nonzero probability that it is realized instantaneously!

Above considerations show that in QM, in the described senseiittetein causality is
never fulfilled. This result is a general consequence of the assumptions of the positivity of the
generatoif, of the interpretation of projection operatdssas observables measuring of arbitrary
“properties” of described systems in QM, as well as due to occurring of arbitrary projections
between the observables; all these assumptions might seem to belong to general assumptions of
an arbitrary quantum theory (QT).

One can now ask whether Einstein causality is fulfilled in relativistic QFT. It is argued in [48]
that it is so in the algebraic formulation of QT (e.g. [118, 120, 38, 140]), as a consequence of the
relativistic covariance of/and local structure of algebras of observables. This can be seen, rough-
ly, due to consequent specific structure of algebras of localized observables (cf. Note B.4.1), as
well as due to the Reeh—Schlieder theorem, cf. [140, Theorem 3.1]. This theorem implies that in
“most of interesting states” of “sufficiently” localized subsystems (e.g. in the states extendable
to states of the total system with restricted total energy, if the space—time region of the local-
ization has the space—like complement with nonvoid interior) any localized positive observable
has nonzero expectation, cf. also [231, 122, 120]. Hence the above assufiptinB) = 0
cannot be fulfilled for such systems, states, and observables. Moreover, the assumed locality
together with Einstein covariance lead to positive result on Einstein causality, [48].

1.5.9.Note (Impossible signals due to measurementsjnight be useful to recall here that it is
impossible in QM to send signals in the process of quantum measurements even if one accepts
the instantaneous “reduction of wave packets”, cf. Footnote 43:

Let two (mutually spatially distant) quantal subsystefrend ] be “EPR-like” correlated
(cf. Interpretation 2.1.24) in a given stateof the composed systefrd- 1. The only available
“information” which could be transferred (=signalled) frohd to I, as a result of the mere
measurement of a quantity of the subsysteni/, might be the choice (and its possible changes)
of the quantity A, resp. of its eigenbasis (i.e. its PH4) {®x} C H;;. The only way, on
the other side, of perceiving of the signal Bymight be the measurement of the statef I,
what is, however, independent on the choicelofThe point is, that QM is a statistical theory
not containing in its formalism any objects corresponding to our intuition on a “single system”
(possibly, as an element of some “ensemble of equally prepared systems”) resulting in a “single
event” at a measurement; cf. also [229]).
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2 Extended Quantum Mechanics

2.1 Elementary Quantum Phase Space

This chapter contains a description of technical features, as well as of the proposed interpre-
tation of the theoretical construction called here extended quantum mechanics (EQM). We can
emphasize here several types of problems posed and solved in this chapter; let us call them: (i)
kinematical, (ii) dynamical, (iii) analytical, and (iv) interpretational.

Questions in (i) include topics that could be named “the geometry of phase space”, into (ii) can
be included questions connected with dynamics, as well as with continuous actions of symmetry
groups on the “phase space”, under (iii) we shall understand mainly technical problems connect-
ed with infinite dimensionality of the “phase space”, with unboundedness of generators of the
group actions etc.; interpretation in (iv) is understood as a series of notes and proposals con-
cerning ageneral scheme for interpretatiaf the theory; however, many questions on possible
specific empirically verifiable applications of EQM are left open here.

These sets of questions are mutually interconnected, e.g. in dealing with “geometry of phase
space” we cannot avoid some technical problems connected with its infinite—dimensionality, in-
cluding different topological and differential-geometrical technicalities. Similarly by dealing
with “symmetry group actions” one has to deal simultaneously also with some “algebraic”, or
“structural” questions, and with problems connected with the (only) densely defined generators
of these actions and their domains of definition. Hence, it is impossible to distinguish clearly
the forthcoming sections according to the sort of problems solved in their scope. Keeping this
in mind, we shall try to characterize at least roughly the contents of the sections in the present
Chapter.

Section 2.1 is mainly devoted to a description of the “geometrical features” (i), describing the
canonical manifold and Poisson structures on the sfacéall density matrices of conventional
QM. Also a preliminary description of Hamiltonian vector fields and corresponding induced dy-
namics is included into that section. Also in this case, as in finite dimensional ones, the Poisson
“manifold” S, decomposes into “symplectic leaves” left by all Hamiltonian flows invariant. All
these leaves are homogeneous spaces (i.e. orbits) of the unitarytgoiupe Hilbert spacé{
with respect to its natural coadjoint action. There are, however two kinds of these orbits (leaves):
The “finite dimensional” ones consist of density matrices of finite range (i.e. only finite number
of their eigenvalues are positive), and the induced symplectic structure is “strongly nondegener-
ate”, the tangent spaces having a canonical Hilbert space structure; these properties make these
symplectic leaves in some sense similar to finite dimensional symplectic manifolds. The “infinite
dimensional” leaves consisting of density matrices with infinite numbers of nonzero eigenvalues
are only “weakly symplectic”, and the naturally defined “tangent spaces” are not closed in their
(again “naturally chosen”) topology. The set of “finite dimensional” leaves is, fortunately, dense
in the wholeS.,, so that we can restrict, for many purposes, our attention onto them.

Section 2.2 contains an analysis of questions connected with unboundedness of generators
(i.e. “Hamiltonians™) of group actions corresponding to linear, as well as to nonlinear cases. The
unbounded generators always appear in any description of “nontrivial” actions of noncompact
Lie groups, and cannot be avoided in the considered framework. The domain problems and de-
scription of the induced dynamics (flows) are solved in the cases when the (nhonlinear) generators
are constructed in a certain way from a continuous unitary representation of a Lie@rdtgy
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more general cases, we formulate at least some proposals.

In the last Section 2.3, interconnections between all the sets (i) — (iv) of problems are e-
specially obvious. Introduction of “nonlinear observables” is a consequence of the nonlinear
dynamics. The interpretation of such observables extending the usual one leads (in the scheme
proposed in this work) to introduction of observables as numerical functionsmfariables
from S,. It is also presented a (preliminary) classification of theories according to the choice
of a Lie groupG determining (sub)sets @bservables, generatgrandstatesof the considered
(abstract) “physical system”. For a givéh a further classification of generators, observables,
and states is proposed. A general scheme of constructions of nonlinear generators and a de-
scription of their flows is given. The chapter ends with a description of “nonlinear” actions of
Lie groups obtained from linear ones by (mathematically perhaps trivial) “symplectic deforma-
tions”, with inclusion of EQM into a (lineary'*-algebraic scheme and with a description of its
general symmetries. The section contains also a description of some interpretation proposals, cf.
Interpretations 2.3.1, 2.3.11, 2.3.15, and 2.3.18.

States of a “considered physical system” in QM are described (under a natural continuity
requirement) by density matricesc S, := T,1 C < on the corresponding Hilbert spa¢é
(cf. next Subsection 2.1-a), but linearity of QM allows often to reduce the theoretical work to the
work with vector states described by one—dimensional density magriees,,, 0 # ¢ € H (i.e.
pure states, if superselections are missing). Any state of that quantum-mechanically described
system is expressible with a help of these “elementary vector states”. In nonlinear versions of
QM, operations like symmetry transformations, and specifically time evolutions, are nonlinear,
resp. nonaffine; hence, if they are performed on states described by density matrices, these oper-
ations are not reducible to those on vector states. In EQM, the whal& sdtdensity matrices
will play a rdle of the set of “elementary states” in such an intuitive sense, where each density
matrix o € S, is considered as an analogue of a point of phase space of CM, irrespective of
dimension of the range of the operator This implies, e.g., that the time evolution of density
matrix stateg of a “relatively isolated system” in EQM can be determined only with a help of
determination of corresponding Hamiltonian flow in a neighbourhoag tfat can be indepen-
dent of determination of the flow in neighbourhoods of the vector states into whiem be
formally decomposed.

2.1-a Basic mathematical concepts and notation

Let H be a separable complex Hilbert space with scalar produat) (z, y € H) chosen linear

in the second factoy. LetF € ¥ C $ C € C L(H) be the subsets of linear operators in

‘H consisting of the all finite—rank, trace—class, Hilbert—Schmidt, compact, and bounded opera-
tors respectively. All these subsets are considered as complex assdtcistibvalgebras (in fact
ideals) of the algebr& (%), i.e. they are also invariant with respect to the involutior- a*
defined as the operator adjoint mapping. The algetirand £L(H) are C*-algebras £(H) is

in fact al’*-algebra), and all of them except $fare Banach spaces:(B—spaces) if endowed

with proper norms:<% is endowed by the trace—norj||; := Tr|a| with |a| := (a*a)?, § is
endowed by the Hilbert—-Schmidt nor||2 := +/(a, a)2 corresponding to the Hilbert—Schmidt
scalar producta, b), := Tr(a*b) of operators:, b € 9, wherea® andL(H) are endowed with

the usual operator norm (which is equal to the spectral radius for selfadjoint operators) denoted
by ||a||. HereTr denotes the trace of the operator&inNote also thaf contains all products of
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at-least-two Hilbert—Schmidt operators, and each elemegti®bf this form; the last statement
follows from the polar decomposition of closed densely defined (hence also bounded) operators
in H [187].

The linear spac§ is dense in the Banach spacgs$), and¢, and it is dense also ifi(H)
in its o-strong operator topology. The Banach sp@cgill be considered also as the topological
dual space to th€*-subalgebra& of L(H), the duality being given by the bilinear forfp; a) —

o(a) := Tr(pa) = (g;a) on€ x L(H) (C T x L(H)); the same bilinear form describes the
duality betweerf andL(H) = T*.

Let us introduce also therojective Hilbert space P(H) which is obtained fron#{ as the
factor-space consisting of all its one-dimensional complex subspaces {y € H : y =
Az, A € C} 0 # x € H, with the factor-topology induced by the norm&f it can be identified
with the subset of consisting of all one-dimensional orthogonal projectiéhs(projectingH
ontox, 0 # z € H) endowed with the relative topology of the trace-norm topology, or with
(%, €)-topology (these topologies are equivalent/ft), [42]).

We shall also use some elementary concepts of differential geometry on (also infinite-
dimensional) manifolds, [1, 39, 61, 151, 40], see also our Appendix A, as well as some concepts
of the theory ofC*-algebras [196, 42, 76, 77, 254], cf. also our Appendix B, in this paper.

Let us denote bys, C ¥ the state space df; it can be canonically identified with the
convex set of all normalized normal positive linear functionalsCd#?) : S, := S.(L(H)) =
S§(¢). The general (not necesseraly normal) st&é8(H)) of £L(H) will be denoted bysS.
Let i denote the unitary grouf(H) of L(H) : u € 4 & {u € L(H) & wu* = u*u =
I} & u € U(H), wherel € L(H) is the identity operator. Lell := (/3 be the factor-group
of 4 with respect to the central subgrogp:= {u := A : |A\] = 1,A € C}. Since all*-
automorphisms of.(H) are inner [196]2! is isomorphic to the group of atl-automorphisms
(cf. also [267, Vol.I):a € *-Aut L(H) = Ju € U : a(b) = ubu*(vb € L(H)), and if also
v € U representsy in this sense, then*v € J. Lety : u — v, € 2A = *-Aut L(H) be
the corresponding representationtbf~, (b) := ubu*; the kernel ofy is J. Moreover,. (and
20) is a (infinite—dimensional fodim H = oo) Lie group; the Lie algebrd.ie(Ll) of i is the
real subspac€(H), := {x € L(H) : x* = —x} of antihermitean elements @f(*) [39]. Let
[a,b] (:= ab — ba) be the commutator if (). We shall use the selfadjoint generatets= x €
L(H), = iL(H), to represent the Lie algebra elementsc £L(H),. The Lie bracket will be
defined onC(H), as(x;y) — i[x,y], x,y € L(H), what corresponds to the commutaor, iy]
in L(H), : [ix,iy] =: iz = z = i[x,y]. The Lie algebra ofl is Lie(U/J) = L(H),/{RI}

- the factoralgebra by the central ideal of real multiples of identity. Aéfi() be the adjoint
representation dft on Lie(l) = iL(H),, i.e. Ad(u) is the restriction ofy, to L(H),:
Ad(u)b = Ad(u)(b) :=ubu®, b € L(H),, u € L. (2.1.2)

s

The (topological) dual ofZ(H), is the real subspacé(H). of L(H)" consisting of sym-
metric bounded linear functionals o®(H), i.e.v € L(H); = v(b*b) € R (Vb € L(H)),
where(v;y) = v(y) denotes the value of € L(H)" on the element € £(H). The state space
S = S(L(H)) is a compact convex subset 6{H)’, if it is endowed with thew*-topology,
i.e. with theo (L(H)", L(H))-topology [218, Theorem 1V.20]. Letld* (i) be the coadjoint

e

representation dft (> u) on L(H)::
[Ad*(0)v](b) == v(Ad(u ')b), v € L(H):, b€ L(H),. (2.1.2)
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Itis clear [42, Chap. 3.2] that the state-spaSemdsS, are bothAd* (41)-invariant subsets of
L(H),

Let O, (U) := Ad*(U)v := {w € L(H)] : w = Ad*(u)v,u € U} be theAd* ()-orbit of
v. The state spac§ decomposes into union ofd* (1)-orbits. Letp € T, := TN L(H). be
a density matrix (i.ep > 0, Tr o = 1) describing equally denoted statec S, : o(b) :=
Tr(gb) = {(o;b), b € L(H).

We shall use for the density matrices spectral decomposition in the form

0= NEj (2.1.3)

j>1

where we choose the ordering of the eigenvalugs> A; ;1 > 0, and the spectral projections
E; are all finite dimensional. Let us dendtg := 1 — 3., Ej.

2.1.1. Lemma. Each orbitOQ, := Ad*({)p (0 € S.) consists of all the density matrices which
have the same set of eigenvalues (including multiplicities). Hence, the state%pacéd* (4l)-
invariant. &

Proof. The Ad*(u)-mapping is a unitary mapping conserving spectral invariants, i.e. spectrum
and spectral multiplicities, cf. [124]. Hence all the elements of the dvpiare density matrices
with the same spectra and multiplicities. The spectral resolution of any density miabfithe
same spectral invariants asn (2.1.3) has the form:

o =Y NEj,

Jj=1

with equal dimensions CE} andE;, Vj. Then there is a unitary operatomapping all thef’;’s
onto the corresponding;’s for all j > 0. E.g., one can choose orthonormal bages}, resp.
{yn} in H containing subbases, for gli> 0, of E;H, and E;H, respectively, to order them in
accordance with orderings d@;’s, i.e. so thattl;z;, = =, < E;-yk. = y;, and defineu by the
formula

uz = yr, forallk.

Theng' = Ad*(u)o, what proves the lemma. O

Hence, the projective spad¢q’H) coincides with the orbi©, (1) with o> = o, what charac-
terizes one-dimensional projectiopsn H.

2.1-b The manifold structure of S,

We shall now introduce a natural manifold structure on the dfhit(o € S,). Letd, C U
be the stability subgroup for the poipte S, at Ad*(l)-representation. Let us note tha}

is the unitary group of thé/’* -algebra{ e}’ := (the commutant of the density matrix g in
L(H)), hence itis a Lie group, and its Lie algeltée (i) =: 90, consists [39, Chap.33.10]
of antisymmetric elements of the commutdt’. The proof of the following simple lemma
exemplifies methods used here in dealing with infinite-dimensional spaces.
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2.1.2. Lemma. The stability subgroupl, is a Lie subgroup ofl, [39, 40]. &

Proof. We shall prove that the Banach subsp@ig C L(H), has a topological comple-
ment [41] in L(H),, i.e. L(H), = M, & N, = the topological direct sum with a Ba-
nach subspacet, of £(H),. Let o be expressed in the form (2.1.3). We shall use also
the projectionE, corresponding to the eigenvalue= 0, hence alwayij>0 E; = 1. Let
Po:y — Poly) := ZPO E;yE; be a projection ofZ(H), ontod, defined by the strongly
convergent series. One has

[Pl < sup || E;vE;| < lyll, Vy € L(H),,
J

hence the projectiop, is continuous, what implies [41, ChagL.8 Proposition 12] the comple-
mentability of91,. The Lie grouptl can be modeled (as a manifold) by its Lie algebf&H),

via the inverse of the exponential mapping [39, Chap. 111.6.4. Theorem 4], and the suldyroup
is modeled via the same mapping by the complementable sub&phce L(H),. This gives
the result ([39, Chap.lI§1.3], [40, 5.8.3]). O

2.1.3. Definitions. Leto = 3 A; E; be a density matrixy ., £; = I, as above.

(i) Letq, : L(H), — I, be thecomplementary projection to p,, q,(b) = b — p,(b) (cf.
proof of Lemma 2.1.2):

qp(b) := > E;bE; forb e L(H),, (2.1.4)
i#k
which leavest, invariant; the sum is here strongly (resp.,Th> b, trace-norm-) convergent.

We shall defing, (X)) also for unbounded = X* by the formula (2.1.4) with := X for those
o for which it is unambiguously defined (i.e. the expressions in the sum and its strong limit exist).

(iiy Let ad™ : £(H), — L(L(H)?) be defined bud* (y) : v — ad*(y)v:

[ad* (y)V|(z) := iv([y,2]), (Vy,z € L(H),,v € L(H)). (2.1.5)

We can see that the spa®g is invariant with respect to all operatoesl”(y), y € L(H),, [196,
Proposition 3.6.2].

(iii) Let o € O, (Y). Let us denotd,,O () := T,0, (L) :={c € T, : ¢ = i[p,b],b €
L(H),} the set of vectors iff; tangent to the curves, : ¢t — c,(t) := Ad*(exp(—itb))o at
0, b € L(H),; these curves cover a neighbourhoodeain the orbitO,(4)=0, (L) C T,. We
shall also denotend™ : L(H), — T,0(4), b — ady(b) := ad”(b)e = i[e,b] € T, for
0 € ;. One can easily check thaj, leavesT,O(4l) pointwise invariant, i.eT,O(Ll) C N,,.

(iv) For an arbitraryc € L(H),, andn € Z \ {0}, let

max(j;k)<n
B(e) =i Y EjeBi(h— )7 (2.1.6)
i#k

where in the summation are included also the values0, k£ = 0 of the indices.
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Let3, : T,0(4) — N, be the mapping

Bole) =1  EjcEr(A — ;)" (2.1.7)
Jj#k

Thelimits B,(c) of the strongly convergent sequence%ﬁg”) (c):n > 1} define the map-
ping 5,. We shall defing,(c) in this way also for those € L(H), as well as for those unbound-
ed operators:, for which this sequence is defined and converges strongly#)).

(V) Let||c||, := ||B,(c)||, where||b|| denotes the operator norm bfe 9, in L(H),.

(vi) Let O, (1) be endowed with the canonical [39, Chap§ll,6] analytic manifold structure of
the homogeneous spafi¢il,. We shall call this structuréhe canonical manifold structure on
0,(4), and the notion of thenanifold O, (4l) will mean namely the s&?,(() endowed with
this structure<>

2.1.4.Notes

(i) A direct inspection shows that, is a linear bijection ofl,,O(Ll) ontoN, = q,(L(H),): if
¢ :=i[g,b], with b € M,, thenf,(c) = b. Itis the inverse mapping to the mappiagj, : NN, —
T,0(4); let us note thaady, is || - || — || - ||1- continuous, hence algp- || — || - [|-continuous:
ITe, bl < llle, bllx < 2ell[[bll.

(ii) Itis clear thatc + ||c||, is @ norm oril,O(Ll). The mappingud,, is || - || — || - ||, isometric;
the correspondingf‘- || ,-topology” of O, (4) is finer than the ff - ||;-topology” induced by the
trace-norm topology of ;. ©

The following proposition specifies the manifold properties of the omBifsil) in T (en-
dowed with its|| - ||;-topology).

2.1.5. Proposition. Let us considefl,O(4f) as the normed space with the nofm ||,. Then
T,0(Y) is a B-space, and, is a Banach space isomorphism. This B-space structufg, i)
coincides with the one induced by the canonical manifold structu@(&h) on its (equally de-
noted) tangent spaces, O (). Furthermore, the following four statements (i) — (iv) are then
equivalent:

() o € S. is finite-dimensional, i.ee € §; we shall write alsalim(p) < oo in this case.

(i) The rangedt, of the mapping, coincides with,O(4) (considered now as a linear subspace
of T,).

(iii) The setT,O(Y) is a closed subspace Bf.

(iv) O,(4) is a regularly embedded [61] submanifoldBf.

Moreover, one has:

(v) For ¢ € §, the subspac&,O(4) of T is reflexive.

(vi) Foranyp € S,, T,0(4) is dense (in the strong topology 6{H),) in M, := q,(L(H),). &

Proof. 91, is a B-subspace of(H),, andj, is a linear isometry (hence homeomorphism) of
T,O() (with the norm|| - ||,) ontoN,, what follows directly from definitions, cf. Notes 2.1.4.



2.1 Elementary Quantum Phase Space 47

This gives the first assertion. The second one follows because of complementability of the s-
pacedt, = i-Lie(i,), M, C L(H), = M, ¢ N,, and the inverse mapping of the mapping
Ad*(exp(—i(-)))o : My, — O,(L), a — Ad*(exp(—ia))p, if restricted to an open neighbour-
hood of the zero point dit,, can be chosen as a chart of the manifolg ).

(i)=(i)): If o € §, then (2.1.4) shows that alsg,(a) € § for anya € L(H),, sinceF is
an ideal in£(H). The application of the formula (2.1.7) to:= q,(a) shows thaiy,(a) =
ilo, Bo(de(a))] € T,O(Y). Also, q, leavesT,O()C L(H), pointwise invariant. Henc®t, =
T,0(4).

(i)=(iii): It follows now that for o € § the set)i, is a subset of. SinceM, is closed in the
norm-topology of£(H), and on the subsél, C L(H), the trace-topology determined By ||,
is finer than the topology of (%), determined by - ||, [|x|| < [|x[}1 (Vx € %), it follows that
M, =T,0) is closed also in trace-topology, i.e. (jii).

(i)=(): Let o & §. Lete; = |e;)(j > 1) be an infinite orthonormal set i such that
Eje; = €;(Vj), cf.(2.1.3). Let us define € L(H), by the formula (in the Dirac notation, [74])

a:=Y_a;(leg;)(ezj1| + lezjra)(ea;]),  lall < M < oc. (2.1.8)

Jj=1

We havea = q,(a) € N, for any bounded real sequenge;}, but for some choices dfe; }
(e.ga; =1)onehas ¢ T, O T,0(Y). This proves thadt, # T,0(Ll).

Let us make now a technical remark providing an alternative proof of the last statement, as
well as a device to further work:

2.1.6.Remark. Letuschosein (2.1.8); := ~v;(A2; — A2j11), whered < ; — oo for j — oo,
butstill 3.~ | vj(A2; — A2541) < co. Such a choice of strictly positive divergent sequefigg,

foragiveni; > 0,3, A; = 1, is always possible. Thene T,. Letus now caIcuIatéé")(a)
according to (2.1.6):

BEM (@) =) 5 (leajin)(ea] — leas) (el (2.1.9)
i>1

Due to divergence ofv,}, it is clear that the resultg,(a)” diverges forn — oo, i.e. we can
obtain in this way at the best an unbounded operator. This shows thatbili, O (L), although

it is still in ¥. This is another proof of the inequalifg, # 7,0(4), becauses, : T,0(H) —
Ny is||-]l1 — ||-||-continuous.

(vi): Since the sequencifp, 85" (a)] : n > 1} C T,O(l) converges strongly ta =
qola) (Va € M, = qo(L(H),)), it is seen thatl,O() (considered as a subspace of
T, C L(H),) s strongly dense iM,. This proves (vi).

(iiiy =(i): Let us chosex € 91, N T, \ T,O(Y). The preceding considerations also show that
T,0(Y) is not closed inZ; if o ¢ §; namely, according to the Remark 2.1.6, and the formu-

la (2.1.9), one can chooses T,N9M, such that the sequenéti[o, 35" (a)] —all1 : n > 1} con-

verges to zero. This means that the sequefm%”)(a)] € T,0(4) converges ta ¢ T,0(4).
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(iv)<(iii): The restriction of the projection, : ¥, — ¥, is continuous also in the trace-norm
topology, what follows from continuity of, in that topology: For positive operatoess %, all
E;cE; >0, hence

Ipe(@)l = Tr(3 EyeEy) = Y- Tr(Bycky) = 3 Tr(Eye) = Tr(e) = el

and the continuity op, follows. The equivalence of the nornijs ||, and|| - ||, on T,O(4) in
the case op € § can be shown as follows: Let:= i[p,b] € T,0() = q,(b) = B,(c), and
from (2.1.7) and the definition of the norjn ||, we obtain

lello < [ D212 = el | llella, (2.1.10)
i#k

where the sum is taken over a finite index set. The opposite inequality is obtained by the known
property of the trace-norm:

el = e, ae)]ll < 2[lae(b)[flell = 2lclo,

sinceq,(b) = B,(c), and||g||x = 1. This fact, and the derived implications of finite dimension-
ality of p € § give the validity of the assertion (iv). It is clear that (iv) cannot be true if (iii) were
not valid.

(v) If o € §, then the B-spac&,O(Ll) is a Hilbert space, cf. Theorem 2.1.19, hefi¢€& (L) is
reflexive. O

The proved Proposition 2.1.5 shows, that only finite-dimensional density matr&cgen-
erate Ad (Y1) orbits with mathematically convenient properties: Their tangent spaces are in the
T s-induced topology closed and reflexive. This has important consequences for the following
theoretical implications. Hence, we ask the question, whether it would be possible to restrict our
attention, in some appropriate sense, to these “finite dimensional orbits”, and simultaneously not
to loose the control on the whole spage The next lemma indicates, that it might be possible.

2.1.7. Lemma. The set-union of the orbitgD, () : ¢ € §} is adense subset &% C T, inthe
norm-topology oft ;. &

Proof. Any density matrixo € S, is approximated if| - ||; by finite dimensional ones, what is
seen, e.g. from its spectral resolution:

n n -1
0= NE;j=|-|h —nllrgcnnZAjEj, with i, = (Z A dim(Ek)> .

J j=1 k=1
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2.1-c Poisson structure on quantum state-space

We shall consider the s&. (C L£(H)") as the set of relevant physical states in the following
considerations, i.¢he quantum phase spacevill mean for us the set afiormal states®*

Let us now introduce a Poisson structure [177, 274], [7, Appendix 13] on the linear space
T, containingS, as a bounded convex subset. The Poisson structure will allow us to ascribe
(Poisson-) Hamiltonian vector fields (@5 at least) with the corresponding flows leaving the
state spacé, invariant.

It will be useful to use, in the following mathematical formulations, the standard differen-
tial calculus on Banach manifolds [234, 40, 61] based on tleehat differential calculus of
mappings between (linear) Banach spaces [58, 235,%61].

If the Frechet derivative of a functiofi : ¥ — R exists, then there exists also directional (so
called Gateaux) derivative:

D, f(w) = }Lr%% [flv+tw) — f(v)], Vw e Z. (2.1.11)

Conversely, if the Gateaux derivative (2.1.11) exists in a neighbourbioaida pointy € T,
andif it is continuous linear, continuously dependingorE U, D.f : U — L(%,R), then also
the Féchet derivative (A.2.1a) exists [58].

We shall be mainly interested, in the following text, in thé* ({/)-invariant subses.. con-
sisting of normal states ofi(H). Let F := F(%,) be the set of infinitely norm-differentiable
real functions org, with its trace-norrj| - ||;. Let us denote by-(B) the set of the restrictions
of f € F to some subsdf of T,.

2.1.8.Remark. Noncompactnes of. allows, e.g. thatF(S,) contains also unbounded func-
tions onS,, e.g. anyf € F with the restrictionf : o — f(o) := In(Tr(o?)) for

0 € S, C %, is unbounded. Put, e.g., with orthonornagls, oy := Z?f:l +lej)(e;], whence
Tro% = %, imy oo InTr(0%) = —00.

The definition of the F-derivative and its expression (2.1.11) also appfy4¢oF, and the
notationD,, f will not lead to any ambiguity fof € F.

We shall often work with infinite—dimensional manifolds modelled by Banach (specifically,
e.g., in the case of pure state manifdgH), or of anyO, () with dimp < oo, by Hilbert)
spaces, cf. Appendix A.3. The main ideas, and many of general constructions and theorems
work in that cases similarly as in the case of more common finite dimensional manifolds. We
shall point out differences in specific cases, if it will be needed. In the case of the linear manifold
¥, and for a differentiable functioi € F, the derivativeD,, f belongs to the cotangent space

541t might be mathematically interesting, and, perhaps, also physically useful, to formulate analogies of the following
constructions on the spaceof all positive normalized functionals of\(). This leads to technical complications and,
for purposes of our physical interpretations, it would be unnecessary. cf. also [24], where a (heuristic) trial for such a
formulation was presented. A nice and useful propert$ @ its compactness in the*-topology, what is not the case
of S..

55| et us note, for a preliminary information, that in this infinite—dimensional differential calculus “most” of the usual
differential operations in finite—dimensional spaces remain formally, under certain conditions, unchanged: the differential
is the “linear part of difference”, where should be used the Banach-norm limit for its definition. The rules for writing the
Taylor expansion, differential of composed maps, for calculation of derivatives of “products” etc. have the same formal
expressions as in finite—dimensional case, see also the Appendix A.2.
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T3 (%)= L(H), and we shall deal with it also as with an operator in the sense of this canonical
isomorphism.

2.1.9. Definitions.

(i) Let 7, denote the algebr&a’> (O, (L), R) of functions on the manifol®, (). The restric-
tions of functions fron¥ to O, () belong toF,, because the topology on the manifd(Ll)
is finer than the relative topology coming fraf (cf. proof of Proposi- tion 2.1.5).

(i) The mapping fron?F x Fto F : (f; h) — {f, h}, where
{f,h}(v) :=v(i[D,f,D,h]), veESZs, (2.1.12)

will be called thePoisson structureon . The function{ f, h} € F is thePoisson bracketof
the functionsf and h from F.

(iii) The functionsh, € F (y € L(H),) are defined by, (v) := v(y) = Tr(vy), Vv € Z.
ThenD, h, =y, the second derivativ®?h, = 0, and the Poisson bracket of two such functions
is

{hx, iy }(v) = iv([x,¥]) = hix,y) (V). (2.1.13)

From this we obtain Poisson brackets for polynomials in functiongx € £(),) with a help
of derivation property (cf. Proposition 2.1.10), in accordance W&i.12)

The spacé&, can be considered as an infinite—dimensional manifold with the atlas consisting
of one chart determined by the identity mapping@n Then the tangent spade <, to T, at
each pointv will be canonically identified with the vector spagg itself. The space&(H), is
then canonically identified witld}}T,. In this interpretation, we can also consider the derivative
(cf. Appendix A.2)D, feT; %, as differential off € F on the manifold?,, as it is used in
differential geometry. The usual symba@} f will be used, however, to stress the restriction
of the differentiation to some “smaller” manifold ;. For a real functionf continuously
differentiable as a function on the manifag), () we shall denote byi, f the differential of f
in the pointv on the orbitO, (41) (> v). We shall also identifyl, f := q,(D,f) € M, C L(H),
considered as an element of the cotangent sfige(it) := (7,0, (U))* := T, 0,(4); this
identification (resp. representation) of the cotangent space is possible due to the identities:

dgf(c) = TT(CQQ(DQf)) = iTr([Q)ﬁQ(C)]QQ(DQf)) =
i Tr(Bo(c)de(Dof), o) = i Tr(By(c)[Dyf, 0]) = (2.1.14)
iTr(o, Bo(c)|Dof) = Tr(cD,f), forall c € T,0(W).

The operatoi, f represents the pull-back d?,f € T, with respect to the embedding of
0,(Y) into X, if o € §. Now we can write the Poisson bracket in the form:

The form (2.1.15) shows, that the value of the Poisson bracket (2.1.12) in a/poiit, depends
on the restrictions of the functiong . € F onto the orbitO, (L) only. This is due to the fact,
that the orbits0,({) are the “symplectic leaves” of the Poisson manif@ld [274], as will be
seen from the following. The orbits aRisson submanifoldg274] of the Poisson manifold
Ts. We shall now prove that (2.1.12) really determines a structureRaisson manifoldon the
Banach manifoldg,:
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2.1.10. Proposition. The Poisson bracket frorf2.1.12) has all the general properties of the
Poisson structure [274, 7] (coinciding with that of Hamiltonian classical mechanics, except of
nondegeneracy), i.e. for afl, h, k € F, and allA € R one has:

(@) A{f,h}=—{h, [} (antisymmetry)
(i1) {f,h+ Ak} ={fh}+ M [, k}; ((i)& (i) = bilinearity)
(#it) {f,hk} ={f, h}k + h{f, k}; (derivation property)

() {f,{h,k}} +{h,{k, f}} +{k,{fh}} =0; (Jacobiidentity)e

Proof. The first three properties are immediate consequences of Definitions 2.1.9, cf. also
(2.1.16). The validity of (iv) follows immediately from (2.1.13) and from the properties (i) -
(iii) for such functionsf, h, k which have form of polynomials in the specific type of functions

ha € F, a € L(H), (2.1.13). For generdl, h, k one can prove (iv) directly as follows:

Let us first expres®, {h,k} € L(H), according to (2.1.11), (2.1.12),

d .
u (v +tw) (i [Dyttwh, Dyyiok])
t t=0

w(i [Dyh, Dyk]) + v(i [Dh(w, -), Dyk]) + v(i [Dyh, Djk(w, ),

w(Dy{h, k})

where the second derivatives in any painare symmetric bilinea}f - ||;-continuous functions
onT,. Hence, the linear mappinB2k(w,-) : o — D2k(o,w) = D%k(w,0) = o(D?k(w,"))

can be (and is here) considered as an elemefitHf) .. We need to calculatgf, {h, k}}(v) :=
iv([D,f, D,{h,k}]). With a help of the notation (2.1.5) and of the above derived formula for
D, {h, k} we obtain

{f:{n k}}(v)

[ad™ (D, f)v](Dy{h, k})
= —u([Duf, [Dyh, D, K))) — [ad* (D, k)v)(D2h(ad" (D, f)v, ) +
[ad" (D, h)v](Dyk(ad" (D, f)v, )
= —u([Dyf,[Dyh, D,K]]) = D2h(ad" (D, f)v,ad" (D, k)v) +
D2k(ad* (D, f)v,ad*(D,h)v).
From the symmetry of second derivatives, and from validity of Jacobi identity for commutators
of operators inC(), we obtain the result. O

2.1-d Hamiltonian vector fields and flows

In the case of a finite—dimensional Poisson manifold M, the Poisson structure determines a vector
field v, to each differentiable functiofi on M, so callecHamiltonian vector field correspond-
ing to theHamiltonian function f:

£y,(h) = dh(vy) = {f, D}, (2.1.16)

where £, denotes th&.ie derivative (uniquely extendable to a derivation of any tensor field on
M, [151, 40]) with respect to the vector field The Poisson brackdtf, h}(v) at fixed f andv

is a differential operator on real valued functions differentiable, athich determines unique -
in the case of finite—dimensional M - vectof € T, M.
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In the case of infinite—dimensional manifolds, the relation between (first order) differential
operators and tangent vectors is not always an isomorphism of normed spaces, [61]. The follow-
ing lemma is, however, valid, [61, Chapter VII.A.1]:

2.1.11. Lemma.Let M be a manifold modeled by a Banach space E, hence the tangent spaces
T,.M, m € M, are isomorphic to E. Let us assume that E is reflexive: E*= &= the double
topological dual of E). Let a first order differential operator (i.e. satisfying the Leibniz rule)
A:FU) — FU), f— Af, U Cc M (with domainU of a chart(U; ¢; E') containing

m € M), satisfy the following inequality for & > 0:

[Af(m)] < K [[Dygny (f 0 9™l - (2.1.17)

Then the operatoﬂm : f — Af(m) can be identified with the vecté,, € T,,M = E** :
Ap(dpf) =Af(m). &

Proof. The equation (2.1.17) shows that the kernel of the operAtgrcontains the kernel of
dnf, and also is bounded. Hence, it is defined as bounded linear function&},df (>
dnfVf e F(U)), i.e.asanelement ¢ M)* = E** = E. O

Let us check validity of (2.1.17) for the Poisson bracket(-) := {h, -}(v):

{h, FYW)] < 20l 1Dohl 2o Do f | cry-
Reflexivity of the tangent spacd3 O(Lf) is the case for “finite—dimensional” orbit3,, (1), cf.
Proposition 2.1.5(v).

2.1.12.Remark. The considerations preceding (2.1.15) show, that the Poisson brdckg}
in a pointry € § N S, can be calculated with a help of restrictioho, sy, o, () only, cf.
(2.1.15), i.e. the orbit®, (1) are themselves Poisson manifolds regularly embeddecintand
this embedding is a Poisson morphism [274].

Let us restrict our attention, for a while, to “finite—dimensional” orlfits(¢). From the
Lemma 2.1.11 and the above mentioned facts we can see that o @y there is associated,
for anyv € §, theHamiltonian vector field vy on O, ({), v (o) € T,0, (L), expressed by

vi(o) = ady(d,f) = ady(D,f). (2.1.18)
Note thatd, f= q,(D, f) € § forall p € O, (L), and thatD,, fe L(H),, hence the unitary group
Ug, it —uy,(t) :=exp(—itD, f)

generates a curve af, (Y1) = O, (Ll) determiningv s (v):

dyh(vy) = % 0 h(Ad* (us,()). (2.1.19)
t=

This again indicates the “usual” (i.e. as in finite—dimensions) connection between differentiable
curves and tangent vectovs (v) € 1,0, ().
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2.1.13.Notes

(i) Each element of (H), can be written in the fornD,, f for some smooth real-valued function
f € F: For agiven b= L(H), one can chosg(v) := Tr(bv); thenD, f=b.

(i) The reflexivity of T,0(L1), for o € §, implies that each vector € T,0(4l) is of the for-
m (2.1.18) for some), fe L(H),.

(iii) Although the Hamiltonian vector fields were defined on orlfits(() for v € § only, they
are extendable by (2.1.18) to the whole spage

vi:%Ts = %, v ve(v) :i=ad, (D, f). (2.1.20)
Since

Vi@l = llv, Do fllle < 21wl (1D Il

and the functionv — D, f is infinitely (continuously) differentiable, the uniqueness of the
extension ofv; to T follows from the density off in €. ©

2.1.14. Definition. Let f € F, v € T, and letvs(v) € T,,0, (Y1) C T, %, be determined by
equation(2.1.18) The smooth vector field — v, (v) is called theHamiltonian vector field on

Ts. O

Now we could proceed further also with the Hamiltonian vector fielgsestricted to “finite—
dimensional” orbitsO, () being the Hamiltonian vector fields on Poisson manifaldg),
0ET.

Eachv; from (2.1.18) f < F) determines a differential equation [40] on the infinite—
dimensional Banach manifoll, with a maximal solution @f, ¢/ (¢, 0) € T, defined on an
open domain iR x T, > (¢; ) containing{0} x ¥,. For values of;’s for which the objects
entering into (2.1.21) are defined, the formula

& (tr +12,0) = @/ (t2, ' (t1, 0)) (2.1.21)

is satisfied. If the domain is the whale x ¥, what means that theector field vy on ¥, is
complete we obtain a one-parameter group of diﬁeomorphi@ﬁit € R) of ¥,:

#1(0) = @' (t,0)forallt e R, g € %, (2.1.22)

We shall now express the (local) floﬁxf, i.e. the solution of Hamilton’s equations (obtained by
combining (2.1.16) and (2.1.19), or (2.1.12)), in a form of ®dimger (resp. Dyson) equation.

2.1.15. Proposition.Let v € T,, f € F,v(t) := @l (v) for ¢ in an open interval/, c R
containing zero. Let we represent the differentidlsf, resp.d, f of f € F by operators in
L(H), e.g., as aboved, f := q, (D, f). Let us consider the equation

o d
1 Euf(t, v) =dywy f -uy(t,v), (2.1.23)
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whered,, ;) f- denotes the (left) multiplication in the algebf47),. The equatior§2.1.23) with
the initial conditionuy (0, )= I, has a unique (unitary) solutioh— u¢(t,v) € L(H), t €
J,, v € %,. This solution satisfies the “cocycle identity”

up(t+s,v) = up(s, gl v)us(t, v) (2.1.24)
for thoset, s € J,,, for which both sides of2.1.24)are defined. One has, moreover,

plv =@l (v) = Ad* (us(t, ), (2.1.25)
and this, together witl2.1.24)shows fulfillment 0{2.1.21) &

Proof. Unique solvability of (2.1.23) on each intervd], C J, on which the functiont —
lldy ) f1 is uniformly bounded follows from general theory of differential equations in Banach
spaces, cf. [235, Chap2.Theorem 4]. Unitarity and the property (2.1.24) can be proved, e.g.
by the method of the proof of [218, Theorem X.69] using the Dyson expansion,tsincé, ;) f

is norm-continuous. Finally, (2.1.25) can be verified by differentiation and by the uniqueness of
the local flowg/ of the vector fieldv . O

2.1.16.Notes

(i) The equation (2.1.23) is a generalized form of the Dyson equation known from QM, which in
turn is a time-dependent generalization of Sctinger equation. Fof (v) = hu(v) := Tr(vH),

with H € L(H),, and withv € P(H), the equation reduces to the Satlinger equation with the
Hamiltonian H.

(i) The substitutionv(t) := Ad*(uy (¢, v))v into (2.1.23) makes that equation fof (¢, ) man-

ifestly nonlinear. We shall see in Section 3.6 that the equation (2.1.23) can be equivalently
rewritten, in the case € P(H), into the form of the nonlinear version of QM proposed in [273],
and also into the more traditional versions of “nonlinear 8dimger equations”, cf. Subsec-

tion 3.3-e.

(iii) The equation (2.1.25) shows, that the obtained form of Hamiltonian flows on “quantum phase
space™¥; can be expressed with a help of coadjoint action of the unitary grioofithe algebra
L(H), hence it leaves invariant the orbi, (4(). This gives the invariance of the quantum state
spaceS,, as it is formulated in the following theorei?.

2.1.17. Theorem.Let f € F, o € S.. ThenO,(4l) is @/-invariant. Hence alsas, is ¢7-
invariant. &

Proof. The result follows from the relation (2.1.25) showing th?sft can be realized by the
Ad*(¢h)-action, andS.. consists of thedd* (41)-orbits O, (L), o € S.. O

Let us specify non-uniqueness of cocycles (2.1.24) satisfying (2.1.25). We obtain “physically
equivalent” evolution equations connected by a “gauge transformation”, cf. also Section 3.6,
Remark 2.1.18, and Proposition 2.3.23.

2.1.18.Remark. The cocycleu satisfying (2.1.25) is nonunique. The same evolutighis
obtained also from the solutiong of the equations resulting after the insertignf + fO®v) in
the place ofi,, f into (2.1.23), wherd? : v — f°(v) is a norm-continuous function fro, (or
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from the wholeZ ;) to £(H), with values indt,, = i- Lie(4l,), i.e., as an operator ifi(*), the
valuef®(v) commutes with the operaterfor anyv:

i %uf(t, v) = [dy(t)f + fo(y(t))] ~ug(t,v). (2.1.26)
Specifically, one can usb, f= p, (D, f) + q. (D, f) instead ofd, f:= q,(D, f) in (2.1.23). Let

us mention, moreover, that the continuity requirement to the funetiend, ;) f+£°(v(t)) in the
assumptions of the Proposition 2.1.15 can be weakened: For validity of the conclusions as well
as of the proof of the proposition it suffices to assume strong-operator continuity of this “time-
dependent Hamiltonian” together with its locally uniform (in the parameter t) boundedhess.

Now we shall investigate the geometry of manifolds(Ll) for “finite—dimensional’p € F,
especially a naturally determined metric and symplectic structures on them. It will be seen in the
Section 3.2 that the obtained structure leads to the standard symplectic, and also metric (known
as the “Fubini-Study metric”) structures on the space of pure quantum $tétés this both
structures connected by complex structure coming from that in the underlying Hilbert®pace
(this is called a Khlerian structure):

2.1.19. Theorem.Letdim ¢ < oco. Let us define a complex-valued tensor figld o — ¥, =
I', — i, on the manifold), (1), wherel', and 2, are real two-covariant tensors dfi, O(Lf)
(> v,w):

Uo(v,w) :=Tp(v,w) —iQu(v,w) :=2T7 (0 B,(v)B,(W)) . (2.1.27a)

Then the B-spacg,O(Lf) is a real Hilbert space with scalar produét, endowed also with the
two-formQ, (here[-, -]_ is the commutator, anfd, -]+ is the anticommutator i (%), and g3, is
asin (2.1.7)):

Ty (v, w) = Tr(olBy(v), Bo(W)l4), (v, w) = i Tr(elB,(v), By(w)]-).  (2.1.27b)

I is a Riemannian metrics, arfdis a symplectic form o, (1), both are strongly nondegener-
ate, [61]. The symplectic for? ascribes to eaclf € F,, 2.1.9, the vector fielet;:

Q(vy,w) =—d, f(w), (2.1.28)
coinciding withv ¢ from (2.1.18)for f € F(O,(41)), and the corresponding Poisson bracket
{f, h} = Q(Vf, Vh) (2129)

coincides with the one defined({®.1.12)and (2.1.15)
Moreover, the following norms are all mutually equivalentByO&): || - |, | - I, || - [z,

I Il and] - [[pz= T, )% &

Proof. The equivalence of the norniis ||;, and|| - ||,, as well as the completenessTfO ()
was proved in Proposition 2.1.5. To prove equivalence of ndfms, and|| - |1, let us write
0=2 s AjEjwithy g By =1, A > Ao > - > Ay, Ao := 0, as before. Let cg,(c)
=iloa] = ile,q0(a)] € T,OW), Va € L(H),. Thenllcl| < [lc]ly < 32, [EjeBkllr =
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2% sk lEjeERlly < 2375 1EjlhllcBrll < 2l k>0 225> [|Eill1, where the degen-
eracy of \; equals||E;||; < oo for j # 0, and the numbeN + 1 of mutually different
eigenvalues\; of g is finite. This proves equivalence of the notm ||; with || - ||, hence
also their equivalence withj - |2, since always|c|| < Jc[lz < |lc|li. We have further
Ylelp = Tr(0B,(c)?) = Tr(eas(a)?) = lleao(@)* 1 < llellillap(@)?ll = flag(a)?]l = [l
On the other hand, sinde< \; < 1, one has

0(B,(c)?) = Z NTr(EjaEgal;) > Z )\?Tr(EjaEkan)
P Py

> 3> NTr(BjaEa) - Y A\MTr(EjaBa)
J>0 k(#£5) k#j
1 L, o
= 5Tr(le ge(a)llae(a), o) = 5 llcll2-
These inequalities together with the previously proved equivalences show also the desired equiv-
alence of| - ||r. This proves also nondegeneracyibfits analytic dependence on the poindf
the orbitO, (1) can be proved from its dependence on elements of the dgt@aping onO,, (4[).
The explicit form of(2

Qp(v, w) =i 0([Bo(V), Bo(W)]) (2.1.30)

shows, after inserting into ¥ := ad;(d,f), andw := ad}(d,h), that it can be expressed by
our Poisson bracket (2.1.12): we obtain (2.1.29), according to (2.1.18). The closéfhess

0 follows from the proved Jacobi identity for the Poisson brackets (Proposition 2.1.10). The
mappingd, f(€ T; O()) — v¢(o) := ad,(d,f) € T,O) (f € F,) is an isomorphism, what

is a consequence of the proved equivalence of topologids, Gil), of the surjective property

of the mappingad;, : N, — T,O0L), d,f — ady(d,f), as well as of the reflexivity of the
Hilbert spaceT,O(L)); || - ||r). This proves thaf2 is strongly nondegenerate. O

2.1.20.Note (Symplectic and Poisson structures Existence of symplectic fornf2 is useful
to easy introduction of a canonical (induced) Poisson structure on submanifalds=aD, (L)
determined, e.g. by actions of symmetry groups: The pull back by embeddings is well defined for
covariant tensor fields (i.e. for elementskif(M ), wherebyZ,” (M) are one-forms oi/), what
is not the case of Poisson bracket (remember that the Poisson structure is determined by a two-
contravariant antisymmetric tensor field, i.e. the eleme@ff\/ ), cf. also (2.1.15), [177, 274]).

One could try to introduce a symplectic fofhon the whole spac&, in such a way, that
the formsQ, on O, (L)'s (¢ € S.) are its restrictions by embeddings : O,(U) — %, i.e.
Q, = LZQ. This cannot be done by a naive “extension” of the formula (2.1.30) to the vithgole
e.g., fordim o = oo, the mapping3, has not a “natural” extension tb;, cf. (2.1.9). We shall
not investigate this possibility here (it can be connected with considerations in Remarks 3.2.1).
Q@

Let us note, thav; = 0 for a Hamiltonian vector fieldr; does not mearf(-) = const. on
connected components of a considered Poisson manifglds it is valid for a nondegenerate
Poisson structure (of Hamiltonian classical mechanics, e.g.), cf. Definition 1.4.1. The vanishing
of v¢ only implies constancy of restrictions of f to connected components of symplectic leaves
of M, e.g. the leave®, (L) of S,, resp. ofZ;.
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2.1-e Oninterpretation: Subsystems and two types of mixed states

The spaceS. with the introduced Poisson structure will play in EQM&er similar to the phase
space of classical mechanics. It contains pure states of standard QM described by pdints
the orbitO, (1) = P(H) with o = ¢?, i.e. consisting of one-dimensional orthogonal projections
onH, as well as the states described by density matrcgse? traditionally called “mixtures”.
This type of mixture can always be obtained (cf., e.g. [105, 71, 34]) by the restriction

pr:SHI 8, =8

(the “partial trace”,[71, 50], i.ep; = Tr;;) of a pure stater, 77 = (o7+17)? € St ofa

composed system/“+ 11" (described with a help of the Hilbert spaéé;,;; := H; ® Hyy,

with H; := 'H) to a given state; := o € S, of the considered subsystem= p; (o7 r7).%°
Work with EQM requires introduction of two different types of “mixed states”:

2.1.21. Definition. Let the states described by density matrices be callethentary states
(alsoelementary mixturesto stress possibility of # 02). The topological spacs, endowed
with the Poisson structure will be then called tlementary phase spacéor QM.

Another type of states (let us call thgmnuine mixtures are described by probability mea-
suresy on the setS, of normal states oL () endowed with a Borel structure, cf. also [34].
The set of elementary mixtures can be considered as the subset of the set of genuine mixtures
consisting of the Dirac measures (each concentrated on its own one—point suset ¢f

2.1.22.Remark. We shall not investigate in details, in this paper, various possible convenient
Borel structures o8, , i.e. as-algebras of subsets §f generated by open subsets in a topology;
we shall not need it in our general considerations. From the point of view of measure theory, cf.
[60, 42], itis convenient to work on locally compact spaces. There are two ways how to introduce
a “relatively compact” topology o8., coming as the relative topology from its compactification

in a natural way:

(i) The spaceS. is a subset ofS — the set of all states o(#) which is compact in
o(L(H)*, L(H)) topology. The induced topology from this*-topology coincides o, with
the (topology induced from the) natural norm topologyZift)*, [42, Proposition 2.6.15]. Ob-
serve that the restriction of the norm 6{H)" to S, coincides with the trace-north- ||; of T.
Moreover,S, is w*-dense inS, [42, Example 4.1.35]. Hencé, is a natural compactification of
S..

(i) Another way of introduction of a “relatively compact” topology &) is (a priori different
than that in (i))w*—topology coming from the dualitg(H)* = ¥(H), i.e. thes(%,&)-topology,
where the duality is expressed by the form{dac) = Tr(oc). By the same argument as in
(i), [42, Proposition 2.6.15], the/*—topology onS.. coincides with the norm-topology af* =

%, hence again with the trace-norm topologdy.

This way of introduction of (the same, as we see) topolog¥.oleads us to another compact
set (let us denote S.)), a subset of which i§,:

56 A more general definition of “subsystems” can be found in Definition 2.3.8.
57The concept of “states” will be reconsidered and generalized after introduction of “the observables” of the considered
systems in Section 2.3.



58 2 Extended Quantum Mechanics

2.1.23. Definition. The set(S..) is the (*-compact) convex span 8f and of the zero element
of €*. The compactS..) is sometimes called [196] thguasi state spacef theC*-algebrac.

¢

Let us return now to description of the genuine mixtures. fet F be an “observable”
(cf., however, Definitions 2.3.3, and Interpretation 2.3.11, for more elaborated concepts). If we
interpret, in accordance with the standard interpretation of formalism of QM, its ydhieas
“the expectation valuéf), of f in the state”, then the expectation in a (genuine mixture—) state
1 would be naturally determined by the formula

uuwzum::/f@mwm. (2.1.31)

If fis anaffine function, i.e. f := h, for somea € L(H) (later the denotation “affine” will be
used also for functiong which are not everywhere defined and which correspond to unbounded
operatorsX, f = hx, cf. Sec. 2.2), and ib(u) € S, is thebarycentre (alsoresultant, resp.
intuitively the “center of mass”) ofi [42], then

(a) = ha(b(1)) = b(u)(a), Va € L(H), (2.1.32)

This shows, that there is no observable difference between the genuine mixdncethe cor-
responding elementary mixtuté,.) € S. in the case, if only affine functions can be observed.
For other continuoug (i.e. for f # h, for any a€ L£(H), let us call such functions (bounded)
nonlinear functions; they will appear as a new kind observables resp.generators cf. Defi-
nitions 2.3.2, 2.3.3) one hag f) # f(b(u)) for a general (identity 11(f) = f(b(p)) for all p
would lead tof = h, for somea € £(H)). Moreover, if the time evolutio/ is generated by
the Hamiltonian vector fielg ; corresponding to a nonlinedr then, even for affiné,, one has,
contrary to the case of affine generatgrgu; (h,) # ha (@] b(u)), wherew, := po @', (cf. also
Note 3.3.3). This shows some reasons for making distinctions between two kinds of “mixtures”
in the presence of nonlinear observables (and nonlinear evolution generators). If we accept a
sufficiently large class of nonlinear “observablgs’e.g.f € F(S.) = uniformly bounded in-
finitely differentiable functions on S, then a genuine mixturg coincides with an elementary
mixture ¢ iff 4 = 4, := the Dirac measure concentrated on the one-poin{gétC S..

Mutually different genuine mixtures # ' “corresponding” to a given elementary state
o = b(u) = b(w') can be interpreted as different extensions of a given state of the “consid-
ered microsystem” (the observables of which are described in the traditional way - exclusively
by the affine observables) to mutually different states of a larger system (say, a macrosystem,
cf. Section 3.4, and also [31, Section II.C]) described by a larger set of observables, see Defi-
nition 2.3.3. In this sense, the formalism described in this work, and describing (many — also
“most” of the earlier known — versions of) nonlinear dynamics in QM can be shown as a restric-
tion to a subsystem of a linear evolution of some larger (eagroscopig quantal system, cf.
also [35].

2.1.24.Interpretation.

(i) Let us consider a density matrix € ¥.,(H;) of a “system 1", and a normalized vector
U € H; ® Hjy of a “composed system I+II” such, that its restriction to the “subsystem I” (i.e.
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the partial trace with respect to the “system 11”) gives a density matrix
Tr(pI(Pq,)a) = Tr((a ® H[[)-P\I/) = T’I"(Q~a)7 Va € [:(H)

Such a “system II”, and a vector—staly (resp. vectorl), always exist for any givep. Let
{®r : k € K} be an orthonormal basis H;r : ), cx Po, = 117, and let{yp; : j € J} be

an arbitrary basis in the Hilbert space of the “considered syst&m”Then the set of vectors
{p; @ Py : j € Jk € K} C H;r ® Hyr forms a basis in the Hilbert space of the composed
system, and there is a unique decomposition

= Z Cjo@‘I’k:Z chwj ® O

jETkEK keK \jEJ

Let us define the nonnegative numbers

Me =1 sl

jeJ

for which the normalization property aff gives) _, ;- At = 1, and let us define also the unit
vectors (in general mutuallyonorthogonal

1
Vg = Mo > ik

jeJ
in the Hilbert spacé{;. Then we obtain for the given density matrixhe expression®

0= MPy,. (2.1.33a)

keK

This decomposition does not depend on a choice of the Yasis j € J} C H;. We see that
an arbitrary orthonormal bas{®;, : k¥ € K} in H;; determines a unique decompositiongof
The vectorV is here considered fixed, and it is written in the form:

U = Z\/kak®¢k.

keK

Let us assume now, that an observable is “measured” on the composed system I+l such, that

it just performs a filtering of the subsystem Il according to the chosen bddis : k£ € K},
corresponding (in a sense of the classical “reduction postulate” [189], cf. Footnote 43) to the
measurement of the quantityA := ), . ax Ps,, Wherea;(j € K) are arbitrary, mutually
distinct real numbers. One can imagine a situation similar to that in the Bohm version of the
Einstein-Podolsky-Rosen (EPR) “gedanken experiment”, [90, 14, 276], that the systems | and Il
are in the instant of measurement (being in the skgten that time) mutually very distant and
noninteracting, so that the measurement of the quadtity £,(H,;) (or, what is the same in

581t might happen als®,, = P, for somek # m.
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QM, of the quantityl; ® A € L (H; ® H;;) of the composed system) “does not affect” the
state of the subsystem I. After the measurement, according to the “reduction postulate”, the state
of the composed system is

Qé = Z /\kpwk ®P<I>k7
keK

and the reduced density matrix, if calculatafier the measuremenis again the same, as
in (2.1.33a). Hence, the state (i.e. the reduced density matrix) of the subsystem | does not depend
on a choice of the measured quantityof the subsystem I, but its decomposition (2.1.33a) is
dependent on this choicé.

The situation can be generalized to the measurement of a quantiith degenerate discrete
spectrum:A = ), oy Ey, whereE; are orthogonal projections i ;; commuting with allPs, ,
and) ", E; = I;;. Then the state of the composed sys#ter the reductioris

gé = Z(H] X El)~Pq/'(]I1 ® El) = Z K] P‘sz
l l

with U, o (]I[ & El)\l/, K] = Zke(l) ANy and(l) = {k e K : Pq;.kEl = Pcpk} The above

decomposition of the reduced density matsixorresponding to this alternative measurement

situation is

0= Zm o, Tr(gra):=Tr((a®l;)-Py,) (Vae L(H)). (2.1.33b)
1

Now we can try, however, to interpret the density matri@btained by the restriction to the
subsystem’ after the measuremenf the quantityA of the subsystend/ not as an indecom-
posable entityi.e. as an elementary state, vt are going to interpret its different decom-
positions (2.1.33) as different genuine mixturesHence we shall assume that the process of
measurement afl on the correlated subsystehi transforms the elementary mixture (what
is an empirically indecomposable quantity) into the corresponding genuine mixture determined
by the (empirically identifiable) decomposition (2.1.33a) into the elementary compaFgnts
resp. by the decomposition (2.1.33b) into the elementary compopgmtgh the same barycen-
tre o. This is an important difference in interpretations for nonlinear dynamics: If the evolution
of the subsystem | after the measurement on the subsystem Il is nonlinear, itswsitiat/olve,
generally, in course of some time after the measurement, into different states, in dependence of
what quantity was measured on the distant (and noninteracting) but correlated system Il. We see
now thatif we accept instantaneous “reduction of the wave packet” of the composed system
and, moreoverif we qualify the obtained decomposition (2.1.33a) as the genuine mixture
of the componentsP,, (resp. the decomposition (2.1.33b) as the genuine mixture of the
componentsg;), then the subsequent different evolutions of the mixtures with the same initial
barycentre (obtained at different choices of the measured quahtitgn lead to distinguishable
states before a light signal coming from the distant system Il can bring any information about the
guantities4 measured on the system ll, cf. also [166].

59The stateP,,, can be called, in accordance with [93], tiedative stateof I with respect to the statBs, of I,
if the state ofl + I is ¥. We shall not discuss here, however, consequences of EQM on possible mutual influence of
different “branches” in thenany world interpretatiorof QM, cf. [106].

60This is, perhaps, a different situation from that one discussed in [169], where a sudden “localized” change of a
nonlinear evolution generator led to instantaneous change of time evolution “at distant places”.
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(i) Let us try to give at least a vague, intuitive formulation of an (hypothetical) alternative for
the above describemlansformation of an elementary mixture into a genuine, diyewhich the
“action at a distance” is avoided:

In our understanding, a quantum measurement is a physical process by which a quantum
interaction of the micro-object with an “apparatus” leads to specific macroscopic changes of
the apparatus states, by which statistical distribution of eigenstates of the micro-object corre-
sponding to its measured observable in its given quantal state is “copied” into a corresponding
classical statistical distribution of mutually classically different (i.e. mutually noninterfering)
“pointer positions”. A generally accepted description of such a dynamical process is still miss-
ing, [276, 14, 28]. Let us assume, however, that we have some description of this process in a
framework of QT. Let us consider the combined quantal systeni/ + /11, where we added to
our combined systerh+ I also an apparatud I. Then, during the (many times repeated) mea-
surement of4 on 7, the apparatus states (let us denote tigmcorresponding to the classes of
states off I with sharp valuesy;, of A (with their vectors lying in the subspacés™;; C H;;)
become (in some short but nonzero time) eventually correlated with the staaéthe “distant”
subsystent (that was left undisturbed during the measurement). This correlation with “pointer
positions” ¥;, correspods to the “reduction of the wave packet” and it has no observable influ-
ence on the systerh According to our present (rather provisional) hypothesis, the presumed
process of transformation efinto the genuine mixtur® i ox begins eitheafter the measure-
ment or alreadyat installing of the apparatusThis corresponds to two (not mutually exclusive)
eventualities:

(first) Since different pointer positions,, represent different macroscopic states of “the envi-
ronment” for the systeni (we need not be any more interested in the future fate of the measured
subsysten’ ), these macroscopic states might have different “influences” (as different values
of an external potential, or a “field”) on the correlated statgs These “influences” might be
very weak, just to provide a possibility to distinguish between different states the mixed
state (2.1.33b).

(second) The environment of the systénwvas changed by installation of an apparatus for
measurement ol on /7, and this change (providing information about the{s8t } of projec-
tions characterizingl) performs an “influence” ot transformingp into the status of the genuine
mixture from (2.1.33b).

We expect, however, that this “influences” will be spread in both the eeitle$inite velocity
Hence, in a presently badly understood way, the elementary migtahanges into the corre-
sponding genuine mixture (given by the decomposition specified by the measured quantity
A of IT) in a finite time, avoiding the above described “nonlinearity reason” for a superluminal
communication betweehand apparatuses measuring different observablet/I; other pos-
sible “sources of noncausality” mentioned in Subsection 1.5-d, or in the Footnote 60, needn’t
be improved by such a “mechanism”. Let us note finally that these considerations, to lead to a
consistently formulated part of QT, should be reconsidered in frameworks of Einstein relativistic
theories, cf. remarks and citations on page $8.

Let us note that earlier attempts [47] to introduce nonlinearities into QM were connected with
trials to make drastic changes in interpretation of the formalism of QM and, contrary to the here
presented theory, they did not include the traditional “linear” theory as a specific “subtheory”.
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2.2 Unbounded Generators

We have introduced the Poisson structure on the elementary state space of QM with the help
of the groupt! (resp.2() which can be considered as a “maximal possible symmetry group” of
described systems in the sense, that each 6}it!) is a homogeneous space of its actioffin
whereas any “physically acceptable” (unitary) operation leaves all the @hitd) (o € <)
invariant. In the setting of preceding sections, generators of all there described transformations
(including time evolution) were functiong € F; the corresponding “linear” generatofs= h,
correspond tdoundedselfadjoint operators € £(H) only. The “realistic models” describing
particles and fields which are, e.g. invariant with respect to PdnoaiGalilei symmetries have,
however unbounded Hamiltonians, and the generators of many symmetry subgroups are also
unbounded. These symmetry groups are usually finite—dimensional noncompact Lee groups,
hence there are no “interesting” unitary representations with all the generators bounded. Such a
“more realistic” situation cannot be described by the formalism developed up to now: To keep
general ideas of our (nonlinear) extension of quantum theory untouched, mathematically correct
description requires more sophisticated considerations: It leads to “Hamiltonian functions” only
defined on dense subsets%f, and these Hamiltonians are not even locally bourfded/e shall
proceed stepwise, starting with the linear theory.

2.2-a Some probabilistic aspects of selfadjoint operators

To obtain structures useful to effective description of measurable quantities of a specific con-
sidered system, as well as to obtain their empirical interpretation, one has to specify symmetry
groupsG “smaller” thanil. These groups are related to the quantal system by their continu-
ous (in some topologies) representationglimesp. by their projective representatidi§z) in

i, cf. [267]. Such realizations af leave the structure of the elementary (quantum) phase s-
pace invariant. These representations may not be analytic, and their weaker continuity properties
are connected with existence of unbounded generators. Then we are faced with the problem of
description of locally unbounded functions 6p, playing the dle of “observables” or “genera-

tors” f ¢ F, corresponding to the unbounded operators. These functions are not defined on any
nonempty open subset 8%, nevertheless they could generate (in a specific way) one parameter
subgroups of transformations 8f. This functions appear usually in the forfn:= hx, where

X is an unbounded selfadjoint operator generating the unitary groupt — exp(—itX), and

hx(o):=1 % o(exp(—itX)) (2.2.1)
t=0
for suchyp, for which the derivative exists; this set ofe S, := S.(L(H)) will be denoted by
D(hx). Let D(X)C H be the domain of{, and letD(hx) := {z € H : P, € D(hx)}.
Clearly, D(X) C D(hx), andD(hx) is UX —invariant.
One of the main problems considered in this section will be the question of possibility of gen-
eralization of the developed Poisson formalism to locally unbounded (not everywhere defined)

61The difference from the infinite dimensional Lie grotiof all unitaries in£(H) consists in discontinuity of the
relevant unitary representatiob§ G) of noncompact finite—dimensional Lie groups The one—parameter subgroups
t — U(exp(tf)) € Y, & € Lie(G), of U(G) C HUrepresenting Lie subgroups 6f are not allLie subgroupf LI:
Some of them are discontinuous in norm-topology’¢f1), what is the topology with respect to whithis endowed
with a Lie group structure.
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nonlinear generators of transformation groups, e.g. to some nonlinear perturbations of unbound-
ed affine generatorsy . A partial solution of this problem will be reached with a help of group
representations.

2.2.1. Some other characterizations Di{(h x) are relevant also from the point of view of possi-
ble interpretations of the presented formalism. Egt denote the projection—valued (spectral)
measure of a selfadjoint operatdf. Let uff be the probability measure on the spectrum¥of
sp(X) C R, ;Lf(B) := Tr(oEx(B)), corresponding to any € S.. The characteristic func-
tion ofuff ist — Tr(o exp(itX)). The domairD(hx) consists of all such points € S., for
which the following limit exists and is continuous in the real parameter t, [95]:

t n
exp(ithx(g)) := lim <Tr(g exp <ZX))) . (2.2.2a)

n— 00 n
The probability measure corresponding to the characteristic funatien exp(ithx (o)) is the
Dirac measured, on R concentrated at = hx (o). [It can be shown, that thia can be in-
terpreted as “a sharp value of a macroscopic observablg’ in a quantum theory of infinitely
large systems, cf. [31, 24], cf. also Section 3@.]

2.2.2. Let us mention still another (probabilistic) characterization of the dorfiginy ), [95,
Chap.XVIl§2.a, and Chap.XV4]: Let x,, be the characteristic function (indicator) of the inter-
val (—n;n) C R, letidg denote the identity functioh — A onR, and letl denote the function
identically equal to 1 orR. Let u(f) denote the value of the integral of the functigrwith
respect to a measure ThenD(h x) consists of those € S.(L(H)) for which the sequence of
integralsug((xn idg) (cf.2.2.1) has a finite limit fon — oo, and for which simultaneously

lim ,uif(n(ﬂ —Xn)) =0. (2.2.2b)

n—oo

We have in that case

lim gy (Xnide) = hx (o). (2.2.2c)
This shows that the existence of the first momenjuft(idz) of the probability measurgy :
idg € L'(R, Nf) (i.e. the existence of the expectationX¥fin the statep, i.e. the integrability
of the absolute valugdg|) impliesp € D(hx). ©

2.2.3. Similar considerations show, that € D, (X) (whereD,(X) is specified in Defini-
tion 2.2.4 below) is equivalent to the existence of the second momeptfififidz)?) < oo
for o € §s N S.. Since the existence of second momentum of a probability measRremplies
the existence of the first one, we ha¥g X') C D(hx). @

Defined according to (2.2.1hx uniguely determinesX, which in turn uniquely deter-
mines the one parameter unitary groUp‘(t). We intend to determine the flo; o :=
Ad*(exp(—itX)) o from the (densely defined) generatox, or rather from its “differential”
dhx, as a Poisson flow corresponding unambiguously to “the Hamiltoljgh and we shall
generalize such a determination of flows to nonlinear unbounded generators.
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2.2-b  Unbounded “linear” generators

Let us now start an investigation of possible generating of Hamiltonian flows by real-valued
functions defined on a dense set®)f and locally unbounded. It is clear that this will be only
possible for a restricted class of functions, especially if chosen from the “nonlinear” ones. We
shall consider now the most simple and basic case of a “linear” function, namely the function
hx corresponding to an unbounded selfadjoint operatatefined in the subsection 2.2-a. We
shall need to choose some subsets of the dorfdiny) wherehx will be in a convenient
sense “differentiable”, so that we shall be able to define on sufficiently large subSettioé
corresponding vector field, and subsequently its flow, so that this flow will be coincident with the
canonical unitary flow generated bB.

Let us restrict our attention to subsets of “finite dimensional” density matricess only,
what is motivated by technical consequences of Proposition 2.1.5.

2.2.4. Definitions (Domains).

(i) Thedomain of the selfadjoint operator X on the Hilbert spacé{ will be denotedD(X) C
'H; the subdomain of its analytic vectorsis denoted byD,(X) := D“(X) C D(X). The
space ofinfinitely differentiable vectors

oo d’n
D> (X) := {xEH. e

exp(itX)z € H, Vne€ N} (2.2.33)

t=0
will also be denoted by, (X) C D(X). ClearlyD,(X) C D4(X) C D(X).

(ii) The domain of the generatordx of the groupt (€ R) — Ad*(exp(—itX))o, Vo € Ty, Of
the B-space automorphisms®f will be denoted byD (6 x):

d
0€D(x)E —

7 (exp(—itX)oexp(itX)) € T,, Vo € T,. (2.2.3b)

t=0

(iii) The restricted domain of the generatob x is
DT(5x) = D((FX)OSS N S.. (223C)

(iv) D,.(X) will denote the set of all finite real-linear combinations of one—dimensional projec-
tions P,, z € D(X), i.e the set of all selfadjoint finite rank operators with range.X).
D,.(X) will be called therestricted domain of X.

(v) The subset dP,.(X) consisting of operators with their range in the set of analytic vectors of
X will be denoted byD,.,(X), and called theestricted analytic domain of X. The operators
in D,.(X) with range inD4(X) will be denoted byD,.4(X).

(vi) Let
Dra(§X) = DT(6X) N DTG(X)‘
This is therestricted analytic domain of 6 x.

The following lemma expresses some important properties of the damaiiy ).
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2.2.5. Lemma. For any selfadjoint operatoX onH one has:

(i) The domairD(d x ) of the generatob x contains exactly those € T, for which the following
two conditions are fulfilled:
a. The operatop € L(H) leaves the domaif»(X) C H of X invariant.
b. The operatori [o, X] (a priori defined, in the case of validity of (a), on the domain
D(X)) is uniquely extendable to an operator lyingdy C L(H).

(i) The inclusionD,.(6x) C D(hx) is valid.

(iii) For all o € D,.(0x) itis X € D,.(X) C § & Xp € § (the products are considered here as
unigue continuous extensions of the operators initially definef oK)).

(iv) For o € D,,(0x) we have also g € D,,(X). &

Proof. (i) is proved in [71, Lemma 5.1 of Chap.5]. It implies, thate D, (0x) = oX €

§ & X € §F, where the products witiX' are considered as the corresponding (unique) bound-
ed extensions irC(H). From these facts we see, that, for the considerethe expectation

py (idg) = hx (o) exists, cf.(2.2.2), what in turn impliese D(hx ), i.e. (ii). With ¢ as in (i),

X andp are defined on the domaifi(X), and the range of is in D(X); hence, both products
are densely defined finite—range operators, the first ofg (&X' ). The last statement (iv) is valid
due the fact that the set of analytic vectorsiofs invariant also with respect to the action of the
operatorX . O

It will be useful to introduce the following

2.2.6. Notation. Let us denot®,..(dx ), resp.D,..(X), resp.D..(X) the variable symbols with
possibilitiesx € {o,d, a}, whereD,(X) := D(X), e.g.. An assertion containing the symbol

(in the described contexts) will be valid for all choices of the alternatives (with the same value
chosen in all places of the assertion simultaneously), if something else will not be specified for
it; the assertion might be expressed by a sequence of sentences. That assertion might be also
numbered by attachedcorresponding to any of the choice.

Let us formulate several useful simple implications of these facts in the following

2.2.7. Lemma*.

(*i) The domainD,.. (6 x ) consists of all finite convex combinations of one—dimensional projec-
tionsP,, z € D.(X) C H, i.e. Du(dx) C Dpi(X). All domainsD,..(dx) (for x = o,d, a)

are dense irSS,, resp. the domain®,..(X) are dense i, in the topology induced by ||; of

s

(*ii) For ¢ € D,..(dx), one has

dx(0) =i[o, X] =i[0,qo(X)] € T,0(U) C T,(H); (2.2.4a)

Bo(dx(0)) = qo(X) € N, CF C L(H). (2.2.4b)

(*iii) The sets of vectorgi [0, b] : ¢ € D,«(dx), b € D,..(X)} are all dense i, 0, (L), Vo €
D,.(dx) in its topology given by any of the equivalent norms mentioned in Theorem 2%l.19.
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Proof. (*i) From Lemma 2.2.5(i), and the definition in 2.2.4(iii), as well as from the correspond-
ing definitions ofD,..(6x) := D, (dx) N D,.(X), with the help of spectral decompositions of
0 € D,.(6x), the first assertion of (*i) follows immediately. It is sufficient to prove the density
for x = a. Density of the seD,,(X) in T, will be proved from its density i in || - ||;—topology,
becausg is dense it in this topology. But it suffices to prove arbitrary close approximatebili-
ty of one—dimensional projections by such projections f@m(X), i.e. by{P, : z € D,(X)}.
SinceD,(X) is linear and dense i#, unit vectors inD, (X)) are dense in unit sphere &f (by
triangle inequality). Then, for two unit vectotsy € H, we can use:

1
lz = ylI* = 2(1 = Re(z, y)) > 1~ |(z,y)* = 21Pz = P13,

where the second equation is proved by calculation of eigenvalugés,of= P, — Py;d,, is
selfadjoint with trace zero, and range two—dimensional, hence its two eigenvalues are opposite
reals=+); then, by calculatingr(d%,) = 2(1 — T'r(P,P,)) = 2)* one obtains the desired
equation. This easily leads to a proof of densitypf, (X) in . The density oD, (dx ) in S.

follows then by a use of convexity of both sets.

(*ii) This is a consequence of Lemma 2.2.5(i), as well as of our constructions in Section 2.1-b,
see esp. Definitions 2.1.3.

(*iii) For any ¢ € D,.(dx), itis {i [o,b] : b € D,.(X)} C T,0,(44). Due to inequality
e, bllly < 2[lell1lbll, Yo € Ts,b € LIH),,

we know, that the linear mappirig— i [o, b] is continuous and can be uniquely extended to the
whole L(H), (= b), the range of the extended mapping being the whgQi@,({). This leads
eventually to validity of the statement. O

The following assertion is important for our subsequent constructions.

2.2.8. Proposition.Letp € D,.(dx), b € D,..(X). ThenAd* (exp(—ith))(o)
(= exp(—ith)oexp(ith)) € D,.(dx), i.e. D,..(dx) is invariant with respect to the unitary
flows generated by € D,..(X). &

Proof. There is a projectio?, € D,..(X) such thath = bP, (P, might be chosen to be the
range projection ob). Thenexp(ib) = exp(ib)h, + I — P, hence

Ad” (exp(—ith)) (o) =

Py, exp(—itb)gexp(itb) P, + 0 — 0P, — Pho + ProP, —

Py, exp(—itb)o + oexp(ith) P, — P, exp(ithb) P, — P, exp(—ith)oPs.
The expression consists of a sum of element®pf(X) with ranges contained in the Hilbert
subspace determined by the orthogonal projecto)).., E;) V P, € D,.(X), where we used

the spectral projection®; of o. HenceAd*(exp(—ith))p € D,.(X). Due to unitarity of the
transformation ob, we have alsold* (exp(—itb))o € D,..(dx). This proves the assertion]

Let us now definel,hx € TgO,,(u) for o € D,.(6x) C D(hx). For thesey’s, we can write
hx(0) = Tr(oX). According to the Proposition 2.2.8, we can write §og D,.(X):
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dohx(ilo,b]) = %|t:0 hx (exp(—itb)oexp(itb)) =
Tr(ifo,b]X) = iTr(b[X, o]) = i Tr([o, blae(X)), (2.2.5)

so thatd,hx is represented by the operatgy( X ). In the calculations in (2.2.5), there was used
(i) and (iv) of Lemma 2.2.5, as well as Lemma 2.2.7. In this way, we arrived to the

2.2.9. Definition. Let ¢ € D,..(dx). Then thegeneralized differential of hx, dyhx, is the
element ofl; O, (41) represented by, (X) € 9, according to the correspondence

i-[0,b] (€ T,0,(U)) — i Tr([o, bae (X)), b € L(H),,
as explained above, (2.2.5) ¢

The definition can be abbreviated as
dohx (i e, b]) = adj(b)(dohx) = ad}(b)(q,(X)). (2.2.6)

Such a “differential’d,h x is defined till now in point® € D,..(dx) as a linear functional on
vectorsi [p, b] € T,0,(U) forb € D,..(X) only. But these vectors are densdjjO, (1) (in any
of the equivalent norms mentioned in Theorem 2.1.19), becBug¥ ) is dense inC(H), and
§ is dense ir¥,, cf. Lemma 2.2.7. Consequently, we can uniquely exigyidy to a bounded
linear functionald,hx= q,(X) € T, 0, (4) C L(H).

We shall turn now to the question, whether and how the “differentdly defined just
on a subsep € D,.(dx) of S, can determine the “unitary flowAd*(exp(—itX)) on the
whole state spac8. in a “geometric way”. We define the “Hamiltonian vector field (o)
corresponding to the functiolx via its “differential” d,hx in the pointp € D,.(dx) with a
help of Poisson brackets according to (2.1.15) and (2.1.16), i.e. in the representation of tangent
vectors inT,0,(4) used above, we have

vx(0) = i[0,do(X)] = ad}(dyhx), Yo € Dru(dx), (2.2.7)

in accordance with equation (2.1.18). It is clear, that vectorgp) are tangent to curves—
Ad*(exp(—itX))(o) in each pointe € D,..(dx) of their definition. These curves are all lying

in the domairD,..(dx ), since the unitary flowAd* (exp(—itX)) leavesD,..(dx ) invariant. But

the closure ofD,..(6x) in || - |1 —topology is the wholeS.. Moreover, the functiong —
Ad*(exp(—itX))(e), Vt € R are continuous irj| - ||;, hence could be uniquely extended by
continuity fromD,.(60x) on the wholeS,. In this way, we have seen that a complete flow on
S. is uniquely determined by the “Hamiltonian vector field” (2.2.7) defined on a dense subset
D,.(6x) of S, only. It remained, however, partially open the question here, how to determine
the flow “from the functionhx alone”, i.e. without an explicit use of the operat&r, with
having given the functiofhx and its “directional (Gateaux, (2.1.11)), or partial derivatives” on
the corresponding domains only. The known properties of the linear ope¥ates X might
serve to us as a hint to look for relevant propertieg @fonly. A description of the resulting
dynamics might be given as follows:
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2.2.10. The flowp — $;X 0 on o € D,,(X) corresponding to the vector fie[@.2.7)can be de-
scribed by unitary cocycles (what are just unitary groups in these cases), according2ale®6)
(with interchanged’ < o, f < h). &

We want to generalize the described situation to “Hamiltonian functions” generating Poisson
(or Hamiltonian) flows, also not being of the forim; for any selfadjointX and, moreover, are
also only densely definable ifi.. The most simple generalization is, probably, the generator
h(o) := f(hx(0)), wheref is a sufficiently differentiable real valued function & We shall
go further: We shall generalize and investigate the preceding constructions to furgions-
f(hx,(0),hx,(0),..-hx,(0), f € C(RF), for “conveniently chosen” sets of (in general
noncommuting) selfadjoint operata’s; (j = 1,2,...k) on’H. Before that, however, a more
general framework will be sketched.

2.2-c  On unbounded nonlinear generators

As we saw in the example of selfadjoint operators and the corresponding “linear” generators
— locally unbounded Hamiltonian functiois,, the definition of a (Poisson) flow from such a
functionh x might be possible, if we determine from it a denselySin defined vector field ¢ (-)

having integral curves (lying, of course, in its domain), in an agreement with (2.1.18). Hence, the
domain{r € S, : v¢(v) existg should consist of (at least) one dimensional differentiablée (

—) submanifolds of (sufficiently many of,(4)’s (we shall again consider € §, N S, only).

2.2.11.Remark (Speculating on “integral” submanifolds)To make possible a use of the Pois-
son structure at construction of smooth vector fieldsrmooth manifoldsas well as their integral
curves from only densely defined functions @y(Ll), ¢ € §,, and also to have possibility to
define Poisson brackets for several such densely defined functions, we would need algorithms
to construct some “convenient” more than one—dimensional smooth submanifolds in domain of
definition of our densely defined objects, and this seems to be a nontrivial question in a general
case. A solution will be found in subsequent sections for a specific class of densely defined gen-
erators and vector—fields determined by Lie group representations: A given continuous unitary
representation of a Lie group determines in the state sfacnooth submanifolds (orbits of
GCS). Hamiltonian vector fields on these submanifolds can be defined from given “nonlinear”
real-valued functions with a help of the existing@Klerian” structurel (cf. (2.1.27); let us
note that this structure isalerian only if restricted t&()). Existence of such apriori defined
domains of definition is typical also for some standard approaches to not—everywhere defined
vector fields and/or Hamiltonian functions, cf. [59, 178]. Let us speculate a little now on al-
ternative possibilities for construction of some smooth submanifold3,6fl)'s, determined by
some apriori given objects, e.g. by an (only densely defined) vector+igld).5> The rough
idea consists in looking for possibility of construction of some submanifolds iof more than
one dimension from such a “relatively poor” object as a vector field. These submanifolds might
become a “playground” for definition of other vector fields and they integral curves.

Let us formulate here just some “toy examples” how to define, to a given (possibly not ev-
erywhere defined) vector field; (o), other vector fields such that they both together (perhaps)
span a symplectic submanifold 6, (4(). Our proposals might be useful as hints for a search

62The vectorsv ¢ (v) needn't belong to a (possibly Hamiltonian, in some sense) vector field determined by a function
f: the letter “f” might be here just a label.
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of alternatives to cases described in literature, if the assumptions required there are not fulfilled.
This new vector field will be constructed via the symplectic and metric structur€s @) given

by (2.1.27), i.e. by2, andI', respectively. Note, that these structures are invariant with respect
to “unitary automorphisms” of),(4l), i.e. for a given unitary operater € 4 := U/(H) the cor-
responding mappingdld* (u) : O, (L) — O, (L) leaves invariant not only the symplectic form,

but also the metric; thpush—forward (Ad*(u)).v of a vector fieldo — v (o) =i [0, by(0)] €
T,0,(U) is & o uexp(—itby (0))eexp(itby (0))u* = i[ugu*,uby(0)u*], hence thepull-

back of the bilinear form¥, by the same mapping is

((Ad* ()" ¥), (v(v), w(v)) = Twu((Ad* (), v(v), (Ad" (), W(v))
= 2(ul’u*) (ﬂuvu* ((Ad* (u))*v)ﬂuvu* ((Ad* (u))*w))
= 2Tr(ubybwu*) = 2Tr(vbyby) = ¥, (v(v), w(v)).

We shall present here two possibilities of construction of linear independent vector fields from
a given one. We do not, however, even formulate precisely a question of their “integrability” to
some integral submanifolds containing these vector fields as sections of their tangent bundles,
e.g. in a sense of the Frobenius theorem, cf., e.g. [1, 61, 9]. The integrability questions would
need more specific assumptions on the (domain of the) vectonfield

(i): Let us fix a pointr € O, (L), and a vector ¢(v) € T,,0,(4). We shall construct another
vectorv ;(v) forming with it a “canonical pair” (with respect to the forft). Let, for any subset
N c T,0,(4), its orthogonal complement (in sense of the real Hilbert space structure given
by T') be denoted byV+, and the skew—orthogonal complement By := {v € T,0,(s) :
Q,(v,w) = 0¥w € N}. Itis clear thatN“ is a closed linear subspace BfO, (i), and that
N444 = N4, resp. alsaV<4< = N for a closed linear subspacé, similarly as it is valid for
orthogonal complements. For any nonzere 7,0, (i) the spacév]“ is of codimension one.
Hence[[v]“] * is one—dimensional, the nonzero vectors of which have nonzero “skew-product”
with v, and are orthogonal to it. Let us choose for any D(v ) = the domain ofv¢:

~ J‘ ~ b

Vi(v) € [[Vf(ll)]é] s W (vi), V() =1, T,(vy(v),¥s(v)) =0. (2.2.8a)
We can ascribe, in this way, to any vector fistd(») a “canonically conjugated” vector field
Vi(v).
(i): An alternative way to construct another vector field- v¢(v) to a givenv — v (v) might
be as follows:

() o [, [, B (v )], v (v) =i [, b(w)]. (2.2.8b)
This proposal allows us to construct also more than two—dimensional subspafe® dfl)

(v € Dri(dx), b(v) € D,.(X)) containing a given fieldf}l)(u) := vy(v) together with the
vector fieldv(f2)(u) x Vs(v). Interms of our operator representationsIo0, (4) we can
construct a sequence of (a finite number of linearly independent) vector fields by the formula:

Vi) =i v )] =i [, ()™, (2.2.8¢)
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where[v, b]**+ = [v, [v,b]™], [v,b]V) := [v, b] := vb—bw. Let us mention some properties
of these vector—fields with respect to the bilinear fakn cf. Theorem 2.1.19; they are derivable
from simple properties of the commutators and traces:

T, (v V) = (R, (v ) (2.2.8d)
= (-1, (v V), (2.2.8¢)
Since the symplectic form (2, is the imaginary part o¥,,, and the metrid’,, is the real part, we

see that the fields;”) andv;”“) are pointwise mutually orthogonal, where&§§) andv;”“)

are mutually skew—orthogongin € IN). Observe also, that all these fields have, in a given point

v, nonzero values simultaneously: this is due to the fact, that ferD,.. (dx ) the mapping3,

is an isomorphism (resp. it can be considered as an automorphism, after a natural identification,
cf. Notes 2.1.4, and Proposition 2.1.5)%f and7, O, (4):

ﬁu(i [V7 QU(b)D = QV(b) = QV(QV(b))‘ (2.2.8f)

This allows us to extend the sequence of vector fisﬁﬁ‘%, (n=1,2,...)toallintegers € Z.
We shall assume here thatv) € 91, (Vv € D(vy)). We define:

Vi) == B,(v{V () = b), v\ (v) = B2 (b)), Vn € Z. (2.2.89)

Since the ranges ofandb(v) are finite—dimensional, only a finite number of eIement{wff) :
n € Z} are linearly independent. It is also easily seen that the bilinear fpyris honzero on
any pair of these vectors, what follows from (2.2.8d) and from:

W (v VD) = T (p[B,(v D), By (v i) = T (o v (0), v (0)])
= i Tr(ev (), [0, v ()
= -Tr([o.v{"(0)]?) #0, (2.2.8h)

since all thev;") (0)’s are represented by selfadjoint trace class operatofs.of?

We shall proceed, also in nonlinear generalizations, in the framework of Hilbert $pace
since this allows us to use some usual techniques with linear mappings and scalar product, as well
as intuition and/or interpretation from the standard QM. We believe, however, that the developed
ideas can be used also in a “purely geometrical” transcription (and possible modifications), [67,
11], of the theory developed in this paper.

2.2.12. Notation (Domains).Let us assume, that a norm—dense linear subsef H is given.

This means also, that any finite linear combinat@ﬂi:1 ca Ty Of vectorse, € D also belongs

to D, hence finite—dimensional subspaces generated by such vectors are subsfacestais
denote byD,. the set of all finite real-linear combinations of finite dimensional projections to
subspaces dD, D,. C §s. In the general scheme constructed here in an analogy with preceding
subsection, the seéP,. is here the object corresponding ®,..(X) in Subsection 2.2-b. Let
D}dr := D, N S, be the object corresponding 1,..(dx ) in Subsection 2.2-lﬂ),{+ is dense in

S, inthe|| - ||;—norm topology<»
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2.2.13. Definitions (Generalized fields and integrability).
(i) Leth : D}, — R be such that there exist

doh(ile, b]) h(exp(—itb)oexp(itb)), Yo € Dy, ,b € D,, (2.2.9a)

Codt],_,

and that it is bounded linear in the variabldp,b], b € D,; let its unique bounded linear
extension is expressed by the operap(D,.h) := d,h € N, C D, C L(H),:

dyh(ilo.b]) = i Tr (a,(D,h)-[0,b]) , ¥b € L(H),. (2.2.9b)

This densely defined functiahh: ¢ — q,(Dyh) € N,, 0 € D,l.+, will be called theD,—
generalized differential of .

(ii) The corresponding (densely definedSp) (generalized)D,.—Hamiltonian vector field is:
vi(o) := adZ(QQ(Drh)) € Tgog(u)» 0 € ,Di-s-- (2.2.9¢)

Let us stress that values of this vector field also beloriBtoC ..

(iii) Let us assume thaD,. contains the se¥ of mutually disjoint submanifolds,, V := {V, :

¢ € T := anindex se, such that their unioV := U,cvV, is dense irD,.. Further assume
that for a givenh : D, — R with D,—generalized differential it®,—Hamiltonian vector field
is tangent toV, in any pointv € V,, V. € T, so that the restrictions of,(v) to V, > v are
smooth vector fields on the all,’'s. Then we call theD,—generalized differential of to be
V—integrable.

(iv) Consider the situation from (i) above, and let the differentia{D,.h) be V—integrable.
Let us assume that the local flow$ of these vector fields ov continuously depend on initial
conditions, i.e. the functions

(v;t) = @ (v), Y(v;t) € Dy C UV xR (Dy DUV x {0}), (2.2.9d)

are all continuous on the uniagV in the topology induced frof - ||;. Here D~ is the domain
of the definition of the local flows, and it13y = UV x R if the flows are complete (i.e. defined
for all ¢ € R). In this case the flows on leaves¥fcan be uniquely extended to a flow Sn
Then we call théD,—generalized differential to b§.—integrable.’?

We shall look now, for a moment, back to the “linear cases” to show that they are contained
in our present generalized scheme:

2.2.14. Proposition (Differentials for “linear” generators). Let X be a selfadjoint operator
onH, let D,Lr:: Dy«(0x), D:=D,«(X). Then theD,—generalized differentialhx of hx,
hx (o) = Tr(oX), exists. The differentialhx is V—integrable forV := {Vl, oV, =
{exp(—itX)vexp(itX): t € R}, v € Dyg(dx)}. o

Proof. The proof is contained in the text following the Definition 2.2.9. O

63Some variations on these definitions allowing more refined classification of flows, what are extendable to submani-
folds of S, only, are sketched in [24].
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2.2.15.Notes We could choose in the Proposition 2.2.14 more than one—dimensipnas
submanifolds with smooth Hamiltonian vector field (2.2.7) constructed with a help of Proposi-
tion 2.2.8. Our simplest choice was, however, enough to demonstrate a consistency feature of
the theory©

The “Schibdinger equation” for the unitary cocycles describing the Hamiltonian flow of the
D,—Hamiltonian vector fieldr;, can be written as in (2.1.23), resp. (2.1.26):

1 %uh(ta Q(O)) = [qg(t) (Drh) + hO(Q(t))} uh(t7 Q(O))v uh(oa Q(O)) = I’Ha (2210)
whereo(t) = un(t, 0(0))0(0)u;, ' (¢, 0(0)), Yo(0) € D,.. The equatior(2.2.10)is an expression

of general form of dynamical (nonlinear Séldtinger) equationsWe intend to discuss various
specifications of this equation in subsequent parts of this work. If the funhfioon D, is
chosen “sufficiently nice” (e.g. sufficiently continuous, with valueSiig N D,.), the objects in

this equation are well defined on the dense dordjn In specific cases, the equation (2.2.10)
can be considered as a nonautonomous (i.e. time dependent) lineddiBgbr—Dyson equation
provided the dependence- g, (D.-h) is known; this “time—dependence of Hamiltonian” can

be sometimes obtained in an independent way, without solving this nonlinear equation. Such
a possibility of “elimination of nonlinearity” will arise in specific applications investigated in
Section 3.5.

2.2-d Nonlinear generators from group representations

We have sketched in Subsection 2.2-c a formulation of the problem of construction of some
“convenient” submanifolds ir0, (), with ¢ € D,.(dx), on which some (orO,(4f) only)
densely defined vector fields could be determined as smooth vector fields in the corresponding
tangent subbundles. This was the case, e.g., of densely defined “nonlinear” Hamiltonian vector
fields from Definitions 2.2.13, but also the case of the “linear” Hamiltonian fundtignif we
wanted to proceed in the determination of the corresponding Hamiltonian flow in a geometric
way (i.e. without a return to the functional analysis connected with the selfadjoint op&rator

‘H). The proposals outlined in Remark 2.2.11 were left in a very preliminary form. Analogical
theory of that one for generators in “linear case” would be, e.g. some hypothetical nonlinear
generalization of the von Neumann theory of symmetric and selfadjoint operatefieigncy—
indices” theory, cf. [218], and also Appendix C.Z); we are not aware of existence of such a
theory®> We have worked above with a “large” domain...(dx ), containing one—dimensional
solutions of the equation (2.2.10). Rigorous and systematic methods for solving that equation
were, however, missingf. Now we shall use Lie group representations to allow us rigorous work
with nonlinear unbounded generators of specific kind; its specification to solution of (2.2.10) is
described in Section 3.5.

641t is known that, e.g. completeness of locally Hamiltonian vector fields is (up to subsets of measure zero) equivalent
to essential selfadjointness of their generators in the “Koopman version” of CM; this follows from a Povzner theorem,
cf. [211], [1, Theorem 2.6.15 and Proposition 2.6.14].

65 An exception might be a theory of unbounded derivation&6ralgebras, cf. [228]; this could be used in our case
after an “embedding” of our nonlinear system into a larger linear one, cf. also [27, 31].

66Cf., however, [59§4.1], where the concept of “manifold domain” was introduced; this can be applied, in the case of
single selfadjoint generato¥, to its domainD(X) C ‘H endowed with the graph—norm, cf. also (C.2.2).
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Let G be areal Lie group [39], and I&f(G) be itsstrongly continuous unitary or projec-
tive representationin H, hencel : g(€ G) — U(g)(e W), g — Tr(pU(g)) being continuous
onG forall g € S.. Assume thal/ (G) has al/ (G)—invariant dense sé?“ (G) C H of analytic
vectors, i.ex € D¥(G) < the functiong — U(g)z is real analytic in a neighbourhood of the
identity e € G. This is the case [13] of each strongly continudi@>) of any finite dimen-
sional Lie group, as well as of an analytic representatigrof an arbitrary Lie group, e.g. the
defining representation of the unitary grop= U (H) inH. Let D* (&) be the (norm—dense)
Ad*(U(G))—invariant set of analytic elementsc S,, i.e. the functiong — Ad*(U(g))v from
G to ¥, are real analytic arounde G. Let us write alsqy - v := Ad*(U(g))v. Let Lie(G) = g
denote thd.ie algebra of G, and letexp : Lie(G) — G be the exponential mapping. Then we
haveU (exp(t€)) =: exp(—itX¢), & € Lie(G), for a selfadjoint (in general unbounded) opera-
tors X onH. The mapping — X (§) := X is a Lie algebra morphism: It is linear, and on
adensell (G)—, and alsaX (Lie(G))-)invariant domain (common for al¢, £ € Lie(G)), e.g.
on D¥(G), satisfies the relation, [13]:

[Xg,Xn} = )(5)(77 - XUX£ = iX[E”’]]' (2211)

Here[¢, n] € Lie(G) denotes the Lie bracket. L&, (G) C O,(U)ND*(G) be theAd*(U(g))—
orbit of theG—action on% throughg, O,(G) := {U(g)oU(9)* : g € G}. Let

hxe)(v) i=v(Xe) =1 % v(exp(—itXe)), (2.2.12)
t=0

for v € D(hx (), cf.(2.2.1), and (2.2.2) wittk := X (&). Let us denotds,, := {g € G :
U(g) € 4, } the stability subgroup off atv € S. with respect to the actionld*(U(-)) :
(g9;v) — g-v. The following lemma shows that the set of nice (i.e. “analytic finite dimensional”)
orbits of the action ofs on S, satisfy not only conditions of®,. stated in Definition 2.2.13, but
these orbits also can be used in thierof the submanifolds mentioned in the Remark 2.2.11. Let
us first introduce notation

DY (G) := N{Dra(X¢); € € Lie(G)}, dimG < oo, (2.2.13)

i.e. theAd* (U (G)—invariant setD¥ (G) C D“(G) consists of finite dimensional density ma-
trices with ranges itD* (G).

2.2.16. Lemma.Let G be a finite—dimensional Lie group, and lete D“(G). ThenO,(G)

is an embedded submanifold [61] 8 lying in S... If p € D¥(G), theng € D,,(X¢), and
dohx(¢) € My, forall £ € g. The vectorsrx ¢)(0) := ad,(dyhxe))(§ € g = Lie(G)) form
the linear spacel,,0,(G). The union of the submanifold3, (G) (v € D¥(G)) composes a
norm-dense subset&f. The vectors x ¢ (o), o € Dy’ (G), compose generalized vector fields

vx (e (-) (€ € Lie(G)) onS, generating the flow§; o) — @f(g) = Ad*(U(exp(t)))o. &

Proof. Due to the continuity ofU(G), and becaus& is a Hausdorff spacel, is a closed
(hence Lie) subgroup aF. This implies thatdd* (U (-))v can be considered as a bijective map-
ping of the analytic manifold7/G, onto the orbitO, (G). This mapping is analytic, and its
differential (i.e. the tangent map) maps the tangent sffa¢@/G,) onto a finite—dimensional
subspace of %, which is complementable. This fact together with thé* (U (-))—invariance
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of D¥(G) implies, [40], thatO, (G) is an embedded submanifold ®f. The second, and the

third assertions are implied by the considerations developed in the Subsection 2.2-b, since the
vector—fieldsv x ¢)(v):= ad,(d,h x ¢)) generate the flow¢ which were used to formation of

the orbitO,(G). The existence of a dense subseSobf analytic elements lying i~ (G) with

respect to the norm—topology @f;in S, implies the fourth assertion. Differentiation of these
flows demonstrates also validity of the last statement. O

Let us extend now our definition of Poisson brackets (2.1.12) to densely defined functions
hx e (§ € Lie(G)) defined on a dense subset®f consisting of orbitg), (). According to
the construction of orbit®, (G) from the “flows of v () (-) generated by x ()", it is clear
that the vector fields x ¢ (-) are tangent to those orbits everywhere where they are defined.
Letv € DY (G). Sinceq, (X¢) = dyhxe) € My (€ € Lie(G)), and alsav X, € §, we can
define the commutatar(d, hx ), d,hx ] € L(H),, and the Poisson bracket according to the
relation (2.1.15), cf. also Definitions 2.1.3:

{hxe, hx, }(v) = iv([duhx,, dvhx,]) = ad; (qu (Xe)) (a (X)) (2.2.14a)
On the other hand, according to (2.2.11), one also has

hxe (V) = Tr(vXiey) = —iTr(v[Xe, X,]) = —iv(la(Xe), @ (Xy)]),  (2.2.14b)
what gives the result:

{hxe hx, (V) = —hx ., (V). (2.2.14c)

We shall consider this relation as the definition of the Poisson bracket in the Lie algebra of
functionsh x ¢y (£ € Lie(G)) defined on their common domain

D(F) := {v € S, : the Féchet differential ofy — v(U(g)) exists, (2.2.15a)
what implie$” that'®
D(F) € N{D(hx(e)) : € € Lie(G)}. (2.2.15b)

The intersectiom{D(hx )) : £ € Lie(G)} is the domain consisting of thosec S, for which
the functiong — v(U(g)) is Gateaux differentiable. Ilim G < oo, then the (continuous)
Gateaux differentiability implies Echet differentiability, cf. [234, Lemma 1.15], hence

D(F) = N{D(hx()) : £ € Lie(G)}, for dim G < oo. (2.2.15c)

The derivation property of Poisson brackets (Proposition 2.1.10) allows us to extend definition
of this Poisson bracket to polynomials in variableg, ({ € Lie(G)) on the domairD(F).

The derivation property for the Poisson bracket of our not everywhere defined functions follows
from the derivation property of commutators (also of unbounded operators on common invariant
domains) via the equations (2.2.14) validBiF). If we want to use polynomials in the variables

67Here the Fechet differential can be understood as the differential of a mapping defined on the Banach ndanifold
cf. [40, 234, 61].
68For explanation of the notatiocP(F) see Definition 2.2.17 below.
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hx, as generators of evolution of our generalized quantummechanical system determined by the
described Poisson structure 8p, we have to define also Poisson brackets of these polynomials
with differentiable (locally bounded) functions € F. These are naturally determined forc

D¥(G) C D(F) by the formula:

{hxe, [}(0) =1 0([ap(Xe), do f])- (2.2.16)

This relation determines the vector fields, (-) on O,(G) in accordance with
Lemma 2.2.16.

Now we shall define the mappirigy what appears to be one of the most useful objects for
our subsequent considerations:

2.2.17. Definitions (Domains and momentum mapping). Let Lie(G)* = g* denote the d-
ual space to the Lie algebra @¥ (recall that Lie(G) is a normable topological algebra also
for infinite—dimensionalz). Define also theestricted domain D..(F) := D¥(G) C D(F),
cf. (2.2.13), and (2.2.15), of the mappifig(the Momentum mapping), cf. [7, 1], which is
defined on the domai®(IF) as follows:

F: D(F) — Lie(G)*, 0+— F(p) := F, (2.2.17a)
with F¢(0) = F,(€) :== hx(¢)(0).
Let us denote also by, : Lie(G)* — R the functionsf (F) := F(§) := (the value of
F € Lie(G)*onthe vector¢ € Lie(G)). Thedomain of I, i.e. the seD(F) := N{D(hx ) :
¢ € Lie(G)} C S.(L(H),) is Ad*(U(G)) —invariant®®
One can prove immediately validity of the following equivariance property:
Fy.o :=F(Ad"(U(g))o) = Ad*(g) o F(p), forall p € D(F), andallg € G, (2.2.17b)

sinceU(g)XcU(9)* = Xaagg)e for all £ € Lie(G); here Ad*(G) is the coadjoint repre-
sentation of G in Lie(G)*, i.e. the dual representation to the adjoint representatitf(G),
cf. Definition A.4.10,

Ad(g)¢ = % g-exp(té) - gt (2.2.17¢c)
t=0

LetF(p) be called the (value of the)(G)-field I corresponding to the microscopic staie
¢

2.2.18.Remark. The continuity of of the mapping(o) : £ — F(o)(&) for ¢ € D(F) is trivial

for finite dimensionalz, since each finite dimensional linear function is continuous (in the unique
Ic-topology); in the case of a general Lie group representation (we restrict our attention to the
representations with a dense analytic don@j(G) C D(F)) the continuity foro € D(F)

is implied by the definition of pointg € D(F): Fréechet differentiability means linearity and
continuity of the obtained mapping

§r hx, =Tr(oXe) = idg=c[o(U(9))I(§)-

We shall usually consider in the following, however, finite—dimensional Lie gréupa

69For a general definition, and also for various applications of momentum mappings cf., e.g. [1, 179].
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2.2.19.Remark. Let us note that the states € D(F) are exactly those normal states of a
constituent microsystem of a macroscopic one (in the description of infinite quantal systems
composed of equal “microscopic constituents”, cf. Section 3.4) in infinite (symmetric) tensor
productsu, of which the “macroscopic observableX:y; (€ € Lie(G)) are defined:

w, = ® 0p € Si(A™) (0p = 0), (2.2.18a)
pell

w,o(Xem) =F(0)(§) = Fg(f) := hx,(0), (2.2.18b)

X§H — (“w// — ‘Alllinoo |A| ZXZ” (2218C)

wherep € II distinguishes copies of the “microscopic constituenssis a finite subset of these
copies, andX,, are “equal observables” for distinguished cogies I1. The limit in the formula
above is taken in a specific weak (“w”) topology (we shall not specify it here, see, e.g. [31]).
In this connection, the introduced functid{p) is called also thdJ (G)—macroscopic field
corresponding to the “microscopic state”

Observe also, that the value of thé-macroscopic fieldcorresponding tw € S. (for the
defining representatiofl — i of the unitary group ofH) is g itself: The dual space to the
Lie($t) := i L(H), can be identified withC(H): containing the (normal) state spaSe as

an Ad*(4)—invariant subset. This is in a sense maximal “classical macroscopic phase space”
S. : F(v) = Fy(v) = v (Vv € S,). Such a “macroscopic field” separates points of the
elementary quantum phase space, i.e. the macroscopifjeldtermines corresponding micro-
scopic statesThis can be considered as a formalization of the conventional belief of QM
that a macroscopically determined “preparation procedure” determines the corresponding
microscopic state of a considered quantummechanical system uniquefy.

We could temporarily take the point of view that only “macroscopic properties” of the system
(in the sense of Remark 2.2.19) described by the valuBsaoé interesting for us. Then it would
be interesting to know in what extent the valli&s) separate the poinisof an orbitO,(G).

2.2.20. Lemma.Letp € D, (F), &,nm € Lie(G). Then

I Fosoonyol€) = Fyl[Ad(exp(—tn))E. ), (22.19)

for all t € R. In particular, if we have a fixeg € Lie(G) such that the derivative i(2.2.19)
vanishes for alf € Lie(G) at one value of € R, then it vanishes for aff at all values ot € R.

&
Proof. By a use of the identity

U(g)XeU(g™) = Xaage

as well as of the relation

d
dt FeXp(tn)@(g) = Fg([fa n]), V&, € g, (2.2.20)
t=0
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cf.(2.2.11), and (2.2.17), we obtain

Foptmoll&n) = Tr(Ulexp(tn)aU(exp(—tn) Xie (2.2.21a)
- —ZTT(QUeXp [Xg,X}U(exp(tn))) (2.2.21b)
- —ZTT(Q (exp(—tn)) XgU(exp(tn))X}) (2.2.21c)
= —iTr (o [Xadep—emne: X)) (2.2.21d)
— ([ Ad(exp(~tn))&, ). (2.2.21e)

After a subsequent application of (2.2.20) with— exp(¢n) - o, the preceding calculation gives
the result. O

This lemma gives an answer to the question on separation properffesnad, (G):

Letn € Lie(GQ) be such thaf,([¢,n]) = 0,V¢ € Lie(G). ThenF(exp(tn) - o) = F(p) for
all t € R, hence the pointszp(tn) - o € O,(G) for different values ot cannot be distinguished
by the values of the fiel#. The vectors) form the Lie algebra of thetability subgroup of
G at the point IF() with respect to the action of théd* (G)-representation denoted 6 ,) -
Clearly, it is valid

2.2.21. Lemma.LetG, C G be the stability subgroup of théd* (U (G))—action of G onS,, at
the pointp € S.. ThenG, C GF(,), and the equalitys, = G, is valid iff the restriction of
the mappindF to O,(G) is a bijection onto amdd* (G)—orbit in Lie(G)*. &

2.2.22.Remark. A definition of Poisson bracket afl,(G), with ¢ € D¥(G), equivalent to that
in (2.2.14), can be given with a help of the (strongly) symplectic struciyéy definition of

a closed two—form 2, — the pull back of the “overlying” fornf2 by the embedding of the
manifold O,(G) into O,(4), in the case if the obtained two—form on the submaniffldG)

is nondegenerate. If the restricted symplectic structyjfe, is degenerate, we can obtain a
symplectic manifold by factorization aP,(G) according to the orbits of stability subgroups
Gr(y) leaving the value¥ (v) € g*, v € O,(G) invariant, [26, 27]0

One can construct examples of representatid(is) with both even— and odd—dimensional
orbits O, (G) (e € D, (F)) (for finite—dimensionals [27], cf. also our Subsection 3.3-c). Orbits
of the Ad*(G)—representation are always “even—dimensional”: They are endowed with a canoni-
cal Kirillov—Kostant symplectic structure corresponding to the standard Poisson structure (called
alsoBerezin bracke)son Lie(G)* = g*:™°

{fe, f}(F) = =F([§,1]) == — fie. (F). (2.2.22)

If ve(F) € Tr(g*) (£ € Lie(G)) are the vectors tangent Ate g* = Lie(G)* to the flows
(t; F) — Ad*(exp(t£)) F, then the Kirillov—Kostant symplectic forf2” can be expressed as

O (ve, vy) = —F ([, 7). (2.2.23)

"0These considerations might also be valid for infinite—dimensional Lie groups, cf. [7, Appendix 13].
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Comparison of the relation (2.2.22) with (2.2.14) shows, that the magpiisga Poisson
morphism, [274]: The functions

F*fe:=feoF = hx(e) = Fe =1

on D,.(F) satisfy (2.2.14), what leads to a definition of Poisson brackets for all functions f on
0,(G) (¢ € D(F)) which are expressible in the forfh

f:=F"f:=foF, feC™(g"R). (2.2.24)

2.2.23.Remark. In the case of infinite—dimensional groups, we cannot expect reflexivity of
g: Forg = L(H),= Lie(tf) = T} and infinite—dimensional Hilbert spadé one hasg* =
L(H): # T, andg** is strictly larger tharg. Then we have to be careful in reading (2.2.24):

If the differentiation of f € C°° is taken in the canonical norm—topology gf, then the first
differentials off’s belong generally t€(#)**, and needn’t be expressible as bounded operators
on’H. The spacel(H)"" is, however a von Neumann algebra in a canonical way, [227, 254, 76,
77, 42], hence also endowed with a canonical Poisson—commutator structure, which is unique
extension of that of (). Another possibility would be to take derivatives ghin the weak—
topology (in some sense, cf. [155] for a theory of differentiation on locally convex spaces),
in which case we could stay i (> df); in this case we would work with a restricted set of
functionsf differentiable in a weaker than norm—sense. We shall consider norm differentiability,
if another possibility is not mentioned explicitly. Most of formulas can be considered, however,
also in another interpretatiofy.

The functiond : O,(G) — R of the form (2.2.24) will play adle of (nonlinear, unbound-
ed — in general) generators of transformation groups (e.g. of time evolution) in our theory, cf.
Proposition 2.3.20. Their mutual Poisson brackets are defined in accordance with (2.2.14) in the
following way:

{F*f,F*h}(v) := F*{f, h}(v) Vv € D(F),¥f,h € C®(Lie(G)*,R), (2.2.25a)

where the bracket on the right side of the relation is the Berezin bracket. The equation (2.2.25a)
shows that the mappirigof D(F) onto its image irg* is aPoisson morphism (esp.mapping),

cf. [274]. It follows, that trajectories of the Hamiltonian flow corresponding to Hamiltonian
function h :=holF on'D(F) are projected onto trajectories of the Hamiltonian flow corresponding

to the Hamiltonian functiorh on coadjoint orbits of7. We shall find later also a possibility of
determination of flows o (FF) from given Hamiltonian flows og*. Forv € D, (F),f € F,

andh € C*(Lie(G)*,R), we shall extend our definitions of the Poisson brackets as follows:

{F*h, f}(v) := dgpyh o {F, f}(v), (2.2.25b)

wheredy, h € L(Lie(G)*,R) (= Lie(G), in the case of weak differentiability, cf. e.g. Re-
mark 2.2.23) is the differential of in the pointF(v) € Lie(G)*, {F, f}(v) € Lie(G)* is de-
fined by its value§Fe, f}(v) := {hx (), f}(v) € Ronthe elements € Lie(G), and{hx ), f}
is defined in (2.2.16).

"lwe shall usually distinguish typographically, in the following text, real valued functfohsdefined on the dual of
the Lie algebrag* = Lie(G)*, from the “corresponding” functions:= F* f, h := F*h defined on domains lying in
S.. To stress the difference of domains, we shall write also f, e.g. for arbitrary fundtien&(S..).
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Let us note also, that

do(F" f) = ap(X(dr(o) f)), for o € Dr(F).

Let{¢ - j = 1,2,...dim(G) < oo} be a basis off = Lie(G) and letF; := F(¢;) be
coordinates oF' € g* in the dual basis. Then the Poisson bracket (2.2.25b) can be expressed as

{F*n, £} (v Za h((v){hx (e, £} (v), (2.2.25¢)

and the Poisson bracket (2.2.25a) can also be written in the form:

{F* f,F*h}(v Zaf V) Ok h(E (V) {F}, Fi} (F(v)). (2.2.25d)

Observe that (cf. Theorem 2.1.19) the restriction to the submani¥gld~) of the symplectic
form © defined in (2.1.27) oi®,(Y) (i.e. the pull-back of2 by the embedding of,(G) into
0,(41)) coincides with the pull-back of the Kirillov—Kostant forf?¢ by the mapping:

(F*Q%) (v,w) = Q,(v,w), (2.2.25e)

forv € O,(G), v,w € T,0,(G), andp € D, (F).
The formulas (2.2.25b), (2.2.25c) show that the function @%Q, @ € C*°(g*,R), gener-
ates a generalized (densely defined) vector figjdn S, with values (fordim G' < 0):

Za QEF¥)) vx(e;)(v)- (2.2.26a)

For an arbitrary, and suchQ thatdg(, @ € g C g** one has:

vq(v) = ad;(qu (X (dr(1)@Q)))- (2.2.26b)

This describes a class of Hamiltonian (resp. Poisson) generalized vector fields generating the
flows ¢, leaving the correspondirid(G)—orbits in the state spack invariant. One can see that

the generating Hamiltonian functions Q are constant on the orbits of the abfigit/ (Gr(,,))),

ie.

Q(Ad"(U(exp(tn))v)) = Q(v), n € Lie(Gr))-

This suggests an idea how to restrict the Poisson actions of other generators to th® gi@its
cf.2.2.26. We shall also introduce

2.2.24. Definition (Poisson structure on submanifolds a,(1)). Let V' be a submanifold of
0,(4), andQ,, v € O, () be the symplectic form frof2.1.27) Let the restriction of2 to \/,
i.e. the pull back with respect to embedding : V' — O,(4), QN = U2 be nondegener-
ate. Then the symplectic structuP® on A\ will be also calledthe restriction of the Poisson
structure on S, to V. &
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Let us formulate now a theorem containing some results and consequences of the preceding
considerations:

2.2.25. Theorem.Let@ € C*°(g*,R), Q := QoF, henceQ € C>*(0,(G),R), Vv € D, (F).
Assume thally,)Q € g for somep € D,.(F) (this assumption might be nontrivial for infinite—
dimensional&). Thenvg(v) from (2.2.26b)is a Hamiltonian vector field o®,(G) (hence, it
is tangent toO,(G), everywhere o0, (G)) corresponding to the Poisson structure 6 ()
determined by the pull-back Bf (2.2.25a) or, equivalently, to the “original” Poisson structure
on S, restricted to the|( - |;—dense) collection of orbit®, (G) lying in D,.(F). Then the (local)
flow ¢f, leaves the orbit®), (G) invariant. &

We shall now formulate concepts describing Hamiltonian dynamics and symmetries on “al-
lowed” submanifolds 0®, ().

2.2.26. Definitions (Classical and restricted G—dynamics).

() Let RanF)C g* denote the image dP(F) underF. We shall consideg* either with its
canonical (coming from that af) norm—topology, or with itsv*—topology (again with respect
to the canonical norm-topology @f [39]; this will be different from the norm—topology for
infinite—dimensionalz). Let & denote the closure dRan(F) in that topology. The spac&r

will be also called theG—classical lternatively G—-macroscopic) phase spacef the system.
Let byC>*(M,R), M C g*, be denoted the set of all infinitely differentiable functions on an
(arbitrary) open neighbourhood o1 in the corresponding topology (we shall not specify here
the way of differentiation on nonnormable Ic—spaces, cf. however [155]).

(ii) If the D,—generalized differential dfis S.—integrable we say thdtgenerates the Poisson
flow @f on S,.

(iii) Let a densely defined real functidn D,. — R generate a Poisson flow @, and let there
is a differentiable function f on (an open — in the corresponding topology — neighbourhood of)
Er, f € C>(&,R) such, thatt = F* f := f o F on D,.. Thenf is a G—classical generator ™

(iv) Letf generate a Poisson flow afi, () (the submanifold), () C S, can be substituted
for S. in obvious modifications of preceding definitions). Lédte such that¥), (G) C D(F) N
0,(Y) N D,, and let the restrictiod” of f to O, (G) can be expressed in the form

FUEW) = (/) = ), for v/ € O,(G), (2.2.27)

with somef” € C*(Ad*(G)F(v),R), hencef” = F*f”. Then the functiori will be called
a vG—classical generator (Hence, the same functidncan be avG—classical generator for
several different orbit®, (G).)

(v) Letf be avG—classical generator. Its flow' needn't leave the orbi©, (G) (C O, (L))
invariant™ Let 3! be the (Poisson) flow on the orlgit, (G') corresponding to the vector field
on O, (G) generated by” according to(2.2.25b)and (2.2.26)(with h, resp. Q replaced by").
The flowg™-* will be called thevG—restriction of the flow $f to the orbitO, (G). &

72More sophisticated and more distinctive (and also more complicated) work with domains was presented in [24]; the
corresponding modifications of concepts connected with domains presented in this paper can be, however, seen without
being explicitly formulated here.

73This is a difference with respect G—classical generators, cf. also Proposition 2.3.10.
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Let us present now, without detailed explanation (hence without an analysis and proofs),
some examples afG—classical generators.

2.2.27.Examples Let a representatioti (G) be given as above, and [Btbe the corresponding
momentum mapping. Let Y be a selfadjoint operatortonand lethy be the corresponding
(densely defined, generalized) generator. QetG) C D,.(F) N D, (dy), with D,.,(dy) de-
noting the set of analytic elements®f belonging toF,. Thenhy is avG—classical generator,
e.g., in any of the following cases:

() Y := X, for somef € g.

(i) Y = iN[X(&),[X (&), [ [X(&n), 4] ...]]], where¢; € g, (j = 1,2,...N), and A

is such a selfadjoint operator @i thath 4 is avG—classical generator. The commutators can
be considered here in a generalized sense, [27], so that it ensures existéncim dfie points

0 € O,(G) in the sense of (2.2.2). This can leadit@—classical generatdry even in some
cases, when the above expression does not determine a well defined linear operator.

(iii) All stability subgroupsGr(.,y (w € 0,(G)) of pointsF(w) € F(O,(G)) = Ad*(G)F(v)

are symmetry groups of the operalor

U(g)YU(g~") =Y, Vg € W{Gr) :w € 0,(G)},

and, moreovery, € C*(0,(G),R).

(iv) The orbit O, (G) is such, thatGr) = G., Yw € O,(G). The subgroup€r, C G
are stability subgroups of the points of the orbit O, (G) for the considered actiony —
Ad*(U(g))w=w<g€G,.Q

Restrictions of “true quantum—mechanical dynamics” to various submanifolds of “coherent
states” (i.e. to orbit®, (G)) are often considered [149, 221, 222] as approximations (sometimes
called “quasiclassical”) to the “true dynamic%”.This is not, however, a “good approximation”
for a general (linear) quantum dynamics, and what are conditions for well controlled validity
(i.e. arelevance) of such approximations is not yet, as far as the present author knows, generally
established.

2.2.28.Remark. The U(G)-restriction®*! of the quantal flow> needn't be “close” top!

for a generalvG—classical generator f, not even for “classical” (or “macroscopic”) quantities
described by expectations of a distinguished subset of selfadjoint operators. One can compare,
e.g., the evolution of the expectatiohg ) of quantum “observablesX undergf, i.e. the
function

(:€) = hx(e)(gv) = Fe(pv) € g7, (2.2.28)

with the restricted evolutiofi (3! (1)), for the same initial conditions?
Let us illustrate this remark by a simple example, cf. also [27, 4.1.10].

2.2.29.lllustration (Restricted and “global” flows might be “very” different).
Let us takeH := L?(R, dq), and let

, 1
YeH, Y(q) :=n Texp <—§q2) ;

74These “restrictions” were called in [27¢lassical projections” of quantummechanical evolutions.
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letus set), := U.4, with z := ¢ —ip € C, andU, := exp(i(pQ — ¢P)). Here@ andP are the
Schidinger operators of position and linear momentum in QM:

Qx(q) = qx(q), Px(q) = —ia%x(q% x € H.

Let the (artificial) “generator of time evolution” b := - Py, o € R, i.e. itis proportional to

a one—dimensional projection. We shall consider the restriction of the corresponding flow to the
orbit O, (Gw i) of the 3—dimensional Weyl-Heisenberg gratify i (cf. also Subsection 3.3-b)
defined by the injective mapping of the “classical phase sp@ce”z into the projective Hilbert
space:z (€ C) — Pj = U.PyU; € P(H). If we parameterize points of the orbit bye C,

then the restrictiom}ﬁ} of the corresponding Poisson generdtgrto the orbit is:

hy(z) = Tr(PjH) = aexp (—%n) , (2.2.29a)

with z — Z being the complex conjugation. The restricted flow is identical (by the identification
z < Pj) to the Hamiltonian flow

gy 2 = exp(—ithi; (2))z, (2.2.29b)

generated by the Hamiltonian function (2.2.29a) on the classical phaseRpadth the sym-
plectic formQ = dp A dg. The “true quantal flow” with the same initial conditian= ¢ — ip
is

¢l 2 .= Tr(exp(—itH)PY exp(itH)(Q — iP))

= (1—a 'h}(2))z + o~ 'hy(2) exp(—ita)z. (2.2.29¢)

By comparing these two evolutions of “the same classical quantities”, i.e. the two motions in
C, we see two uniform motions on mutually tangent circles with different radii and different
frequencies. This shows that, for a general Hamiltonians, the “classical projections” needn'’t be
any approximations to the “true quantum dynamiéa”.

The next assertion shows in what sense the restricted generators also are of relevance for the
(unrestricted) quantum theory.

2.2.30. Proposition. Let f be avG—classical generator and Idét’ be its restriction toO,, (G).
Then, by considering the definitio(&2.25)of Poisson brackets of?, (G), for all v/ € O, (G),
and for any@ € C>(g*, R), the following relations are valid:

{Q.£}() ={Q.f"}(v") = F{Q, f*}(), (2.2.30)
whereQ := F*Q, andf” =: F* f¥, and where the first bracket is defined according2®.25b)
(or, equivalently, by the formulé.1.15)with a help of generalized differentials @fandf). &

Proof. The second equation in (2.2.30) is just the first equation of (2.2.25). The unrestricted
Poisson bracket o, occurring on the left side of (2.2.30) is equal, according to (2.2.14b), to
the derivative of f along to the vector field (2.2.26) at each ppirt O, (G). This implies,
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that the derivativel, f(vq) = {Q,f}(+') in any points’ € O,(G) of an arbitrary function
only depends on its restrictidif to O, (G). One hasl,.f(vq) = d..f"(vq) on O,(G), and
the last derivative is expressed by the Poisson bracket (2.2.25),0&). This proves the first
equation. O

2.2.31.Remark. The definitions (2.2.14) of the Poisson bracket an Ad*(U(G))—orbit
0, (G) were formulated with a help of selfadjoint operators on (dense domair¥,a$p that
our construction of the Poisson structure ©p(G) is not an “intrinsic construction” on the
orbit alone: It uses the values of the differentials of the functibis:) and f as elements of
infinite—dimensional spaceB, O, (4) for points of aG-orbit, o € O,(G) C O,(Y) (which

is finite—dimensional in the casim G < oo). The differentiald,f cannot be calculated in
general cases from the restrictionfoE F to the orbitO, (G) only. If O,(G) is a symplec-
tic manifold with the symplectic structure obtained by pull-back of the Kirillov—Kostant for-
m QX onF(0,(G)) = Ad*(G)F(v), or equivalently, if the restriction of the bilinear forms
Q,, 0 € 0,(G) 10 O,(G) (i.e. 10 T,0,(G) x T,0,(G), Yo € O,(G)) is nondegenerate,
then we have defined a8, (G) the necessary isomorphism (at leastdon G < oo) between
T,0,(G) andT; 0, (G) (0 € O,(G)). In this special case, we can calculate restrictigh of
the flows' to the orbit®, (G) with a help of the restriction’, cf. Definition 2.2.26(iv), only.
@

Let us look now on some properties of the “classical phase sggace” Lie(G)*. Let cony(B)
be the convex hull of a subsé& of some locally convex space, and let coBY be its closure.
Let&Q := P(H) NF(D*(G)). Then we have:

2.2.32. Proposition. The range off, Rar(F), is a convexAd* (G)—invariant subset ofLie(G)*
containing cony(&) = F(D,.(F)). If dim(G) < oo, thenRan[F) = &, i.e. itis a closed subset
of Lie(G)*. &

Proof. The mappingF : D(F) — Lie(G)* is affine, andD(FF) is convex, sinceéD(hx ) is
convex andhy ) is affine. Hence Raif) is convex, and con(£y) C Ran(F). One can see
from the definitions that cogv= F(D,.(F)), and thatD,.(F) is norm—dense iD(F) C S.. The
Ad*(G)—invariance follows from (2.2.17), and from thel* (U (G))—-invariance ofD(F).
Letdim G < co. The closedness of Rdf)can be proved by construction of a projection—

valued measure gff representing the commutative group (linear spgcegsp. the commutative
algebra of “classical observable§™ (g*, R) (generated by the functiont (F') := F(§), £ €

g, F € g*), [27, 31]. The support of this measure is identical with Fanfence closed. O

2.3 Symmetries, Dynamics and Observables

It was shown in Sections 2.1, and 2.2, how real-valued functionsv — f(v), (v € S.)

can be used in thedle of generators of the one—parameter familiésof transformations of
elementary states. Differentiable functions on phase spaces of CM are used in @betbbesr

the generators, as well as “observables”, i.e. as a certain objects ascribing (numerical) values
of possible results of specific measurements to stateswhich the measurements are applied.
Selfadjoint operatorsX represent both these objects in QM: they are generators of the unitary
groupsexp(—itX) onH, and also observables with probability distributiers, cf. (1.5.9), and

point 2.2.1, of their (real) values measured in the staté/e include into the presented scheme
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also such a doubledte and the standard interpretation for the functibrs Besides of being
generators according to assertion 2.2.10, they also could be considered as observable quantities
with n—th momentav(X™) (if they exist) of the probability measurgs’ calculated directly

from hx, as itis indicated in formula (3.3.5) of Subsection 3.3-a, cf. also [63]. Difficulties arise,
however, in trials to interpret a nonlinear function f defined on (a subsef,oif) a rdle of an
observable in the traditional way, as it will be shown in Interpretation 2.3.15, in Note 3.3.3, as
well as in Interpretation 3.3.4.

Now we shall show that, on the other hand, the use of nonlinear generators of transformation
groups in QM implies also necessity of introduction of some nonlinear “observables” together
with the affine ones.

Let us assume that we have a flgW generated by a nonlinear generafoaccording to
Section 2.1, and letube the corresponding solution of (2.1.23). For any “observablea €
L(H),), one has “a natural time—evolved form”:

hi(0) := ha(@e) = Tr(ous(t, )" aue(t, 0)),

and the functions/, are not generally of the forrh, ), i.e.

o+ Tr(ous(t, 0) aug(t, 0))

are not affine functions of for all ¢ € R; this can be seen, e.g., from [31, Proposition 4.3].

2.3.1.Interpretation. We propose an interpretation scheme, in which a numerical-valued func-
tion fon S, can have several different interpretations as “observables” in EQM. The “appropriate
choice” of the class of observables of the system depends also on the chosen symmetry group
G entering into the description of the considered system. From our point of view, the specified
symmetry grougz could be interpreted as a group of motions of (a relevant part of) the macro-
scopic background determining physical meaning of the “observables”, i.e. quantities used for
description of empirical specification of states of a given physical system. We can interpret the
genuine mixtures (cf. Subsection 2.1-e) as describing states of a “microscopic subsystem” of
a composed system consisting of the “microscopic subsystem” (i.e. the considered one) and a
“macroscopic background”. This “background” can interact with the considered quantum sys-
tem also without being influenced by it; it can be represented, e.g. by an infinite number of copies
of the “considered quantum system” interacting mutually by a type of quantum mean-field in-
teraction, [130, 31, 32, 33, 263, 264, 265, 266]. The genuine mixture of the “microsystem”
corresponds to a nontrivial statistical distribution of values of macroscopic observéh(€3):

The values of some “macroscopic observables” of this “macrosystem” (describable in classi-
cal terms) are correlated with the states of the “microsystem” entering into the support of the
measure determining the genuine mixture, cf. also Remark 2.219.

We shall introduce now a (in a certain sense minimal) set of nonlinear functions representing
observables and containing all the usually used “linear observables” of QM which is invariant
with respect to a sufficiently large class of (nonlinear) dynamics and also with respect to the
symmetry group specified by the representafigftz), as it was introduced in Section 2.2-d.

We shall introduce also other concepts (generators of different kinds, e.g.) forming with the
chosen set of observables a consistent closed theory. This set of concepts specifies a method
of determination a subtheory from the overwhelmingly large set of possible (mathematically
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admissible) “generators”, and “observables” of possible formally extended quantum theories.
The usefulness of the (representation of the) grGup here (at least) twofold, interpretational,
and technical:

(interpretation) The groupG, if interpreted a priori in terms of some “macroscopic variables”,
cf. Remark 2.2.19, can serve as a theoretical tool for specification of interpretation of
mathematically specified “observables”, as well as symmetry transformations generated
by a distinguished class of “generators”.

(technicality) The strongly continuous unitary representatié) is an effective device to
select the dense séP(FF) of points, as well as of submanifold9,(G), where the
differential-geometrical objects as “differentials”, or “vector fields” can be defined from a
specified (by the same representation) set of generators, which are locally unbounded for
many physically relevant cases (“generically” for physically relevant noncompact group
representations).

2.3.2. Definitions (G—generators).

(i) Let G§ denote theéPoisson algebra of G—classical generatar§ € G5 < f=F*f := foF

for somef € C(&,R). Let&x(f) C Lie(G)* be some (for each f separately chosen) open
neighbourhood ofy in Lie(G)* endowed with one of the canonical topologies, cf. Definition-
s 2.2.26. The Poisson structure Gff is expressed bf2.2.25)

(ii) Let f be densely defined real—valued function®rsuch that itsD,—generalized differential
exists and it isS.—integrable, cf. Definition 2.2.13. Let— v¢(v) be the correspondin®,.—
Hamiltonian vector field and assume, that its flgivis complete, and leavin@(F) invariant.
Let, moreover, the flow can be describedubf, -) : R x S, — 4 satisfying(2.1.24) (2.1.25)
and also(2.1.23)on a “sufficiently large” subdomain oD..(F) (cf. Definition 2.2.13). Theh
will be called a(quantum) G—generator.

(iii) Let, for the quantum G—generatdrof the above definition (ii)F(pilv) = F(@5v) for all
v € F7L[F(v)], for any (t;v) € R x D(F), the G—generatof is called aG—(classically)
deterministic generator. In this case, we shall denote

Pt F(v)] = F(Giv);

this relation determines a flow' on &.

(iv) A quantum G—generator which is not G—(classically) deterministic is called(@lassically)
stochastic generator The quantum flows! does not determine a classical flow, and a “corre-
sponding” classical evolution might be considered (?) as a stochastic process.

(v) Let a G—(classically) deterministic generafdoe such that one can choose
ue(t,v) = we(t,v'), V' € FHF(v)], (V(t;v) € R x D(F)); (2.3.1)

then we can (and we shall) write; (¢, F) := u¢(t,v') for v/ € F~L[F], F € &. Let the
mappings (cf. Definitions 2.3.3 f6(%)

7t :CY = C% b by, 0y (F) = ue(t, F) " h(p F)ug(t, F) (2.32)
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be C-automorphisms of“for all + € R. Thenf is called aG-symmetry generator The
set of all G-symmetry generators will be denod. It is G§ < G, as will be shown in
Proposition 2.3.10, and Theorem 2.3.16.

These definitions of different types of generators (of evolutions, or symmetry groups) specify
also their relations to the corresponding transformations induced in the set of “classical vari-
ables” determined by the chosen (unitary representdfigi) of the) groupG. “Observables”

in EQM are not sufficiently determined by real-valued functionssgrthe quantummechanical
interpretation needs possibility of determination of probability distributions in any poinsS,

for general observable quantities. The following definitions of observables respect also the re-
quirement of their invariance with respect to “Heisenberg—picture—transformations”, into which
nonlinearities bring modifications with respect to the linear case: One has to distinguish between
transformations of elementary states (described by density matrices) and corresponding transfor-
mations of observables (described, e.g., by operator valued functions of density matrices). This
distinction ensures “conservation of transition probabilities” also in nonlinear QM.

2.3.3. Definitions (G—observables).

(i) Let thes*(L(H), D(F))-topology onL(H) be given by the family of seminorms, p}, (v €
D(F)) determined by their valugs, (x) := v(z*z)'/2, andp’ () := v(zz*)'/? onx € L(H).
Letf andh be uniformly bounded operator-valued functionséenf: & — L(H), F — {(F),
]l := sup{||§(F)|| : F € &} < oo, which ares*(L(H), D(F)) — continuous? LetC, be the
set of all such functions endowed with (pointwise) operatighs: \p)(F) := f(F) + Ah(F),
(fo)(F) == §f(F)b(F), and{*(F) = §f(F)*, A € C. It can be shown [27] that;s with
these algebraic operations and the norm i€'&algebra. The elements 6f, are unrestricted
bounded G—observables

(ii) Let By = U(G)” be the von Neumann subalgebra@fH) generated by U(G). La€&
(resp.C§) be theC*-subalgebra, [27], ofC,, generated by the uniformly bounded operator—
valued functions

bxy.s 2 F(E€ Er) = By p (F) := U(y(F))" xU (y(F)) f(F),

for all x € L(H) (resp.Vx € By), v € C(&,G), f € Cy(&r,R); elements o will be
considered also as operator—valued functionsId(¥) obtained by pull-back by:

jeCY=f:o(c D)) — j(F(0))-

The setC (resp.C5) is called theC*-algebra of (quantum, bounded) G—observables
(resp. theC*—algebra of UG—observablesof the system. Any= §* € C“ will be called a
G-observable Elementsc € £(H) are considered as elements@f for anyU(G): They are
identified with the constant functiotg : F' — h«(F) := x on&. Elements, (x € L(H),)
generate a (complexgubalgebra of elementary quantum observabledenoted b)CqG which
is a subset of @ isomorphic toZ () (for any choice ot/(G)). Any uniformly bounded element
f=FFf ¢ gg; will be considered also as the elemenC@T (C C%) described by the scalar—
valued functiorh s : F' — h¢(F) :=Lf(F) on&. The G-observables of this form will be called
the (bounded—classical observablesThey belong t€5 := I-C (&, C) C CS, 1 := Iy.

75Remember that a topology arf is here understood to be one of the two canonical topologies, which are mutually
equal for finite—dimensional grou, cf. definition (i) in 2.2.26.
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(iii) The unbounded G-observablegresp. UG—observable$ are functionsY : F — Y (F)

on & with values in unbounded selfadjoint operataf$£’) on H, with the spectral measures
Ey (ry such that the functionBy () (B) : F' — Eyp(B) € B(L(H)) (cf. Note B.4.1) belong
to CY (resp. toCY) for any Borel setB C R. Note that we needn't specify the domains of the
operatorsY (F') here.

2.3.4. Definitions (Function representation of observables).

(i) Let us denotéy; : v — hi(v) == v(f[F(v)]). The mapping(e C¢) — h; is not injective. Let
us introduce the function&f(-, ) of two variables(g; v) € S. x D(F), (0;v) — he(o,v) =
o(f[F(v)]). Thenh; = he(v,v), v € D(F). The mapping — hs(-,-) is an injection into the
setCC of real-valued function$ defined on the product, x D(F) such that the dependence
o — f(o,v) is affine bounded continuous for each fixgdand (o, v) = f(o,v/) for all v/ €
F~1[F(v)] = (a level set of the mappingF), for each fixed € S.. Continuity properties of the
functionsy — Ef(g, v) are determined by propertiesBfand by the continuity of' — (F'). The
elememfzf € C% will be called thefunction representative of the (bounded) G—observabl¢
of the system; elements@f will also be called theG—observables The first variabley € S,

in f(o, ) will be called thequantum variable, and the second one, € D(FF), will be called
the G—classical variable(cf. Section 3.4 for motivation of such terminology) of the (function
representative of the) observatfle= C¢. The functiomys : v — h(v) := v(f[F(v)]) will be
called thereduced function representativeof f € C¢.

(i) Functionshy, andhy, for unbounded observablas, can be introduced as (not everywhere
defined)function representatives of unbounded observablesn analogy with the case (i) of
bounded observables, ifey (o, ) = Tr (oY (F(v))) on a corresponding domain ifi, x D(F)
(the domain specification would be here, generally, difficgt).

We shall next introduce states (as linear functionals on an algebra of “observables”) corre-
sponding to the general concept of “genuine mixtures” introduced in the Subsection 2.1-e. They
will be “suited” also to the just introduced constructions determined by the represerifdton

2.3.5. Definitions (G-states).

(i) Let ME Dbe the set of regular Borel probability measuresPxiF) (with its Borel structure
coming from the metric topology 6%.). The genuine mixturgs € M© determine the sﬁg of
the G—classical states,, of the considered system: The elementse S(C%) := (CY)%, (=
the state space of the*-algebraC®) are determined by their values, (f), f € C¢ expressed
by the integrals:

W, (f) := p(hy) = /u(f([ﬁ(u)))u(dy), Vi e cC. (2.3.3)

Elementary stateg € D(F) are represented by Dirac measuig&sconcentrated ap.

In these states, the values of the quantum variahjéﬁf(g, v) copy those of the classical
variable. If the “microscopic state” described by the quantum variable is not connected with the
classical variable in this way, one arrives at definition of more general states:
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(i) Let ¢ : D(F) — S., v — 4(v) be a Borel function. Let the statg, ; € S(C®) be defined
by

wp,s(f) = / o) (F(F())) p(dv) = / Tr(@(u)f(F(z/)))p(dy). (2.3.4)

The set of all such states, , € S(C“) will be denoted byS. The elementsy,, 5 of S¢ will
be calledG-states Clearly S¢ C Sg. The functiong playing the describeddle will be called
herequantum deviation functions. Forw,, ; € S& one has(v) = v. &

2.3.6. Definition (G—systems)Let a unitary continuous representatiéhG) of a Lie groupG

be given. The model of a (quantummechanical) physical system of EQM in which the sets of
its (“system determining”) generators, states, and (bounded) observables coincide with the sets
of the G—symmetry generato’, G—classical state§</, and G-observable§® (resp. UG-
observablesﬁ{j) respectively is called th&—classical fesp. UG—classical) quantum system

or just theG—system (esp.UG-system) based on the representatiéf(G). The G—system (re-

sp. UG-system) will be also denotedXyy (resp. by> ). One hastg = Yy forirreducible

UG). <

2.3.7.Remark. This (basic) definition will need, probably further elaboration. The bracketed
expressions “system determining”, and “bounded” has to indicate, that also other generators etc.
are possibly acceptable in the theory. Similar remarks might be, probably, added to several other
parts of the here presented (working) version of the theory, called here “EQM”.

The definition of “G—systems” leads to a formally (and, perhaps, also intuitively) natural, and
also “operationally” transparent, definition of “subsystems”:

2.3.8. Definition (G;—subsystems).

Let a G—system be given Bj(G), and letG; C G be a Lie subgroup of the Lie grou@.
The restrictionU (G) of U(G) to G is a continuous unitary representation 6;. TheG;—
systemX¢, (resp. UG —systemXy¢,) determined by this restriction is th& ;—subsystem
(resp.U Gy—subsystemof 4. &

Let us note that the definition of states of a subsystem given in Subsection 2.1-e with a help
of the “partial trace” fits into a special case of the presently introduced definition &f the-
subsystems: It should be chosén:= U (H . ;;)—the unitary group of the set of all bounded
operators orH;.;; = H; ® Hyy, and as the the Lie subgroup we chodsg := U(H;) ~
U(H1) ® Iyy,,, with U(+) being their defining (identical) representation(s). The linear QM can
be considered here as described by the subalgelfg @bnsisting of constant functions only
(what is an alternative to the choi¢e:= {e}, cf. point 3.1.1).

2.3.9. Let us express now the Poisson bracket between the reduced function representatives of
two observable§ [in C“. This is done by a repeated use of the composite—mapping theorem, [1,
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61]. For the casen := dim G < oo, from(2.2.14) and(2.2.25)we have:

b)) = iv(fE)E@)]) +i S (M) V(IX(), (EW))])

2"\ or,
#i 3w (Fg ) e X))
HEWDDY , (AEDY gy
+%€:V( OF; > V( OFy > F*{F}, Fi} (v). (2.3.5)

One can immediately deduce from this expression also expressions for Poisson brackets of spe-
cific cases of elementary quantum and G—classical observables.

We shall formulate now the solution of a quantummechanical dynamical equation of a G—
system in terms of a classical equation on the group mangfol@he solution will also show us
that G—systems are “self-consistent” in the sense that the G—(classical) generators generate flows
leaving the sets of G—observables, G—generators, as well as the G—classical states together with
their algebraic and topological structures invariant.

Let us assumdim G < co. Lety : G — G be a differentiable mapping, lete G be the
unit elementg = 7.G. The tangent mapping.~ : .G — TG is defined by

T = | o) = Tep(exn(o), € €5

LetR, : ¢ — Ry¢' = ¢'g (9,¢9' € G) be the right action oz onto itself. Let us identify the
tangent spac&rg* in any pointF’ € g* with g* itself in the canonical way (as any tangent space
to a linear space), and let its duB}g* be identified withg** = g (canonical identification for
reflexive spaces). Then, for ady € C*°(&r, R), and anyF’ € &, we havedr@Q € g. The set

&r is Ad*(G)—invariant, cf. Proposition 2.2.32.

2.3.10. Proposition.Let U (G) be as above, an@ € C* (&, R), with complete Poisson flow
©? on&p. LetQ = F*Q € G, i.e.Qis a G—classical generator, cf. Definition 2.2.26(jii).

cl?

Then there is a unique infinitely differentiable solutigh: R x & — G, (¢; F) — go(t, F') of
the differential equation on the group manifold:

%QQ(t,F) =TeRyyt,7)(dr,Q) € Tyow,rG, 9q(0,F) =e, (2.3.6a)
with F; := <thF, for all £ € &. The functiory, satisfies the cocycle identity:

90(s, ¢ F)gq(t, F) = go(s +t, F), (2.3.6b)
and it determines the flow® according to the following relation:

PP F = Ad’(go(t, F))F. (2.3.7)
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The flowz< generated by the Hamiltonian vector fietg(-) from (2.2.26)is then given oD (F)
by

g0 = Ad* (Ulgo(t,F(0))]) e, 0 € D(F), (2.3.8)

with ¢ — U(g) being the given unitary representation Gf Hence,@.Q leaves all the orbits
O,(G) invariant. &

Proof. The flow »? leaves theAd*(G)—orbits invariant, since it is a Poisson flow and the
Ad*(G)-orbits are symplectic leaves of the Poisson (—Berezin) structugg,di77, 7, 274].
HenceF; € & (F € &) forallt € R, anddr,Q € Tr,g* = g := Lie(G). The vectors
T.R,(drQ) € T4G (g € G) form a right—invariant vector field o6+ for eachF € &g, and
vo(g;t; F) = T.Ry(dr,Q) (t € R,g € G) are values of—dependent vector fields (for any
F € &) on G. Their infinite differentiability follows from the properties &. The existence
and uniqueness of the solutigp of (2.3.6) fulfilling (2.3.6) are then consequences of the theory
of ordinary differential equations on manifolds, cf. [40].

Let¢ € g. The derivative of Ad* (g (t, F))F](€) = F(Ad(gg(t, F)~1)¢) att = 0 equals,
according to (2.3.6), td&'([¢, drQ)]), what can be rewritten in the form of Berezin bracket for
& :=dph, h € C=(g*,R):

d . B d
= tzoh(Ad (90 (t, F))F) = dph (dt

AT (g0t F))F) = Q)P
t=0
This, together with (2.3.6), proves (2.3.7).

The generatof) € gg generates, on the other hand, a Poisson fiéWon S,. Since
Q =F*Q, (2.3.8) is proved by (2.2.25), (2.3.6), and (2.3.7). O

2.3.11.Interpretation.

(i) Let us assume that a standard measuring procedure can be associated with a given mathe-
matical quantityj € C“ (or wit a quantity that can be described by an unbounded selfadjoint
operator—valued functio — Y (F')) which leads to a numerical resultat each individu-

al repetition of the measuring performed on the system—object. We understand here that with
each such individual measuring act there is necessarily accompamgigistaation = detection

of a copy of considered system—object. This means that, contrary to often accepted definition
of “measurement process” in QM, performing a statistical empirical test measuring the (aver-
age/per time) number of incoming systems in a beam (leavig a preparation apparatus), as well as
of the (average/per time) number of systems approaching (entering) the apparatus, a knowledge
of efficiency parameters of the apparatus, and also exact knowledge of (calculated) final state
of measured objects “entered into the apparatus” (i.e. the state just before being detected by a
“counter”), all of this together is not sufficient for presence of a measuring actOr, in other

words, the resulh of each individual measuring act should be represented by a (macroscopic)
change of initial state of measuring device which is observable as a stable mark (i.e. a “trace”
repeatably testable by different, namely by any “correspondingly educated”, human observers
with the same result of the tests with, possibly, standard statistical deviations), e.g. a “new point-
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er position\ of the measuring apparatu&”. (It might be useful to stress also here that such a
measurement process is not yet satisfactorily formalized in QT.)

We assume that this belongs to the union of the spectra {§p]] of selfadjoint operators
f(F) (resp. spectra of generally unboundé@F’) — f(F)):

A€ U{sp[f(F)]: F €&} CR.

(i) We propose the following interpretation of the introduced observagbte€®, or, more gen-
erally, of any (“sufficiently measurable”, so that the integrals in (2.3.9) can be defined, cf. Defi-
nition 2.3.3(iii)) selfadjoint operator-valued functidh: F(e &) — Y (F) = [; AEy (g (d)),

cf. also [27, 33, 31, 264, 265, 266]:

Let 1 € MY be a genuine mixture, and lgte a quantum deviation function, both together
defining the corresponding statg ;, cf. Definition 2.3.5. Let3 C R be a Borel set. The prob-
ability of realization of the detected valugse B at repeated measurements of the observable
Y : F — Y (F) in the (repeatably “identically” prepared) statg ; is expressed by:

prob(Y's ; 0)(B) = /D ) B (B) ). with o) (B) = Tr(o(0) )
(2.3.9)

if the integral exists#
Let us illustrate this general interpretation scheme on more specific examples:
2.3.12.Examples

(i) Let x € M€ be a genuine mixture describing the stafee S¢ of asystem, leB C R be a
Borel set, and leEy () be a projection (spectral) measure of the selfadjoint operatér), I’ €

Er. Then probability of finding inB the obtained value (i.e. the result) of a measurement of the
observabley — Y (F(v)) in the statev,, is

prob(Y € B;pu) = prob(Y; u)(B) = [D(F) v(BEy #y)(B)) p(dv). (2.3.10a)

For the specific choice of the measure= ¢,,, we have then
pI“Ob(Y; 51,)(3) = U(Ey(]}:(y))(B)) = TT(I/-Ey(]F(,,))(B)), (2310b)

what is the usual probability distribution of the measuring results in QM of the observable de-
scribed by the operatdr (F(v)) performed on the system prepared in the (elementary) state
v € D(F). The expectation (if it exists) of an observable C% in any statev,, is expressed

by (2.3.3).

76 According to this understanding of the content of the “process of measurement in QM”, the measurement of a spin—
coordinate of al /2—spin particle by a Stern—Gerlach apparatus is not realized after passage of the particle across the
inhomogeneous magnetic field, in spite of the fact that the wave function of the state of such a particle is splitted into two
“macroscopically separated” beams: QM does not exclude a possibility of rejoining and interference of the two beams,
hence they are not yet “macroscopically distinguished”. The spin—component is measured only after detection of the
particle described by the two—beam state vector, i.e. only after the “in which beam—question” is practically resolved (by
an appearance of a “macroscopic trace” corresponding to just one of the eventualities).
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(ii) Let us choose in the above formuldg F) := he(F) = fe(F)I = F(§I (£ € Lie(Q));
then

By (r)(B) = dp(e)(B)l = x5(F(§))L (2.3.10c)

wherey s is the characteristic function (= indicator) of the set B. Hehge= CS is a classical
observable. Let us denog (v) :=F(v)(§)e R, £ € g, v € D(F). In the considered case
we have

prob(be, 1)(B) = /D o Xa(Ee) ) = (7 B]) = () (2.3.100)

where the measurpe: = p o ]Fg1 on the real lineR was introduced.’

We shall now define transformation law$s for observables,
Frofoi=72(F), feCC,

corresponding to the actions of the flow8 on S, described in the Proposition 2.3.10. We shall
assume that

hs (B2 (V) = hy, (v), (2.3.11)

what corresponds to the transition from the Scfinger to the Heisenberg picture in QM. This
assumption is reflected in the following definitions.

2.3.13. Definitions (G-transformations).
(i) Let us consider a G—system. Let us choose 9neGS, Q = F*Q, with complete flowp?

cl»
onS,. ThenyQ determined by, *F(1) = F(32v) is the flow with Hamiltoniarg) on &. Let
uq be the solution 012.1.23)(with f replaced byQ), cf. also Definition 2.3.2(v). Then, for an

arbitrary G—observablg € C“, we set:
R(F) == (1) (F) = uq(t, F) (¢ F)ug(t, F). (2.3.12a)

In terms of(2.3.7)and (2.3.8) we can write alsaiq (¢, F') = U(gq(t, F')), hence:

T2 (H(F) = Ulga(t, F) ") f(eiF) Ulgq(t, F)) = Ad(U(gq(t, F) ™)) f(efF).
(2.3.12b)

We shall callr®Q the one—parameteB—symmetry group generated byQ.

(i) Let a Lie group continuous unitary representatioiiG) be given. Elements of the Lie algebra
g of G are represented by affine functiohg ) € GS, ¢ € g, which are generators of one—

parameter groups of symplectic isometries of our elementary phase spadeet a subgroup
o(G) c*-AutC® of *-automorphisms of th€*-algebra of observable&“ be determined by:

[0(9)f)(F) :== Ulg) j(Ad* (g™ )F)U(g™"), ¥ feC® geG, F et (2.3.12c)
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The functiom x (¢) (€ € g) generates the flow* on S,, and forf € C% one has:

hi(@5v) = v((olexp(E)]) (F(v))) = hi(Ad" (U (exp(t€)))v). (2.3.12d)

The automorphism group(G) is induced by the unitary representationU (G). We also have
the expression of an arbitrary one—parameter G-symmetry gréup- *-AutC® in terms of
o(@), cf. Theorem 2.3.16:

(T(F) = [o(gq(t, F)"HIF). (2.3.12¢)

The groups (G) is called theG—automorphism group of C&.

(iii) Let  be a function—representative of an observable. Its evolu;t;%n f — f, under the
G-symmetry group® is expressed with a help of the functigs(-, -) from (2.3.6)as

fi(0,v) = 72 () (0, v) == F(Ad* (U (gq (£, F()))) 0, &°0)- (2.3.12f)

The transformation grouﬁtQ is the one—paramet&d—symmetry group of the function repre-
sentatives generated by). &

2.3.14.Remark (Transition probabilities).Let us stress here that in the general case

Ad* (U(gQ (t, F(y))))g % gb?g, for F(o) # F(v). (2.3.13a)

The transformation law for observables described in Definitions 2.3.13 leads to a natural nonlin-
ear generalization of the usual (“linear”) transformation of “transition probabilities”.

(linear case): In the linear case, time evolution is described in QM by a strongly—continuous
one—parameter group(t) of unitary transformations, i.€/(t) = exp(—itX) for a selfadjoint
Hamiltonian operatofX. Expectation values of an arbitrary (“linear”) observable= Y* in

time evolved states, = Ad*(U(t))p are

Tr(o:Y)=Tr(U#)oU(—t)Y) = Tr(oU(—t)YU(t)) =: Tr(oY?) (2.3.13b)

where the Heisenberg picture of the time evolutiont — Y; := U(—t)YU(t) (expressed in
terms of observables, instead of the evolution of states) was introduced. It is now trivial to see
that the expression

Tr(o:Y_t) = Tr (oY) (2.3.13¢c)

remains constant ihe R for any selfadjoint “observabl&™.

If one inserts now intd'r(oY") for the observablé™ = Y a one—dimensional projectidp;,
and for the density matrix another projectifp, then one obtains the well knowrdnservation
of transition probabilities " 7"

Tr(P,P,) = (U ®|U (1)) = | (xly)]. (2.3.13d)

77This interpretation of “transition probabilities”, by which one of the vectors represents state preparation (“source”),
and the another corresponds to a detector, connected with their invariance at symmetry transformations, is also in accor-
dance with [120, 1.3.1].
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This seems to be usually interpreted as a trivial consequence of equal unitary transformation of
the two vectorse, y € H entering into the scalar product. Hence it is usually interpreted as an
expression of the fact that “the transition amplitusgween two state vectorg:, y € H” does
not depend on time, if both states are evolved by the same time transforrigtipn

This (mis—)interpretation is repeatedly presented in connections with definitions of “symme-
tries” in QM, [280], and with the celebrated Wigner’s theorem, which can be formulated in the
following way:

(Wigner's theorem): Let ¢ : P(H) — P(H) be a bijection conserving “transition amplitudes”,
ie.

Tr(P,P,) = Tr(¢(Py)é(Py)), Yo,y € H, (2.3.13¢)

then there is either unitary or antiunitary bijectiop : H — H such that(P,) = Py,., Vr €
H.

Symmetries in QM are then defined as transformatipnesp. Uy, satisfying conditions of
the Wigner’s theorem.

After reformulating the two mentioned interpretations of the “transformations of probability
amplitudes” in the nonlinear case, we shall return to the problem of a choice between these two
interpretations in Interpretation 2.3.15.

(nonlinear case 1): Extending the above last mentioned (mis-)interpretation mechanically to
nonlinear case, one obtaifrson-conservation of transition probabilities” :"®

Tr(g(P)g(Py)) = (2.3.13f)
Tr(U(gq(t, F(Py)))P.U*(9q(t, F(P:))U (9q(t, F(Py)) P,U* (9q(t, F(P,)))),

whatcannot be constant in timec R if

U*(9q(t. F(P:))U(9q(t, F(Py))) # "I, a € R.

Hence, if we calculate the “transition probabilities” according to the algorithm taken from
the linear QM in the case of nonlinear evolutions, we obtain “generically” their dependence on
the parameter of transformations (on the time). This seems to be in contradiction with the usual
meaning of “transformation groups” in quantum theory.

(nonlinear case 2):Let us now, however, accept the first mentioned interpretation of the “tran-
sition amplitudes”, i.e. thatxz|y)|? is the expectation value of the “observalflg’ in the “state

P,” (or vice versa). “Observables” in our generalized (nonlinear) quantum mechanics are repre-
sented by operator valued functions of “elementary states’s,., possibly via the momentum
mappingF, or by the corresponding function representatives. The transformation groups act on
them in accordance with the equations (2.3.12), hence the transformations depend (generally) on
pointsF(p) of Lie(G)*, hence on the states Expectation of an observable— §(F(o)) in the
elementary statg equaISTr(gf(IF(g))), cf.(2.3.3). If we transformp as@tQ(g), and the observ-

ablef is transformed simultaneously by the automorphism group transformﬂ‘_ﬁ(jn (2.3.12),

"8We write herelU* (g) = U(g)*.
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and we calculate then the expectation of the transformed observable in the transformed state, we
obtain in accordance with (2.3.13e)

Tr(¢io (T4 (F(370))) (2.3.13g)
= Tr(U(gq(t,F(0)))eU* (9q(t, F(0))U (gq(t, F(0))f(F(0))U* (9q(t, F(0)))
=T7(ef(F(0))),

i.e. the result independent ok R, as it is usually required. If the observable is, ¢(f(0)) =

P, ,i.e.itis independent of, then again it should be transformed by the same way, so that the
transformed observable becomes, in general case, a functprHeice, forp := P,, one has

Tr(U(gq(t, F(P)) PoU (gq(t, F(P:))U (9o (t, F(P:))) P,U (9o (t, F(Py))) = Tr(PyPy),
(2.3.13h)

and the time invariance of transition probabilities is, trivially, again obtairigd.
We shall now return to the interpretation question of the “transition probabilitf’P, P, ).

2.3.15.Interpretation (Probabilities and measurements). If we use the concept “probability”

in connection with our empirical experience, it is always (perhaps) connected with a quantifi-
cation of “observed phenomena”, or of “occurred events”. A meaning of sentences like: “The
probability of the chosenalue of possible eventualitg o > 0" appears to us (irempirical
sciences) unspecified without the “eventuality” being in some sense “realizable”. After an ex-
perience with QM, we know that “an event” is always correlated with a change of stwom-
scopically observabléhence classical, in a general sense) parameter value. We conclude from
this that probabilities ascribed to states in QM should be connected with the quantummechanical
“process of measurement”: They express some “weights” connected with (macroscopic) results
of measurement; these weights are usually interpreted as “frequencies of occurrence” of specific
results at repeated preparations of “the same microscopic state” and consecutive measurements
of “the same physical observable” (let’s note that this time—ordering corresponds to our, perhaps
a priori, demand of causality).

All empirically interpretable (and verifiable) assertions of QM are formulated in terms of
“probabilities”, expressed usually by squares of moduli of “probability amplitudes”. These prob-
abilities are often called, cf. [201], tH&ransition probabilities” . Let us ask now, what “tran-
sitions”, or/and transitions between what things are meant in this formulation? The mentioned
probabilities are of the forri'r (P, P,) = |(x|y)|* for normalized vector$) € H correspond-
ing to pure states of the considered microscopic system. The standard interpretation scheme of
QM (cf. [74, 201]) tells us that if a system is prepared in the dtatend the measured observ-
ableY has nondegenerate pure point spectrum (i.e. a complete orthonormal set of eigenvectors
ly;), 7 € J=anindexsetY |y;) = Ajly;), A\j € R,Vj € J, \; # X\, for j # k), hence if it is
possible to write

) =Y (yjla)ly;), Vo eH,
jed
then only possible results of the measurement of the quaitéye the numbers;, j € J, and
the probability of obtaining the result; in a vector statéx) at measuring o¥” equals to

prob(Y = Aj;z) = [(y;]z)[>.
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This interpretation is the generally accepted one (according to the present author's knowl-
edge). The denotation of this probability as “transition probability” can be understood in connec-
tion with the Dirac—von Neumanftprojection (resp. reduction) postulate”, [74, 189], stating
that after obtaining the result; the measured microsystem changes abruptly its initial state
into the eigenstate of the measured quarjty corresponding to the obtained resijt Hence,
there is assumed a “transitian— y,” of the microsystent?

A remarkable (in the presented formulation mathematically trivial) fact is the symmetry of
prob(Y = A;; x) with respect to interchange of the vectarandy;. This formal mathemati-
cal symmetry (although not being without some deep physical content) might (mis—)lead us to
consider occurrence of the vectarandy; in the “transition probability” also as physically sym-
metric. We have to keep in mind, however, that the eigenvegtoase here in theale of labels
of macroscopic “pointer positions”, whereas the veatoepresents a preparation procedure for
the microsystem. This can be expressed with a help of the spectral méaswoifey”:

prob(Y € B;z) = Tr(P,Ey(B)), B <€ B(R),

where we havely ({);}) = P,,, in the considered specific case. This physical asymmetry
remains valid irrespective of (non-)acceptance of the “projection postulate” of Dirac and von
Neumann.

To conclude, we hope that it is seen from the above considerations that in the (mathemati-
cally symmetric) expressiofir (P, P,) for probability of a certain measurable (i.e. observable)
phenomenon described in QM, the interpretation of the two veetogsshould be mutually dif-
ferent: One of the vectors represents a given (prepared) state of the micro-object, and the second
represents a measured observable. This leads also to formulation of the symmetry transformation
rule for these expressions generalized to our nonlinear EQM. Those symmetry transformations
leave the “transition probabilities” invariant also for nonlinear generators. An a priori require-
ment for such an invariance is, however, of little determinative power, from the point of view of
our presently defended interpretation, cf. also [3§].

2.3.16. Theorem.Any G-symmetry groupr® of a G-system (resp. UG-system) is a
o(C%, S¢)—continuous one—parameter group*sutomorphisms® C *-AutC¢ (resp.C *-
AutCH). The relation

hi(32v) = v(r2§(F(v))), Vi € C¢, Vv € D(F), Vt € R. (2.3.14)
is satisfied for this group of automorphisms of tiie-algebra of G-observableZ”. &

Proof. The algebraic properties af<, and also ther@—invariance ofCS are consequences

of (2.3.12), and of the cocycle identities (2.3.6), (2.1.24). The relation (2.3.14) is a consequence
of (2.3.7), (2.3.12), (2.2.17), and of the relation (2.3.8). FE“, S&)—continuity, i.e. that for

all p € MY, f e CC the functionst — wH(Tth) are continuous, and, o 2 e 8¢ (Vi € R),

follows from (2.3.12), (2.3.3), the continuity propertiesfofgq, andU, as well as from the
Lebesgue dominated convergence theorem. O

79This postulate, however, needn’t be accepted: It cannot be usually (or even always?) verified if the measured system
is really detected. As an exception might be considered the “indirect” measurement, when a correlated system is detected,
what is the case of EPR-like processes. We prefer not to formulate any assumptions on the form of states of measured
systems arising after measurements of a general type.
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2.3.17.Remark. The flow ¢® is determined by the automorphism grodfd uniquely. This
association needn't be, however, injective: Different automorphism grou@s oén, for a gen-
eralU(G), lead to the same flo? on the elementary state spage This possible ambiguity

can be seen from (2.1.26), where different operator—valued funatiensf’(v) with values in

the commutan{r}’ can be chosen, cf. also [31, egs. (2.29), (2.30)]. The whole state space—
transformation groups a$(C%) defined as the dual mappings to the one—parameter grdtps
are, of course, different for the differen2. We could try, e.g., to transform by them general
states fronSq. ©

2.3.18.Interpretation. The theorem 2.3.16 shows, that our nonlinear dynamics can be de-
scribed with a help of &-automorphism group of our algebra of observaldl€s resp. ofCS,

which is aC*-algebra, hence it corresponds to standerebr descriptions of quantum systems,

cf. [118, 42, 91, 120]. Since o@*-algebraC® is essentially (a weak completion of) the tensor—
product algebraC(H) ® C(&r, C) (let us ignore here some topological aspects of definitions),

it corresponds intuitively to a quantummechanical system composed of the “traditional” one,
described by observables #{#), and of a “classical subsystem” with the “generalized phase—
space’&r. Hence, our nonlinear quantum dynamics can be considered as a specific restricted
description of dynamics (in Sabdinger picture) of a general quantum (“linear”) system ob-
tained by expressing just the evolution of “microscopic elementary states (resp. mix8es)

(as states on the algebra of “microscopic observable<(iH)) only, and leaving the evolu-

tion of other degrees of freedom of the composed system explicitly unnoticed. For some further
comments of this point cf. Section 3.4

2.3.19.Remark. We shall be interested now in the possibility to represent the Lie algebra el-
ements¢ € g by some nonlinear generatdis € G5, and, correspondingly, to represent the
group G by continuous “nonunitary” Poisson automorphisms.of We shall formulate here

one of such possibilities obtained “trivially” by a “nonlinear” Poisson morphism from the linear
representatiol’ (G). This possibility was in [273] classified as “equivalent” to the linear repre-
sentation. This equivalence is, of course present from the abstract mathematical point of view
of theory of Poisson systems. But the quantummechanical interpretation depends on the met-
ric structurel’,, on S,, which is not invariant with respect to such Poisson morphisms. Hence,
the physics obtained by such a “trivial delinearization” of U(G), as well as of other “G-
structures” based on U(Gight be quite different from physics coming by traditional way

from the linear representation U (G). ©

The following proposition describes an example of mechanism of the mentioned “delin-
earization” (cf. Remark 2.3.19) of te—structuresased o/ (G).

2.3.20. Proposition (Nonlinear G—realizations).Let the G—system based on a unitary contin-
uous representation U(G) be given. Lkebe a Poisson automorphism &f (specified, e.g. with
a help of an open neighbourhood&f) leaving each symplectic leaf invariant:

O f hy ={¢7 . h} for f,h e O (&, R). (2.3.15)

¢ and

cl?

Lethe := £ :=F* o y*fe, £ € g. Thenff € G

{2 19} () = —£¥

¢t (V) forv € D(F), &n € g, (2.3.16)
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and the associatioh y (¢ — fé” (¢ € g) is a Poisson Lie algebra isomorphism.
Let®¥(g) := ¢~ o Ad*(g) o ¢ : & — &Er; the mappingsb? (g) form a group of Poisson
automorphisms ofr such, that its one—parameter subgroups

OF b= DL (1) := D (exp(tE))

are the flows generated b’ := 9" f; (¢ € g). Thent{ are generators of their “lifts’®} to

the Poisson automorphism groupsSfdetermined by the G—symmetry groups’ := 7 with
Q:= fg’ according to the equation®.3.12) hence also

he(®¢ () = v((7V(8) (F(v))), Veec?. &
Proof. Recall that (cf. Definition 2.2.17)

hxe)(v) = fe(F(v)) = F* fe(v), v € D(F),

and the pull-back has trivial kernel ifi(&r,R). Since Rarif) consisting of Ad*(G)—orbits
is dense infr, a continuous functiorf,, identically vanishes on each orbit lying &, hence
vanishes oy, iff there vanisheg)* f,. It follows that the associatiohy ¢) — fg” (V¢ eg)isa
bijection. Itis linear in¢, and the formulas (2.2.25), (2.3.15), and (2.2.22) show the conservation
of the Poisson brackets, hence the validity of (2.3.16).

It remains to prove, that the “deformed” fIO\AI’%’ are generated bygw. Leth € C=(&, R).
Then

d

ai),_, (P WF) = dyr ()7 h) 0 adg (W F) = (UF) ([dyr (67~ 1), €]

= {fe, @) DY@ F) = v { fe, ) TTRHEF) = {f, h}(F),  (2.3.17)

where we defing—ad;) := (ad¢)*, the dual mapping of the inner differentiation of the Lie
algebraade : n — [£,n]. This proves the proposition. O

2.3.21.Examples As a large class of examples of mappingsoccurring in the Proposi-
tion 2.3.20, we can choosge := ¢ for any nonlinear) € C>(&x, R) with complete Hamil-
tonian vector field (hence flow) ofir, with a fixed value of € R. The question of a physical
interpretation of such “nonlinear deformations” of the “linear” one is left open Kere.

Let us consider now the specific case of a physical system described (in the sense of EQM)
by aC*-algebraC := C(&,2), with £ an Hausdorff compact, arifla simple unitalC*-algebra,
cf. Definition B.2.5; the continuity of(€ C) : F(€ &) — §(F)(€ 2) is here uniform in the
norm of. E.g., we can uséim H < oo andU (G) irreducible in our previous costructions, and
then we shall havél := L(H), andE(C g*) some compact convetd*—invariant set. In this
caseC ~ A ® C(&), [227], and the structure of such systems can be described now with some
additional details. Let us mention first, [31, Proposition 2.6]:

2.3.22. Lemma. The pure states € S(C)(i.e. extremal points of the(C*, C)—compactS(C)=
Ci,) are of the form

w(f) = wa (f(F,)), Vi eC, (2.3.18)

wherewgy € S(2l) are pure states o, and F,, € £ is fixed.
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It could be useful to compare this assertion with Definition 2.3.5 to see what states of the
C*-algebraC are not contained in the set of states determined by that definition.

Let us now describe the general form of symmetry—transformations (i.e. the automorphisms
of C) of such a system, cf. [36], and [32, Remarks 3.15] for more complete (but there unproved)
formulations:

2.3.23. Proposition.Let aC*-algebraC := C(&,%) be given as above. Then there is a canon-
ical bijection betweeny € *-AutC, and coupleq¢.; 4}, wherep,, is an arbitrary homeomor-
phism of€, and4 is an arbitrary mappingy : £€ — *-Aut®, F — 4g, with the functions
F — 4p(x) (¥x € A) being all norm—continuous. The bijection is determined by the identity

YH(F) = Ar (o4 F)), (2.3.19)
valid for all f € C.

Proof. Due to the simplicity of, the abelian subalgebi@(€) of C coincides with its center

Z = Z(C). The centerZ is invariant with respect to anf~automorphism o, hence the
restriction ofy to C'(€) is also an automorphism. The Gefand—Najmark theory of commutative
C*-algebras (cf. [187, 103, 101], and also Example B.2.3(jii)) implies that-th@tomorphisms

of C(€) are in a bijective correspondence with homeomorphigro§€ onto itself.

(i) Let v € *-Aut C. Then the corresponding homeomorphigmis defined by:

(V(EF) = f(psF), VfeC(E)CC, VFEeE.
Let an arbitraryx € 2 be considered as a constant function — an elengert C :=
C(&,), x(F) =x =x-I(F), wherel(F) = 1, VF € £. Then the value/(x)(F), f € £ of
~(%) € C will be denoted by

Ar(x) =y&X)(F), VFe& vxel

The pointwise character of algebraic operation€’i{€, 2() implies that in this way defined :
F — A is a*—morphism ofX into itself.

We shall show thatr is a nonzero morphism (hence an isomorphism, due to simplicity of
) forany F' € £. A general elemerftof C is uniformly approximated by elements of the form

Fa=> x5 F(F) =D %(F)-£(F), x €, fj € C€)CC, (2.3.20)
J J

hence also by the elements of the fonfj’), sincey is a*-automorphism of. For the elements
of the form (2.3.20) one has

VFIE) = 3 Ar () fi( F). (2:3.21)

For a zero morphismg, it would bev(f)(Fy) = 0 for all f € C, what cannot happen, since both
2, andC (&) are unital. It follows thatyr € *-Aut A, VF € £.
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The formula (2.3.21) implies then (2.3.19) due to continuity of alliheas well as ofy:

)P = 4 (Z Xj'fj(sowF)) .

The continuity ofy : F' — 4 follows from the continuity of each functioR — ~(f)(F'), f € C.

(i) Let us now have given any homeomorphigm of the Hausdorff compadf onto itself, as
well as an arbitrary strongly continuous family: £ — *-AutC, F' — 4p. Let us define the
mappingsy : C — C, and~y, : C — C as follows:

e(N(F) =y F),  w((F):=4r((F)), VieC Fe€. (2.3.22)

The continuity and the morphism properties of the gijenand¢., show that both the map-
pings¢, and~y, introduced in (2.3.22) are-automorphisms of. Hence the formula (2.3.19)
determines an automorphism: C — C as the composition of these two automorphisms:
v:i="y0¢ € *-AutC. O

This proposition allows us to view also a degree of generality of the before introdased “
transformations”, cf. Definition 2.3.13, at least in the present simple case: Without further sym-
metry requirements, the general automorphism group contains much more continuous subgroups
than we have introduced in Definition 2.3.13. It might be worth mentioning that, under some con-
tinuity requirements ontg € *-Aut 2 (mg—normality, [36, 32]), the homeomorphispy, can be,
in specific models (mean—field, cf. also Subsection 1.1-b, and Section 3.4) uniquely determined
by the set of automorphismgr : F € £}.
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3 Specifications and Applications

It will be shown in this chapter that the general scheme for dynamical theories developed in
Chapter 2 applies to a wide scale of existing physical theories. Different specifications of the
formal scheme mainly consist in choices of classes of “generators”, “observables”, and “states”,
cf. Definitions 2.3.2, 2.3.3, and 2.3.5.

A choice of the representatidii(G) belongs to important general tools for such a specifi-
cation, i.e. a determination of a G-system, cf. Definition 2.3.6. There are, however, also other
possible ways for determination of a specification; some of them are connected with models
already published in literature. Let us give first a review of some of these specifications.

3.1 A Review of Considered Specifications

There is a whole array of general physical theories and/or their “caricatures”, resp. “approxima-
tions” covered by the general model of d&xtended Quantum Mechanics” (EQM) described

in Chapter 2. Let us mention here briefly some typical of them, resp. some of possible applica-
tions of EQM; most of these will be described in some details later in this chapter:

3.1.1 (Quantum Mechanics).

Traditional (linear) quantum mechanics (QM) is obtained as the specification corresponding
to the G—system with trivial groupr = {e} = {one—point set consisting of the unit element
e € G}, cf. Section 3.3, esp. Subsection 3.3-b. Another possibility of obtaining QM from EQM
is the restriction of any G—system to the subalg@lﬁa: C%, and accepting only such generators
the flows of which Ieavé,’qG invariant.&

3.1.2 (Nonlinear Quantum Mechanics).

Nonlinear extensions of QM “living” on the projective Hilbert spaeéH), and containing in
their setg7“ all “relevant” generators is called here the nonlinear QM (NLQM). A specific choice
of “observables” also depends on the accepted interpretation scheme; the same concerns the set
of states of a chosen theory. Note here that, in the framework of this “specification”, it is possible
to describe also the “general theory”, because, e.g. all density matrices could be expressed by unit
rays in the Hilbert spac® of Hilbert—Schmidt operators, cf. Remark 3.2.1; such an approach
seems, however, in a certain sense “unnatural”, because it needs some additional restrictions.
NLQM will be shortly discussed in Subsections 3.3-a, and 38-e.

3.1.3 (Subsystems in Macroscopic Environment).

The ideas leading to the theory presented in this work are closely connected with models of
infinite quantum systems with specific dynamics “of mean—field (MF) type”, cf. [130, 31, 32, 33,
264, 185, 87]. We shall not go into details on this point in this paper. It was shown, however, in
Theorem 2.3.16, that all the nonlinear evolutions generated by G—(classical) gen@ratgi§
can be described as one—parameter groupsaftomorphisms of &'*-algebra, namely the
C*-algebraC®. Let us note here that thi§*-algebraic description allows us, in this formal
framework, todistinguish elementary mixtures from genuine oneslin the case if the domain
Er C g* can be identified with the whol&, (what is possible in the case of the choige= 4 :=
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U(H)), elementary mixtures are just the pure (i.e. extremal) states of the ab&lianbalgebra
C§ c c¢. For some further comments see Section &.4.

3.1.4 (Classical Mechanics).

Classical mechanics (CM) of a system with a symmetry gi@up also contained in EQM:

Let a “kinematical” symmetry groufr of a classical Hamiltonian system be given; we shall
assume for simplicity that it is a connected and simply connected Lie group. Let the phase space
of this system be a homogeneous spac@ ahe action ofG being there symplectic. This phase
space can be identified with a coadjoint orbit of the gréypr of its one—dimensional central
extension, [148]. Natural generalizations of these systems are Poisson systems “living” on an
Ad*(G)-invariant part ofLie(G)* = g*, cf. Section 1.4, and also Appendix A.4 (for literature
on classical mechanics see also [277, 1, 7, 258, 172, 8, 179]). We can see from Section 2.3 that
our scheme of EQM restricted to the algeBfaleads to description of any suct“-symmetric”
CM-system as a subsystem of our (quantatsystem

3.1.5 (Hartree—Fock Theory).

Specific “quasiclassical” and/or “selfconsistent” approximations for QM described as dy-
namics on manifolds of generalized coherent states, [221, 149, 199, 200], i.e. the “classical
projections of QM”, [27], are contained in EQM as well; these specifications include the sys-
tems obtained by the “time—dependent variational principle”, [200, 154]. An important special
case of these is the time—dependent Hartree—Fock approximation; the corresponding (infinite di-
mensional) set of generalized coherent states consists now from all Slater determinants of an
N-fermion system, and the grogpis the whole unitary group of one—particle Hilbert space, cf.
Subsection 3.3-db

3.1.6 (Specific Time—Dependent QM).

A class of qguantummechanical systems with time—dependent Hamiltonians can be found
as a subtheory of EQM,; it appears to be identical with the corresponding (time independent)
NLQM. This class includes, as a special case, the nonlinear dynamics (for pure states) proposed
by Weinberg in [273}° The “integrability” of such systems is determined by integrability of
corresponding classical Hamiltonian systems; cf. Sections 3.5643.6.

3.1.7 (Aspects of Quantum Measurement).

The developed theory provides a possible framework for dealing with the old fundamental
question of QM — the measurement problem, resp. the problem of “collaps of wave packets”.
Such a possibility is here, however, except of several included remarks and notes at various
places of the text, left just on the level of this unspecified hypothdsis.

Since the large part of this chapter will consist of formal constructions on a unigakeKan
orbit O, (), i.e. the projective Hilbert spacB(H) consisting of one—dimensional projections
0 = 0?, it would be useful first to examine the manifold structure?gf{) in some details. Our
analysis is mainly based on the earlier author’'s works [26, 27]; the obtained structures, as well
as used mathematical devices are essentially identical with independently composed papers by
Cirelli et al., cf. mainly [63, 62].

80There is no need of any restriction BY(G) in finite dimensional Hilbert spaces.
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3.2 Structure of Projective Hilbert Space

Let H be a complex Hilbert space. Elementof H will be naturally associated with the
corresponding elements*® of the topological dual spacK* of H via the Riesz lemma, i.e.
z*(y) := (z,y) (VYy € H); the mappingz — =z* is an antilinear isometry of{ onto
‘H*. The space of Hilbert—Schmidt operatcsgswill be (linearly and isometrically) identified
with the tensor produc ® H* in such a way, that the operator (in the Dirac notation, [74])
|z)(y| = ¢ ® y* € L(H) acts as follows:

|2){ylz = [z)(ylz) = (y,2)z, VzeH.

The scalar product isp is then

(z@y" z®u"), =Tr(ly)z]-|2)(u]) = (z,2)(u, y) = (z]2)(uly).

3.2.1.Remark. There is a natural question whether the dynamics (in general — nonlinear) of
density matrices described in Chapter 2 as dynamics on the 6Ipt$) with arbitrarydim (o)

can be described equivalently as a “corresponding” dynamics on the projective Hilbert space
P(ﬁ) > p of some another Hilbert spac$, i.e. a dynamics on the “one-dimensional” orbit
O,(4) with dim(p) = 1, & := U($H) = (the unitary group ofZ($)). This question can be
motivated, e.g., by the fact, that any density matriin a separable Hilbert spadé¢ can be
considered as the “partial trace”, [71, Section 10.1], of a one—dimensional projéttion a
tensor—product spadé ® K interpreted usually as the Hilbert space of a composed QM—-system
containing the considered system (occurring in the states a subsystem described?f(this
assertion is almost trivial: it can be proved by an explicit constructioR,0from p); cf. also

(iii) below. Let us mention here three possibilities of description of “mixed states dynamics” by
a dynamics of vector—states projected to sdP(8):

(i) Let us recall that the trace—class operators@re $ C L(H), where the spac$ is the space

of Hilbert—Schmidt operators endowed with a canonical Hilbert space structure. This shows that
one could formulate all the theory of Chapter 2 “in principle” on the orbit of the unitary group
U(9) of $ consisting of one—dimensional projectionspfi.e. the projective Hilbert spade($)

of $. This would need, however, an additional work to distinguish what elemen® ©f are
relevant in what physical situations and, moreover, what unitary transformatignsdarrespond

to those used in Chapter 2.

(i) Another possibility to describe also density matrices and their (possibly nonlinear) dynam-
ics in framework of a projective Hilbert space comes from elements of the Tomita—Takesaki
theory of modular Hilbert algebras, cf. [253, 42]: Letbe Hilbert space of a faithful weakly
continuous representation of the considered von Neumann algebra of observables (in our case it
is L£(H)) with a cyclic and separating vector; that part}b(fsa) which is the image by the canon-

ical projection$y — P(.sa) of the natural positive conP in 9, cf. [42, Section 2.5.4], describes

the wholeS..(L(H)).

(iii) The last possibility to be mentioned here is that one considering the density matri%(H)
as the partial trace of sonfe, € P(H ® K). Let us assume that both the Hilbert spatéand

IC are infinite—dimensional separable.{t;ﬁ,i”; k € Z,} C His an orthonormal basis 6f such
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that the given density matrixis
oo
1 1
o= Nlef) eI,
j=1

then, for any orthonormal bas{g/;,(f), k € Z,} of K, the vectorz € H ® K defined by

sm 3 VA @ U

JELy
has the desired property: For adye £(H), with Ix the identity in£(K), one has
Tr(oA) :=Try(o-A) = Trugic(Pe-A® I).

This formula defines the mappifig« : P, — o called thepartial trace, cf. [71]. The mapping
Trx can be extended by linearity to whole spdgé{®K) of trace—class operators on the Hilbert
space of the “composed system”. Let, ewg.(¢, o) be a unitary cocycle describing (nonlinear)
evolution ofp € ¥(H) according to Proposition 2.1.15. Then

o(t) = us(t, 0)ouy(t,0) ",

and the corresponding evolution ofc H ® K can be chosen as
2(t) = Y VA (st 0005”) @ 0.
j=1

Now one has to solve the problem whether and how this evolution can be described by a unitary
cocyclety, (¢, z) acting onP(H ® K).

We do not intend to elaborate further these remarks in this work. They were mainly men-
tioned here to stress importance of the special orldit(@): the projective Hilbert spacB(H).
v

The projective Hilbert spac®(H) will be considered as a complex—analytic manifold, the
structure of which will be presently described.

3.2.2. Notation. The elements dP(H) will be identified with one—dimensional projections and
denoted also by boldface lowercase letteys= P, € P(H), y € y, i.e. we shall consider ele-
ments ofP(H) interchangeably as equivalence classegtiny := {z € H: IA € C,z = Ay},

and as one—dimensional projectioRs = Py. In the case if0 #)y € H is expressed by for-
mulawritten in any type of letters, then we shall use the boldface expression in boldface brackets
to write down the corresponding symbol for the clgss P(H), y € y := (formula). ©

Let us define now an atlas on the manifét§):

3.2.3. Definitions (Atlas onP (H)).

(i) Thetopology of P(H) will be defined as the factor—topology coming from the Hilbert—space
norm-topology ofH{. It can be shown, [27], that this topology is equivalent to several other
natural topologies induced oR () by its embedding to the Banach spac¥gt), $, ¥, or also

to several weak topologies coming from the duality relatiey; C) — Tr(CP,) = (C; P,.).
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(i) The charts on P(H) consist of neighbourhoods

Vy :={P, € P(H) : Tr(P,P,) # 0} (3.2.1a)
of the pointsy € P(H), and their (y—dependent) mappings

0y Vy = lyl" Po = 0y(x) = lyl*(y,2)" (I = Py)x (3.2.1b)

onto the complex orthogonal complemefts- (considered as complex Hilbert subspaces(pf
of nonzeroy e H, y € y.

3.2.4. Proposition. The mapping,. is a homeomorphism df, onto [z]* (with the norm—
topology ofH). The set

{(Vxi0z) : 0 # z € H} (3.2.2a)

is an atlas onP(H) defining a complex—analytic manifold structure consistent with the topology
of P(H). &

Proof. For anyy; € Vy, and anyy; € y; (j = 1,2), itisy1 # y2 iff (2,92)y1 # (z,51)pe,
hence according to (3.2.1, is injective.

For anyz € [z]* andy := 2 + z, we havey € Vy (sincez # 0), andd,.(y) = z, henced,
is bijective. Let||z|| := 1. Forz; € [z]*, y; := z; + = (j = 1, 2) the identity
1
(lzal? + Dzl + 1)

L =Tr(Py, Py,) = (1 = 2oll® + Nz2ll* (1 = Poy) (21 = 22)|1%)

(3.2.2b)

implies the bicontinuity of,,. For any0 # z; € H, j = 1,2, and forz € 6, (Vx, N Vx,), we
have

xr1+ 2

—1 _ 2
By 007)(2) = ol T

Z1

— 29, (3.2.2¢)

and we can see, cf. [40, 58], that the mapping
0z, 0 9;11 20, (W, N Vsy) — Oy (Vae, NVy,) (3.2.2d)
is a complex analytic function. O

The tangent spacg&, P(H) of P(H) aty € P(H) will be identified with the linear s-
pace of classes of mutually tangent differentiable curvey as in the finite dimensional
case, [1, 61, 151]; this is in accordance with our results from Subsection 2.1-b, cf. Definition-
s 2.1.3, and Proposition 2.1.5. For any differentiable mapgin§a neighbourhood o§ onto
a neighbourhood df(y) in another differentiable manifold, the corresponding tangent mapping
T,6 maps the vectow € T, P(H) represented by a cunte— c,(t) (¢v(0) = y) onto the
vector tangent a(y) represented by the curve— 6(c, (¢)). If x € Vy (hencey € V), 1,0,
mapsTy, P(H) onto[z]*, and the choice of := y € y (in the index off,) leads to a natural
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(y—dependent) identification @, P(H) with [y]* (and also withVy). The vectow € Ty P(H)
(lety be fixed) is mapped onte,, :=Ty0,(v) € [z]*,

_4d
Tt

A

0, (co(t)). (3.2.3a)
t=0

One can choose, e.g.,
ov(t) == (exp(—itB(v))y) = Ad*(exp(—itB(v))) Py, (3.2.3b)

where B(v) is a selfadjoint element of (H) representing an arbitrarily chosen vectore
Ty, P(H) in this way. With such a choice @(v), one has the expression

P, P,
. 1.2 (7 ylz
vy = —i(z,y)" ||zl <I Tr(Pme)> B(v)y. (3.2.3¢c)
Forz = y, this leads to
vy = —i(I — P,)B(v)y. (3.2.3d)

Specifyingv by the choice of any € [y]*, and by the choice

B(v) = illyl = (Jo)(yl = ly){v]), (3.2.3¢)

one obtainsr, = v. With a chosery € y, and the corresponding “identificatiéy” of T, P(H)
with [y]*, one can identifw = v = v,,. For different choices of in (3.2.3), on the other hand,
one obtains expressions andv,, of v in different chartg),, andd, related mutually by

v. = el ) el (1= 2 v, @24

Let us note thatz, y)~!|y)(z| = P,P./Tr(P,P,). One can now also check validity of the
following two mutually inverse relations:

_ —1 2 _ PyPac
vo = o) el (1 b ) v 3252
and
vy = ||z 7 (z, y)(I — Py)va. (3.2.5b)

We shall conside?(H) as a real analytic manifold endowed with (integrable, [63]) complex
structure

J € T, (P(H))

(77 (M) denotes the vector space of alitimes contravariant ang-times covariant smooth
tensor fields on a manifold/) defined as the section— J, € L([y]*) with (Jyv), :=iv,,
i.e. the complex structure is determined by the given multiplication by the imaginary:Unit “
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H. The Kahler metricS” € 72(P(H)) on P(H), cf. [26, 27, 63], called also theubini—Study
metrics can be expressed in the following form:

Iy (v,w) = 2|y||"*Re(vy, w,), v,w € Ty P(H). (3.2.6)
The corresponding symplectic forfhe 7 (P(H)) is then expressed by:

Qy (v, w) := Ty (v, Jw) = —2||y|| *Tm(v,, w,,). (3.2.7)
These structures coincide @(H) with those coming from the tensor field cf. (2.1.27).

3.2.5. Lemma. The two—fornf2 in (3.2.7)coincides with the restriction to the orbit(#) of the
formQ from (2.1.27) &

Proof. The mapping3, defined in (2.1.7) fov := y € P(H) has the formg, (c) = ic, P,],
wherec € T, 0, (Y1) C T, is represented (cf. Definitions 2.1.3(iii)) by a bounded operator. If a
vectorv € Ty, P(H) corresponds to the curve

t— cy(t) == (exp(—itB(v))y) = Ad* (exp(—itB(v))) Py, (3.2.8a)
then the corresponding operator is
C=Cy = 4 cv(t) =[Py, B(v)]. (3.2.8b)
dt|,—o

By a use of Definitions 2.1.3(iv), one obtaifg(¢v) = ¢, (B(v)). Inserting these expressions
to (2.1.27), we obtain the relation

Q (v, w) = i Tr(P,lay (B(v)). gy (B(w))]), (3.2.8¢)
what is identical with the result of the corresponding insertions from equations (3.2.3) in-
to (3.2.7). O

Expressed in the chaft,, the Kahler structurel on P(H) has the form:
Ty (v,w) —iQy(v,w) = 2||y|| >*Tr(P.P,)(vs, (I — P,)wy). (3.2.9)

Inserting from (3.2.3) into (3.2.6) and (3.2.7), one obtains an expression ofihlekstruc-
ture in terms of the selfadjoint operatdB§v(x)) and B(w(x)) representing the vector fields
andw in any pointx € P(H), cf. also (2.1.27):

Uy (v, w) = 2]yl (vy, wy) =
2Tr(PyB(v(y))B(w(y))) — 2T (P, B(v(y)))Tr(P,B(w(y)))-

It can be shown, [62], that the distance functior,g( on P(H) corresponding to the Rie-
mannian metric§ is expressed By

d(x,y) = V2arccos / Tr(P, P,), (3.2.11)

81The derivation of the distancexdy) is easy after accepting the (plausible looking) assumption, that any geodesic
is contained in the submanifold &f(7#) homeomorphic to a real two—dimensional sphere representing the projective
Hilbert space of the two—dimensional complex subspa@é spanned by z, y}. The nontrivial part of the proof consists
in justification of this assumption, [30].

(3.2.10)
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with values in the interva[O; %} .

The linearity of conventional quantummechanical time—evolutions, as well as other symme-
try transformations is closely connected with the metrics (3.2.11). The corresponding mathe-
matical formulation is in fact a rephrasing of the very well known Wigner theorem, cf. Re-

mark 2.3.14, [280, 283]:

3.2.6. Proposition. Let @ be any bijection of?(H) onto itself conserving the distance function
d from (3.2.11) Then there is a linear, or antilinear isometny of H onto itself representing
® in the sense thab(y) = (ugy) forally € P(H) (0 # y € y). If ug is linear, then®
conserves also the symplectic fofin

(@7Q),, (v, W) := Qa(y) (Puv, Puaw) = Qy (v, W), (3.2.12)

i.e. ® is an isometric symplectomorphism Bf7). The mappingp changes the sign at the
symplectic fornf in the case of antilineats: ®*Q = —0. &

Proof. Conservation of d means conservation of the “transition probabilitEs{P, P, ),

Vz,y € H \ {0}; this means also conservation of the metric tedsoAccording to the Wign-

er theorem there is unitary or antiunitary bijectiop : H — H, as stated in the proposition.

But the symplectic form is invariant with respect to unitary transformation, as was shown in the
Remark 2.2.11. The last part of the proposition is a consequence of the fact that antiunitary map-
pings u change the value of the scalar produdtito its complex conjugate(uz, uy) = (y, x).

For more details cf. [62, 27, 63]. O

3.2.7.Remark. A general (“nonlinear”) symplectomorphism &) does not conservE (e-
quivalently: the distance function d). This might be considered as a strong argument for linearity
of QM, since, as we shall see soon in Section 3.3, the metric tensor leading to this distance func-
tion is a tool for geometric reformulation of the probability interpretation of QM. By introducing
the “nonlinear observables” and their nonlinear transformations, and also the corresponding inter-
pretation based on the “two point function representatives” of observables, cf. Definitions 2.3.3,
and 2.3.4, we have overcame the difficulty with noninvariance of this “interpretational device”
with respect to general symplectomorphisfis.

3.3 Symplectic Form of QM and NLQM; Restrictions of QM

The traditional (linear) quantum mechanics (QM) is completely described by kinematics and
dynamics onP(H), i.e. the effects connected with other parts of the “elementary quantum phase
space’S, containing density matricas# o? which are described by the formalism of Chapter 2
can be reproduced by the restriction of that formalism to the “one—dimensional7tfHit only,
and by “dynamics independent” manipulations with objects defined on it. This is due to linearity,
since the used transformations (time evolutions, symmetrieS) afe then affine mappings, and
expectations also affinely depend o® S..

In the terminology of Chapter 2, QM can be obtained as @Ghesystem on an infinite—
dimensional separable Hilbert spakiewith the trivial groupG := {e}. In this case, the s
of G—classical generators consists of constants. ThgSeif G—symmetry generators, on the
other hand, contains (densely defined) functibpscorresponding to all selfadjoint operatafs
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Observables can be represented by affine functigramly, since their function representatives

Ef do not depend on th@—classical variable in the ascriptior(o; v) — ﬁf(g, v). The “genuine
mixtures” u, ' € MY corresponding to the same barycentség) = b(y') are not mutually
distinguishable by measurements of tfieobservables, neither they could be distinguished after

a use of symmetry transformations (resp. evolutions) in the framework ofsthsystem. The
“permitted” (possibly unbounded) generators and observables include (densely defined) affine
functionsr — hx(v) := v(X) corresponding to selfadjoint operatcXs

We shall consider “nonlinear extensions” of this QM—system (i.e. otthsystem with triv-
ial G := {e}) by allowing evolutions of states by nonlinear generatdtsTo be able to deal
also with the questions of “integrability” of also nonlinear functions of thiegés, see Defini-
tions 2.2.13, it is useful to (choose and to) consider theseas selfadjoint generators of some
unitary representatio¥i (S) of a “symmetry grougs” associated with the considered system (e.g.

S could be the2n + 1-dimensional Weyl-Heisenberg group, i.e. the standard one—dimensional
central extension, [148, 267], of the commutatdve-dimensional group of translations in clas-
sical linear2n—dimensional phase space, see below in this section). These versions of nonlinear
quantum mechanics (NLQM) are not symmetric with respect to transitions beSabdéidinger

and Heisenberg picturesThey can be used in Sdbdinger picture only, since a nonlinear (i.e.
nonaffine) transformation &, cannot be expressed by some “transition to adjoints”, [41], as a
transformation of thalgebra of linear observableshis algebra could not stay invariant with
respect to such a transformation.

Another way of “transitions to nonlinearity” in QM consists in restrictions of (linear) dynam-
ics of QM to submanifolds aP (H) (or also of%), e.g. to some orbit®, (S) of a representation
V' (S). We can obtain in that way also usual “quasiclassical”, or “self-consistent” approximations,
e.g. WKB, or Hartree—Fock approximations as versions of NLQM, cf. also our Subsections 3.3-
c and 3.3-e. The grouf needn’t be interpreted, however, as a group of transformations of a
“classical background” (cf. Section 3.4) beidgnamically connectedith the system, as it is
in the case ofy7—systems with nontrivialz and general (nonlineary—generators. Only affine
functionsr — f(v) (and their restrictions} defined on dense sub—domainsSfare used here
in the Bles of the generators as well as observables. All the “traditional” quantities are “essen-
tially contained” in the sets of corresponding quantitiesuoy G—systemD(F) is dense inS,,
and for calculation of any bounded (hence continuous) obseryablef € Cf (= L(H), cf.
Definition 2.3.3) one can use valukgv) for v € D(F) (cf.(2.3.3), and Interpretation 2.3.11).
The general observablés; used in the dle of generators could, however, violate the relation
¢ D(F) C D(F) for someG—systems.

We shall describe in this section the symplectic reformulation (equivalent to the usual Hilbert
space formulation) of traditional (linear) QM, as well some of its restrictions to submanifolds of
P(H) leading to nonlinear dynamics (corresponding, e.g., to some “quasiclassical approxima-
tions”) the general form of which was described in Chapter 2. Let us first, however, formulate
briefly a general nonlinear quantum mechanics (NLQM) on the projective Hilbert dpdee
to point out some differences between QM and NLQM.

82Such an extension of QM can be obtaifgdrestrictionof a G—system with nontrivialz in the way, that we shall
admitlinear observables onjyi.e. the observables represented by nonconstant operator—valued functi&nsvitiroe
ignored (cf. Definitions 2.3.3).

83Restrictions of affine functions to submanifol®s (S) considered as Hamiltonians on the phase spéggs) lead
generally, however, to nonlinear dynamics on these submanifolds.
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3.3-a Generalized quantum mechanics o (H)

We shall consider here a general (nonlinear) EQM, but we shall restrict our attention to dynamics
and kinematics restricted t8(H) only. Let us choose also a Lie grogpand its unitary repre-
sentation/ (G) such, that the space of generatgfsincludes all the (nonlinear) generators we
want to use in the theory. Let us consider, however, only elementary quantum obseﬁ?ables
cf. Definition 2.3.3(ii), in the dle of bounded observables we intend to interpret in the considered
model. Hence, for nonlinear evolutions, the Heisenberg picture will not be used. We shall call
the chosen systemrastricted G—system(i.e. restricted to the “restricted quantum phase space”
P(H) C 8., with the restricted set of observablég).

If X; = X are elements of the representatidiii(g) of the Lie algebrg of G, then the
typical form of the (“restricted”) generato3 € G will be

Q:v(e P(H)) = Q(v) = Q(v(X1),¥(X2),...),

with @ € C*(g*,R). The corresponding nonlinear Sélinger equations are discussed in
Sections 3.5, 3.6, and also in Subsection 3.3-e.

Let us denoteFp(3 := C°(P(H),R) the differentiable functions on the Banach manifold
P(H). The differentialif € 7"(P(H)) of f € Fp(3) can be determined by the formula

def(w(x) = & (e (=itB(9))). (33.1)

with B(w) specified in (3.2.3), for any vector fielt € 7,'(P(H)). The symplectic fornf
is strongly nondegenerate [61] dA() (cf. Theorem 2.1.19), hence it associates with each
[ € Fpny aunique Hamiltonian vector field; on P(H) such that

Q(vy,w) = —df(w),Yw € T} (P(H)). (3.3.2)
The (local) flow/ of v leavest invariant, hence for the Lie derivativé,, we have:
£y, Q2=0.

The Poisson brackdtf, h} := Q(vy,v) € Fp(3) determines the differential equation (equiv-
alent to the Sclirdinger equation for affine f) for the Hamiltonian flog/. Also the following
formula (well known from CM, [7, 1]) is valid here:

dh(vi)={fh} (Vh € Fpmy).

We shall formulate now a necessary and sufficient condition under which a furfctiafp 4
is affine, i.e. is expressed by a linear operator:

3.3.1. Proposition. Let f € P(H), and letv, is the corresponding Hamiltonian vector field
on P(H). LetI" be the canonical (Khlerian) metrics onP(#). Then£,,I' = 0 iff there is a
bounded selfadjoint operater= a* € £(H) such that:

f(X) = ha(x) :=Tr(P,a), 0#zé€x. (3.3.39)
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In the case off = h,, vy is complete, and one has
@! (x) = (exp(—ita)z), t € R, x € P(H), 0 # z € x. (3.3.3b)

Hence the flows of those Hamiltonian vectors fialgsvhich conserve the metridson P(H)
correspond to norm continuous one—parameter unitary groups ol

A proof is contained in [63, Propositions 3.4, and 3.5], resp. in [27].
Let us introduce also thRiemann bracket[[-, -]] in accordance with [63]:

([fs h]] =T (v, vn). (3.3.4)

An immediate consequence of (3.2.10) and of the Proposition 3.3.1 is the following lemma, cf.
also [63]:

3.3.2. Lemma. Leth, € Fp(y) be defined for any € L(H) by (3.3.3). Then for any selfadjoint
a,b € L(H), the following formula holds:

2hy * hy, := 2hap = [[Ra, ho]] — i{ha, b} + Rahb. (3.3.5)
The mappings — h,(x) (x € P(H)) are continuous in the weak operator topolody.

Due to (3.3.5), we can calculafer(P,a™) (Vn € N) in terms of the functiorh,, what
allows us to express the probability interpretation of QM in differential geometrical terms on
P(H): The formula (3.3.5) leads us (via the functional calculus) to a rule for calculatibp of
for an arbitrary real bounded Borel functigrdefined on the spectrua(a) ofa = a* € L(H),.

Then the numbeh,)(x) = Tr(P.f(a)) can be interpreted as the expectation value of the
“observable” (represented by the operatf(®)) obtained by averaging of repeated measurements
of f(a) in the (repeatedly prepared) pure quantum state S.. The probability of finding
measured values of a selfadjoint ain an interyaC R is then expressed by taking fgrthe
characteristic functiory ; of that interval:

prob(x,a € J) = Tr(Pyxs(a)). (3.3.6)

Calculating expectations of arbitrary selfadjoint adfi*) for any (elementary) mixture
o € S inthe standard way from the expectations in pure states (by corresponding convex combi-
nations), we obtain the resdit-(pa), in accordance with QM.

Let us stress also here that eacsuch thab? # o € S, can be decomposed in uncountably
many different ways into (not necessarily orthogonal) convex combinations

0= NPuiy A=0,) N=1,
J J

of one—dimensional projection3,;), z(j) € H (representing pure state¥) Different decom-
positions (P, ;); Aj; 5 € J), and (Pyrjy; N5 j° € J') of a givenp can be represented, in

84This is an essential difference of QM from CM.



112 3 Specifications and Applications

another language, by probability measuygs ., on the state spacg. with the samévarycen-
tre b(p,) = b(u’g) = p, the measures being concentrated on at most countable sets of points
(i.e.onthe set$P, ;) : j € J}):

to({ Py }) = Aj, Vi € J,

hence the states, (11 = p,, f1,,, - - - ), all representing the samegive the following expressions
for expectation values ef € L(H),:

apla) = [ vlap(dv) = [ Tri@nta)

S.
= / Tr(av)pu(dv) = / ha(Pp)p(dPy) (3.3.7)
Jpr) P(H)
=Y ha(Pog))u({Pagy}) = Tr(b(p)a) = Tr(oa).
jeJ

In “orthodox” linear QM the states corresponding to measures$.owith the same resultant
are indistinguishable. This is one of the important differences of QM from NLQM (also in the
framework of our restricted model of EQM).

3.3.3.Note. Let Q be a nonlinear generator of time evolution in our theory. Then, according
to Proposition 3.3.1, its flows® does not conserve the canonical metiigshence it does not
conserve the distance functidn: P(H) x P(H) — R,. From the expression (3.2.11) of the
distance functionrl(P,, P,) we see that, in turn, it does not conserve the “transition probabili-
ties" T'r(P, P,) = |(z|y)|* between the states y € P(H). This shows, however, that different
measureg # u' with the same barycentrég;.) = b(n’) can have different barycentres after
sometime # 0 : b(uo ¢9t) by o 92&), and validity of some of the equalities in (3.3.7) will
depend on time (cf. also Subsection 2.1-e). This might lead to prediction of superluminal com-
munication (for a specific, but rather conventional, interpretation of the process of measurement
in QM), as is pointed out in the Interpretation 2.1.22.

3.3.4.Interpretation. In the traditional interpretation of QM, the expectation value of the nu-
merical results of measurement of an “observable f” (i.e. a scalar—valued function f of quan-
tum statesgy, in this case an “affine” one, respaKler function in the terminology of [63]) in

an arbitrary (pure) statg € P(H) equals to its value ¥, i.e. for f:=hx, the expectation is
hx(y) = Tr(P,X) = (y|X|y), if |ly|| = 1. The calculations of these expectations are close-

ly connected, in the orthodox QM, with eigenstates of the operatofassume now, thak

has pure point spectrum). In terms of the presented “geometric formulation”, the eigenvectors
x(k) = |x(k)) € H,

X|z(k)) = ki |z(k)), k € K, Z Py = In,
ke K

resp. the one—dimensional eigenprojectidg,) = x(k) € P(H), are exactly the “stationary
points” of the generatorky, cf.3.3.5.

Stationarity of the pointg (k) is rather a “dynamical property”. The observable probabilities
can be expressed with a help of the projection meadiyfeof X : Ex(J) := xy(X), as
above, see (3.3.6).
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Let us denote theigenprojections of X corresponding to single eigenvaluesby Fi,

Ep:=Ex({rx}) == > Puy-

JEK:kj=K

Then the probability of obtaining the resuit, if X is measured on the system prepared in the
statey € P(H), is

prob(y; X = ki) = Tr(EpPy).

The values of these probabilities, féim £, = 1, i.e. B, = P, ), are the above discussed (cf.
Remark 2.3.14)transition probabilities” , and the values of the functidny in these points
P,y are just the measured eigenvaluks;(x(k)) = . Hence the expectation value af
with pure point spectrum in an arbitrayye P(H) is

(X)y =hx(y) = Z Tr(PyPy)hx (x(k)) = Tr (Z hx (x(k:))Pm(k)Py>

keK keK

(3.3.8)

keK

The first sum is often interpreted in the sense of classical probability, [95], by considering
occurrences of different;, (better: of different orthogonal eigenstates) as independent “events”,
and the functionx(k) — T'r(P,P,y)) is a measure on the space of these “events” deter-
mined by the staty € P(H), and consisting of the “transition probabilities”. If the concept
of the “transition probabilities” (which is coming from an interpretation of quantum measure-
ment) were taken seriously also for NLQM, and tlideraccepted for the stationary points
{x(k) € P(H) : dya)f = 0} =: S(f) of a “nonlinear observablef (cf. [273]) were for-
mulated as above, in the case of linear observdbBlesth keeping unchanged the above formu-
la (3.3.8) for calculation of expectations, i.e. if we postulated something like

(fly == Y Tr(P.P)f(x), Vy € P(H),

xeS(f)

then we would come to a contradiction: The “nonlinear” functfowould be affine:

f=hy, Y:= Z fX)P,.

x€S(f)

This consideration indicates that a “traditional-like” interpretation of observables expressed as
numerical functions o () (our “reduced function representations”, cf. Definitions 2.3.4) can-
not be used in NLQM.¢

85This means that we would work with such an “observable” as with a random variable in the sense of Kolmogorov
formulation of probability theory, by which the stationary states form the the whole space of “elementary events”.
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3.3.5. Lemma. Let X = X* be any selfadjoint operator 6K with corresponding (densely de-
fined) functiom x on P(H). Letx +— dxhx be its generalized differential (cf. Definition 2.2.9)
defined on the domaiR(h x ), cf. also Lemma 2.2.7, and Proposition 2.2.8. Then the psifits
lying in the domain oflh x in which the differential vanishes, satisfy the relation

depyhx =0 & X|x(k)) = rp|z(k)), (z(k) € x(k) € P(H)),
i.e. they are exactly the one—dimensional eigenspacas &

Proof. The differentiald, hx can be represented, according to considerations in Subsection 2.2-
b, on its domain by the bounded operator

dehx = qu(X) = PoX (I, — Py) + (I — P)X Py = P, X + XP, — 2P, X P,

and its vanishing implies commutativity @f, with X, i.e. invariance of the one—dimensional
subspace with respect to the action oX. For proof of the converse, the arguments go in the
reversed order. O

We stop here with general considerations, and we shall turn now to more specific cases.

3.3-b  The Weyl-Heisenberg group and CCR

The2n + 1-dimensionaWeyl-Heisenberg groupGyy g (it is also called thédeisenberg group
can be chosen in our theory either in tldder of the group defining aG—system, cf. Defini-
tion 2.3.6, or in thedle of the above mentioned Lie gropdetermining domains for general-
ized fields (cf. Definition 2.2.13). We shall investigate here the action of the standard irreducible
Schibdinger representatiobi (Gw ) of Gy on H in some details, as well as the quantum
kinematics and dynamics constructed with a help of it. As an expression of the corresponding
Lie algebra relations between generators we obtain the usual definiti@asonical commu-
tation relations (CCR).

Let us recall that thén + 1-dimensional grougy g can be defined as the group of square
(n+2) x (n + 2)—-matrices, [148, 287]:

1 —q s
9(¢,p,5) =0 I, p"], (3.3.93)
0 0 1

whereg := {q1,¢2,...qn} € R",p:={p1,p2,...pn} € R", s € R, I, is the unitn x n—matrix,

pT is the transposed row(i.e. the column vector), aneis have an appropriate meaning of zero
submatrices according to their place in the matrix. The group multiplication is represented by
the matrix multiplication:

9(qg.p,8)9(d 0, s") =gla+d,p+p,s+5 —qD), (3.3.9b)

with ¢-p’ = Zj qug. Let’s note thatp” (or p) can be considered as an element of the dual
(R™)*, hence its value op € R" is (pT; q) := q-p := >, 4iDj-
The groupGyy & is a central extension, [148, 267], of the commutative giRép > (q¢; p) =
x (with respect to the additiom + z’) by the additive groufR, corresponding to theultiplier
(in additive notation) [267, Chap. Xh(z,2') = —p'-q.
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3.3.6.Note (Multipliers and quantization).The commutative grouf®?” is naturally identified

with a classical phase space, or with the group of its translations. As any commutative group,
it has only one—dimensional linear (unitary) irreducible representations. It has, however, many
(mutually inequivalent) infinite—dimensionpiojective representations i.e. “unitary represen-
tations up to a phase factor”. Namely multipliergx, y), =,y € R?", i.e. real-valued functions

on the direct product of two copies of the grol{F"* x R?", satisfying

m(x +y,2) + m(z,y) = m(z,y + 2) + m(y, z), m(z,0) =m(0,z) =0, (3.3.10)

are the (logarithms/of the) phase factors of the (noncommutative) projective representations.
In a more general setting, 1€t be a Lie group, and say/ (G) be its continuous projective
representation with a multiplien: Let g, -g> € G denotes the multiplication i& (e.g. addition
inR?"). Letm be a multiplier ofG, i.e.m : G xG — R satisfying the relations in (3.3.10), with,
e.g..m(g1-92,93) — m(x +vy, z), etc. The projectiven—representationV (G) is characterized

by unitarity of the allV'(g)’s, and by the relation:

V(g1-92) = exp(i-m(g1,92))V(91)V (g2). (3.3.11a)

One can make from these “unitary up to factors” representaligiis) genuine unitary represen-
tations of larger noncommutative grou@$, constructed from the original group (e.g. from
our G := R?") with a help of the corresponding multipliers. Thesecentral extensionsG,,
of a Lie groupG are constructed as follows:

Let (g;A) € G x S, with St := {X € C : |\| = 1}. Then the central extensidf,, of the
groupG by the commutative groug' (resp. byR, if the “corresponding logarithms” are taken)
corresponding to the multiplier. consists of the couplgg; ), and the group multiplication is
defined by

(915 A1) (923 A2) 1= (91'92;GXP(i‘m(gl,QQ)))\MQ)- (3.3.11b)

This simple procedure makes from a (say, commutative) g@wgmother (noncommutative)
group G,,,, providedm is not exact exactness ofn means the existence of a real function
a : G — R such, that

m(g1,92) = a(gi-g2) — a(g1) — algz). (3.3.11c)

If the difference of two multipliersn, — ms (what is always again a multiplier) is exast; and
mo are (mutually) similar, ocohomologous

Let us take now then—representatiof’ (G). It can be “translated” into a unitary representa-
tion V(G,,) of G, as follows:

V((g:N) =2V (g). (3.3.11d)

There is a certain “both-sided” correspondence between projectiveepresentations” of
G, and a class of unitary representations(df,. For details cf. [267, Theorem 10.16]. As
we shall see in a while, traditional “quantization” of classical flat phase spaces corresponds to
specific choice of a multiplier off := R?", determined by the experimental value of the Planck
constanti. ©
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To any similar multiplier 7/ related torm by a real-valued functiom : (G 3)z —
a(z), a(0) = 0:

m (z,2") = m(z,2') + a(z +2') — a(x) — a(z’) (3.3.123)

corresponds the central extension isomorphi&tpy. The choicea(q;p) = %pw] gives the
following group—multiplication inGy g (corresponding to a reparametrization of the abstract

groupGwg)

- ~ - 1
(g, p,9)3(d, 0,8 ) =agla+d,p+p',s+s + §(q’-p —p'q), (3.3.12b)
and the corresponding matrix representation is
1 —q s—pq/2
9(g:p,s) =0 I, P’ , (3.3.12¢)
0 O 1

what corresponds to the form usually used in QM, as will be clear soon.

The Lie algebra oty can be described as the matrix algebra consisting of derivatives of
matricesy(g, p, s) with respect to the parameters. Let the bdsis&y;j = 1,2,...2n} in the
Lie algebraLie(Gw ) be chosen such, that an arbitrary elentert Lie(Gy ) is of the form

n 0 —a p
&y, 8) =D (bnss +75&) + B = (0 0n 7T> ; (3.3.13a)
0 0 0

j=1

whereco;,v;, 8 € R, j =1,2,...n. We shall use this parametrization here.
The commutation relations abie(Gyy i) are expressed by this basis as

[£j+n7 §k+n] = 07 [5]7 é-k?] = 07 (3313b)

[fj,f]ﬁLn] = jk&]y j,k = 172,...71. (3313C)

Those element8’ of the dualLie(Gw g )* for which F'(£y) # 0 can be parametrized in the basis
dual to the chosen one ibie(Gw ) by parametergg, po € R™, sgp € R\ {0} in such a way,
that they can be conveniently described by the matrix

0 0 0
F(qo,po,s0) = | sop5  0n 0. (3.3.13d)
so  Soqo O
The value of the linear functiond with F'(§y) # 0 on the elemen§ is then
F(§) == (F;€) = Tr[F(qo0,po, 50)&(a,7, 8)] = (q0-7 — po-a + B)s0. (3.3.13e)
For F's with F'(§y) = 0, we have
F(&) =) (ajF(Enty) + 1 F(€)) + BF () = > (;F(6nts) + 1 F(E)))
j=1 j=1

(3.3.13f)
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The coadjoint action on elements wilt(&) # 0 is expressed then by

0 0 0 0 0 0
Ad*(g(q,p,s)) | sopd  On O = [ so(po+p)" 0, o|. (3.3.13g)
so Sogo 0 50 so(qo+4q) 0

It is easy to see that the poinis € Lie(Gwg)* with F(&,) = 0 are all stable with respect to
Ad*(Gw m)—action. Hence, theld*(Gw i )—orbits are either single poinfs with F'(§;) = 0
covering a2n—dimensional hyperplane, or the whole hyperplanes with fixegs 0. Let us
note that the action afid* (g(q,p7 s)) does not depend on the parameter R, hence its above
expression is independent also on the considered reparametrizatin of

All irreducible unitary representations, of Gy g (which are more than one—dimensional)
can be parametrized by a real parametet 0, and they are realized iH:=L?(R") as follows
(in the parametrization of (3.3.9), [287]):

[T (g(g, p, $))¥](q') = €2+ Dap(g' — q), ¥ q,¢',p € R", s € R, 9 € L*(R™).

(3.3.14)
The generators af, corresponding to the chosen parameters are
—i AP} = % [, = _a% = —i X(&4n), (3.3.15a)
iNQ; = % [, = i \g}- (i.e. multiplication by the variable})
=—iX(),j=1,...n, (3.3.15b)
i(A’Xo= Ll ma= @M = —iX (&), (3.3.15¢)

where the labels(” at the derivatives denote differentiations in the unit elementt gfy.

The Schédinger representation of CCR can be considered as that one given by the generators
of my with A := ;. We shall need, however, the “corresponding” group representati6y,of
expressing the Weyl form of CCR. If we use the parametrizatiotr@fy from (3.3.11), we
obtain the rewriting of the representatiog from (3.3.14) in the forni¥V (the Weyl form):

[Walg, p, s)0)(¢') = eAHPa =30 Dy (g — g), Yg,q',p € R", 5 € R, ) € L2(R™).
(3.3.16)

3.3.7. Notation. Let us denote th@rojective representation of the commutative groug?”
usually referred to as “the Weyl form of (the representation of) CCR"ByY(z) := W (g, p, 0)
with {¢;p} =: = € R?". Note that the projective representatid¥, of R?" differs from the
“corresponding” unitary representation af'y g just by a “phase factor”:

W)\(q7p7 S) = W/\(x)'eiksa

hence thedd*(-)—action of both representations &(H) is identical — it depends on elements
of the factorgroupgGyy 7 /R = R2" only.

LetX; := Q;, Xj1n :=P;, j=1,2,...n, X, := 11, cf(3.3.15) be selfadjoint genera-
tors of W,. LetST = —S = S~! be the2n x 2n—-symplectic matrix with elements

Sj j+n = _Sj+nj =1, j=1,2,...n; Sjk = 0 otherwise
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For selfadjoint operatorsY, Y onH, let[X,Y] = XY — Y X denote the commutator on its do-
main, and[X, Y] = i Z, for selfadjointX, Y, Z on’H will mean equality of operators restricted
to their common domair}

The operatorsX;,j = 0,1,2,...2n satisfy the (Heisenberg form offie canonical com-
mutation relations (CCR) on a common dense domain:

[Xj, Xk] = iSijQ, 7, k 75 0, (331761)

[X;,Xo] =0, j=1,2,...2n. (3.3.17h)

TheWeyl form of CCR is
/ Z)\ !/ /
Wi(x 4+ 2") =exp <?x5x) Wi ()W (2, (3.3.18)

and the unitary operatoi&’ are expressed by

2n
Wi(z) =exp (i AX-S-x) := exp (i)\ Z Xijka:k) . (3.3.19)

j,k=1
The following useful relation is then valid:
Wi(z) ' X;Wi(z) = X; + 2,1, Vje€{l,2,...2n}, z; €R. (3.3.20)

3.3.8. Notation. Let us writeW (z) = Wy (z). Let us define), := {Ad*(W(x))v : z €

R*"} = O0,(G) with G := Gwu, andV := {V, : v € D,(F)}, with F given byW, /,(Gw ),

cf. Definition 2.2.17 . LeK (z) := X-S-z be a selfadjoint generator of the (projective) represen-
tation W (R?"), i.e. the generator of the one—parameter unitary group exp(—itX (z)). The
densely defined Hamiltonian function generating the corresponding flow on the Poisson manifold
T, ishx (). Letus denote also-v := W (z)vW (z)* = Ad*(W (x))v. &

3.3.9. Proposition. (i) With the notation from 3.3.8, the (densely defined) functign,) has
D, (F)—generalized differential, which ig—integrable.

(ii) The orbitsV, are embedded submanifolds®f, each diffeomorphic to the “flat phase space”
R2",

(iii) The restrictions of the symplectic fornfx, introduced on0O,, (1) to the orbits),, are non-
degenerate, and the restrictions of the Momentum mappittgthese orbits are symplectomor—

phisms onto the coadjoint orbit @fy gy “corresponding” to the choice oky = — A : —ﬁ
cf(3.3.21) &

Proof. (i) The proof of integrability trivially follows from Lemma 2.2.16 and Proposition 2.2.14
, since the integral curves of the Hamiltonian vector field correspondinthig,) leave all
V., (v € D,(F)) invariant.
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(i) The second assertion follows from the Lemma 2.2.16, and from its proof. A more intuitive
argument is seen from the Momentum mapgihgestricted to any’, with a help of (3.3.20):
According In view of (2.2.17), thg—th component of (z-v) can be expressed as:

Fy(&)—Xg;,  forj=1,2,...n,
F (&) + M\pj_n, fOrj=n+1,...2n.
(3.3.21)

Fou(&) =Tr(vW(z)* X (&)W (z)) = {

what proves bijection of’, ontoR?".

(iii) The (densely defined) vector fielde; := v, corresponding to the basig;, j =
0,1,...2n} of Gwy form a basis off,,(V,) for any ¢ € V, for all V,.. These vector fields
are proportional to the Hamiltonian vector fields correspondinfy;to for the selfadjoint gen-
eratorsX; of the representatiol’; /,(Gw ). The vector fieldv, is identical zero. According
to (2.1.30), (2.2.7), and (2.2.4), one has

Qo(ve,vyy) = iTr(0[X(£), X (n)]), (3.3.22)
resp. from (2.2.25) one has
F*{he, hy} = {F*he, F*h, }.
The Kirillov—Kostant symplectic form on aAd* (G g ) orbits through?” has the form (2.2.23):
QF (ve, vy) = —F([&,1]).

From the CCR (3.3.17) one has

Qo(vj, Vitn) = =Q(Vitn,vi) = iTr(e[X(&), X(&1n)]) (3.3.23)
= —iNTr(0Q;, P]) (3.3.24)
= —Tr(eX(&)) = —s0 = A, (3.3.25)

and for the remaining indicegk : Q,(v;, vi) = 0. For the Kirillov—Kostant form we have

QR (Vi Vien) = —F([6,&54n]) = —F(&), (3.3.26)

what corresponds to (3.3.23) in accordance with the equation (2.2.25d); this proves the sym-
plectomorphism property df. The commutation relations (3.3.17) show nondegeneracy of the
restricted form2) := 43,9, for all relevanto.

It remains to prove that maps alll, onto a unique orbit. The basfs;, j =0,1,...2n} C
Lie(Gw g ) determines global coordinates on the duad(Gw i) *, F'(§;) being the coordinates
of F' € Lie(Gwg)* in the dual basis. Itis clear from (3.3.21) that on afyythere is a poinp,

suchthaif(gy)(¢;) =0, j = 1,2,...2n. The coordinates of other points on those orbits are then
n+1

F(z-00)(&;) = (~1)["FI\z;, j = 1,2,...2n, and the remaining coordinaléz- o) (&) =
Tr(vX(&)) = —A = —h~1,(3.3.15), hence it is constant on the orbit and of equal value on all
orbits, i.e. on all the imagd8(V,) C Lie(Gw g )*. This proves the last statement. O
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3.3.10.Remark. These considerations showed that the choice of a specific value of Planck con-
stant in QM corresponds mathematically to the choice of the coadjoint orléef labelled

by sp = -\ = —% determining a unitary representation of this group and, in this way, also
determining Heisenberg uncertainty relations and many physical effects connected with them.
Since unitary equivalent representations lead, as a rule, to indistinguishable physics, validity of
the mathematical theorem about unitary inequivalence of representations (3.3.14), or (3.3.16),
for different real values oA, “can be seen” also from the known physical measurability of the
Planck constant. ©

3.3-c Restricted flows with linear generators orO,(Gw i)

Let X be a selfadjoint operator on a Hilbert spealde and letU(G) be a continuous unitary
representation of a connected Lie gratip Assume that the orbit afld*(U(G)) througho €
D,.(F), cf. Definition 2.2.17, belongs to the domain&f O,(G) C D,4(dx). Let us assume
further in this subsection that the functiary is constant on the submanifoldsi* (U (Gr(,,)))v
forall v € O,(G), i.e. that it is apG—classical generator, cf. Definition 2.2.26(iv). This would
be trivially the case, if the momentum mappifigs injective on the orbitD,(G), i.e. if the
orbit 0, (G) is diffeomorphic to the coadjoint orbAd*(G)F(p). For further examples adG—
classical generators cf.2.2.27. We can now define the corresponding classical Hamiitpnian

h% : Ad*(G)F(0) — R, h%(F,) :==hx(v) = Tr(vX),Vv € O,(G) (3.3.27)

what is an infinitely differentiable function on the coadjoint orbit through The functionh$,
will be also calledhe (classical) Hamiltonian induced by(X; U (G)) on the orbitAd* (G)F (o).
The restriction oh x:

h% : 0,(G) = R, v— 0% (v) :==Tr(vX) (3.3.28)

generates the restricted flow &f, to the orbitO,(G).
Let us choose now := Gy g, andX := H, with
I 1,
Hi=2>" — P+ V(Q1, Q2 Qn), (3.3.29)

2
j=1

(cf.3.3.7) with some “convenient” real functidn : R — R. The “correct quantum evolution”
given byz(€ H) — z := exp(—itH)z (we set here\ = i = 1) leads to theEhrenfest's
relations for expectationg.X;); := (2| Xj|z), (j =1,2,...,n):

d 1
3 (@i = m_j<Pj>t7 (3.3.30a)
%<Pj>t = —(0;V(Qus- -+, Qn))i- (3.3.30b)

These relationare not differential equationfr the functiong — (X )., if the potential energy
V' is not at most quadratic polynomial @'s, cf. the text following Eq. (3.3.32). In the case of



3.3 Symplectic Form of QM and NLQM; Restrictions of QM 121

quadraticH := A from (3.3.32), the Hamiltonian evolutions given by the Hamiltonians (3.3.31)
lead to the results identical with those of QM (hence satisfying also (3.3.30xwith= (X;),).
Let us expresa?, corresponding tdd from (3.3.29) according to (3.3.27). Let:= o (cf.
the text on page 117 following (3.3.26)) wiifr(0X;) = 0, Vj = 1, 2,...2n, with the notation
of Subsection 3.3-b. We writlgy, p) instead off (v) with componentsg Az, cf. (3.3.21):

n

1 1

j=1

with

Vela) = Tr(eV(Q+a) + Y 5 —Tr(oP?).

The last sum in this expression is a constant term on the &), hence the flow generated
by h%, on O,(G) is independent of this constant. This flow (the restricted “linear” flowHgf
is projected by the momentum mappifigonto the flow on the coadjoint orbit d@Fy, 5 with
so := s0(F(0)) = —# generated by the Hamiltonidif, (¢, p) via the standard symplectic form
dp A dg.

3.3.11.Example. Let us take, e.go := P, with 0 # z € L*([R") : (2| X;|z) = 0,Vj. Let
Z(q) := z(—q). Then

V,(q) = const+ V,(q), with V,(q) := |2]>+ V(q),

the symbok « b(q) := [ a(q — ¢')b(¢’)d"¢’ denoting convolution of two complex—valued func-
tionsa, b onRR". Let, e.g.,n = 3, andV (q) := Tl be the Coulomb potential. Let the above
z € L?(R3) be rotationally (i.eO(3)) symmetric normalized function with support “concentrat-
ed” nearg = 0. Theng — V,(q) is again, for large values ¢f|, approximately (resp. exactly,

for compact support of) of the Coulomb form®

We see that theGyy g—restrictions of the flows are identical to the flows of classical
Hamiltonian mechanics oR?" with the Hamiltonian functiork$, from (3.3.31) differing from
the usually considered “classical limit” of the quantum flgA/ by the “o—smearing” of the
potential V only.

A specific interesting choice d&f in (3.3.29) is a quadratic function, describing, e.g. harmon-
ic oscillators. This case can be generalized to any quadratic opéfaterA:

2n
1
A=Y apX X (3.3.32)
jk=1

with real constanta;, = ay;, and withX;, j = 1,2,...2n defined in Notation 3.3.7. This case
is specific in that the operatot is essentially selfadjoint on a common domain of&jfs, and
it generates, together with thie;’s, a unitary representation of2za + 2—dimensional Lie group
containingGw g as a subgroup. This follows from the following considerations.

It is clear that the operatofsd; X;, j = 0,1,...2n} form a basis of a Lie algebra of (un-
bounded) operators i=L?(R"). It is also easily seen that an arbitrary number of quadratic
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symmetric operators of the form (3.3.32) together withXfs can be included into finite
dimensionalie algebraX (g) of operators (with respect to the operator commutatiph, B])
containing operators at most quadraticn’s. Less trivial is the assertion, that these Lie alge-
bras of operators are composed of essentially selfadjoint operators on the dofi{éin, ;) of
essential selfadjointness of &l;’s, andthat they are integrable into continuous unitary repre-
sentations of some Lie groupEhe maximal Lie algebra obtained in this way is (isomorphic to)
the algebra calledt(n,R) (see also [148§15.3, and$18.4]). Let us formulate and prove the
mentioned facts for the algebs&(n, R):

3.3.12. Proposition. Let X (st(n, R)) denote the above mentioned “maximal” Lie algebra of
“at most quadratic” symmetric operators acting on the Hilbert spakieof representation
Wx(Gwr). Let St(n,R) be the corresponding connected, simply connected Lie group with
the Lie algebrast(n, R). Then the representatidiy (Gw ) has a unique extension to the con-
tinuous unitary representatiof’, (St(n, R)) in H such that all the closures of the operators
from X (st(n,R)) are exactly all of its selfadjoint generatow.

Proof. The analytic domairD“ (Gw ) is @ common invariant domain for all operators from
X (st(n,R)). According to Nelson’s theorem (cf. [13, Theorem 11.5.2]) it suffices to prove
essential selfadjointness of the operalgmwhat is sum of squares of a basisX{st(n, R)). We
chose here the basis consisting of the generaforsf W (Gw ), and of all their symmetrized
productss (X; X, + X, X;). Then

2n 2n
1
A = § X§+Z§ (X; X1+ XpX;)?
j=1 k=1

= S (P @)UY (P QD)
j=1 k=1
where we used notation from 3.3.7, and the CCR (3.3.17). From the known properties of the
Hamiltonianst + Q? of independent linear oscillators, we conclude (with a help of, e.g. [218,
Theorem VII1.33] on operators on tensor products of Hilbert spacestimessentially selfad-
joint. The Nelson’s theorem states now integrability¥ofst(n, R)) onto a unitary representation.
Selfadjointness and uniqueness now easily follow. O

Hence, also any Lie subalgebra &f(st(n,R)) integrates onto a continuous group represen-
tation. Let us denote b AGy, i the simply connected Lie group represented by this unitary
representation with the basis of generatps X, j = 0,1,2,...2n}, with A from (3.3.32).
The2n + 2—dimensional grouplGyy g containsGy g as its normal subgroup.

In the “quadratic case” (3.3.32) the expression (3.3.31) has the form

2n
Z a;, ;2 + const., (3.3.33)

jk=1

1

g = —

ha(x) = 2

with the const. depending on the choice of orbit only (we always assyme: oy, according
to the definition ofg, in the notes on page 117). This is valid regardless the GIIAG w 1)

is 2n—, or2n + 1-dimensional. Hence for the (at most) quadratic Hamiltordathe projected
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quantal evolutiongs{* (v) to the orbits and the “corresponding” classical evolution “coincide” in
the sense that then coordinatesI'r(¢; (v)X;), j = 1,...2n (of the possible tota2n + 1)
satisfy classical equations with the Hamiltoniah from (3.3.33) corresponding to the canonical
symplectic formdp A dgq.

3.3.13.Remark. Let us stay onP(H), and letg, = P,. Let A be quadratic as in (3.3.32).
Then a general assertion tells us that the dimension ofithg, ;—orbit throughP, is 2n iff it
contains an eigenstate df, [27]. In that case, each poifit’ (x)P,W (—z) of the orbit is (i.e.
represents) an eigenstate of some selfadjoint operator of theEjn}Xj + A. Other orbits
are2n + 1-dimensional. This assertion is a consequence of the fact that the dimension of any
connected finite dimensional manifold is constant in all of its points and equals to the dimension
of the tangent spaces which are in turn generated by vector fields corresponding to thgflows
(X = A, X4,...,X5,). These2n + 1 vectors in any point of the orbit are mutually linearly
independent except in a stationary paihtwheregX (P,) = P., for someX := Zj ¢ X;+ A,

i.e.z € H (z # 0) is an eigenvector oKX (the linear independence of tBe vectors determined

by the X;’s is a consequence of CCRY?

3.3-d Time dependent Hartree—Fock theory

We shall consider here the “approximation to QM” which is very well known in nonrelativis-
tic quantummechanical many—particle theory asHhetree—Fock theorylt consists, expressed
briefly in our terminology, in the restriction of a given (linear) QM problem to a manifold (a
G-orbit) of quantum state¥, and, in its stationary setting, in looking for the poinkg of
the manifold that minimize the expectation valpe|H|¥) of a given Hamiltoniand. In the
Hartree—Fock theory of systems consistingNdfinteracting fermions in an external potential
the manifold consists of all “Slater determinants” for the considéyeigrmions. The pointl
then satisfies the Hartree—Fock equation (3.3.51), what is a condition for the zero value of the
derivativeqp, (Dp, hg) Of the corresponding restricted generator. It is assumed that in many
interesting cases stationary pointds) (resp., more correctlyPy,) of the orbit approximate(s)
the ground state (states) of the unrestricted system. This theory is expressible in terms of “one—
particle states”, due to a natural bijection (see e.qg., also [221]) between the set of all Slater deter-
minants and an orbit in the one—particle state sgad& (7)) of unitary groupil:= all unitary
operators on the one—patrticle Hilbert spéte

Let us consider a system & identical fermions described in the Hilbert spaig; :=
@NH, whereH := H; is “the one—particle Hilbert space”. The vectorsHn; are expressed by
linear combinations of “product-vectord := ¢; ® ¢ ® - - ® dn, ¢ € H, and the scalar
product linear in the second factor is determined by

N
(®'|®) : H Bler Dk)-

Letvy; € H,j € N be an orthonormal basis . Then an orthonormal basis 1y consists of
vectors labelled by orderedl—tuples(j) := (j1; jo; - - - jn) € NV:

\II(]) = ‘(jhj?v s )> ,(/)]1 ®¢32 : ®wj1\/a vjlana .. jN e N. (3334)
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Let ¥(N) be the permutation group (=“symmetric group”) &f elements, and, for any €
Y(N), let its action on ordered/—tuples of integers be denoted by

o(1;2;...N) = (c(1);0(2);...0(N)).

Then a unitary representation— p, of X(V) in H is determined by
o) = VUo(sy = |(Jo(1)i Jo@)i - - Jo(v))-

Let theFermionic subspaceH; of Hy consists of all vector® € Hy satisfying
PoVU =e,V, €,65 = oo € {—1;1},V0,0’ € B(N),

with ¢, := —1 for o corresponding to a mere interchange of two elements. The orthogonal
projection Pf onto#4; is the maximal of all projection® satisfying: p, P = ¢, P. It can be
expressed:

Pﬁ = % Zeopg.

An orthonormal basis ifH%; is given by“Slater determinants”¥;, labelled by the ordered
N—tuples(j) := (j1; jo; ... jn) With j1 < jo < --- < jn, and defined by

1
V)= D eo¥o(y)- (3.3.35)

Let ¢ be the unitary group of (H), and let its unitary representation Hiy be given by its
action on the product vectors

= u®, Ve = OV (4R ®- @ o) (3.3.36)
= ug Qupe ® - @udy, Yu € L. (3.3.37)
One orbit of this representation ik, consists of all the Slater determinants, and its canonical
projection to the projective Hilbert spad®(H ) is homeomorphic, cf. also (3.3.40), to the
coadjoint orbit ofil in 7; . (H) =: S. (cf. page 42) consisting of all thé\'—dimensional” density
matricesp;; with maximally degenerate spectrum, cf. also [221]. These density matrices are

obtained as “partial traces” from Slater determinants by restriction to “one particle observables”,
i.e. foralla € £L(H) one has

Tr(ogy-a) = (gyla@ LN Vw,), (3.3.38)

and the resulting density matrix has an explicit expression of the form

N
1 1
oty = 7 D 1) Wil = Py (3.3.39)
k=1

where the projectop;; onto the subspace dff spanned by theV orthonormal vectors
{Yr : k € (j) = (J1;J2;-.-jn)} was introduced. Conversely, as can be proved by elemen-
tary techniques, anyW—dimensional subspace &f determines a Slater determinant (uniquely
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up to a numerical factor), namely the space spanned lpne—particle orthonormal vectors
determines the Slater determinant constructed by the same vectors, cf.(3.3.35), (3.3.34), and dif-
ferent orthonormal bases of that subspace give (up to a phase factor) the same Slater determinant.
Hence the mapping

G: o:= o€ Ad"(H)ogny) = Glo) = Py, (Pyj € {u®NT 0y rue yu})
(3.3.40)

is a bijection (herel(;/, is an arbitrary Slater determinant).

Reduced one particle density matrices corresponding to arbitrary Stated(X, cannot be
expressed in such a simple way.

Let H := Hy be a selfadjoint Hamiltonian oK, and let us assume that it is permutation
symmetric, i.e. that

peHN = Hyp,, VYo € E(N).

The corresponding generator, as a function on (a dense subs&tof)), is hly (Ps) := Tr(Po:
Hy). Its restriction to theél—orbit of Slater determinants is

Wt (Puy,,) = (W [ HN Gy = ooV [ Ha ¥ () = N8| PEHN[T ;).

(3.3.41)

With a help of the bijectiofiz from (3.3.40), we can write the restricted funct'foﬁ as a function
on the orbitAd*(U)er;; C S., i.e. as a generator on one—particle states. We shall write the

corresponding “one—particle energy” &g := N~ 'hgl:
N-hi (o) == (Y Hy |V (y) = (Glogy) [ HNIG(eg))- (3.3.42)

This relation can be made more explicit for specific choiceH gf
Let us take forH 5 a nonrelativistic spin—independent Hamiltoniampoint particles with
symmetric pair potential interaction, i.e.

N

1

Hy = § :hOj + 3 E Vik, (3.3.43)
Jj=1 J#k

where the indiceg,k = 1,... N specify “one—, resp. two—particle factorgt in the tensor
product on which the corresponding operators act; lje's are copies of the same one
particle Hamiltonianh, (kinetic energy plus external fields) “acting at theth factor” in the
tensor product y, andv;; = vy; are also copies of a two—particle operatoe L(H @ H)
“acting on thej—th andk—th factor” in’Hy . Let us introduce the lineaxchange operatorp.,
on the two—particle spaces (commuting with v) by

Po(P®@) =19 @, Vo, € H.



126 3 Specifications and Applications

We can calculate now (3.3.41) withi := Hy from (3.3.43):
N-h3i(ogy) = (Vi HN|T) = NP j)\PﬁHNI‘I’w

D e Wo() ® @ Yo(in)] Zh0k+ ZVM [, ® - @iy )
o k#l

= Z ijhOw]k Z(¢3k ®7/}jz - wjl ® ¢jk|vkl|wjk ®7/}jz)
k=1 k;él

1
= N'TT(Q{j}hO) + 5 Z(wjk ® ¥y, |V'(]IH ® Iy — p<—>)|1/)jk ® wjz)
£l
2

N
= N-T?“(Q{j}ho) + TTT(Q{j} &® Q{j}'V~(HH & HH —]L_))). (3.3.44)

This functionh?! can be used as a generator of the (quantum nonlinear) motion af-tbit
of N—dimensional projections (which, divided by, are density matrices of the domain of
G, (3.3.40)) in the one—particle state spate The resulting dynamical equation describes the
time dependent Hartree—Fock theory cf. [221, 222, 154], and the equations describing its sta-
tionary points are just thedartree—Fock equations cf. [126, 175, 12]. Let us show how it looks
in our formalism.

We shall need an expression for the derivafiyg:;! to be able to write a dynamical equation
for o, e.g. the “Schiidinger equation” (2.1.23), resp. (2.1.26)The differential will be calculat-
ed according to (2.1.11), and with a help of (2.1.14). We shall need, however, derivatives along
the curveg — exp(—itb)pexp(itb), corresponding to tangent vectafs, b], cf. Notes 2.1.4:

Dyhi (ilo, b]) = i Tr(ho[o, b]) + igTT (lo,0] ® 0 (I — p)v + 0 @ [0, b]- (157 — ps)v) -
(3.3.45)

This equation can be rewritten by inserting the unit operatgrexpressed with a help of
convenient complete systenig,} C H of orthonormal vectors into several places in between
of the multiplied operators in the above formula. E.g., from the tracé(iH) ® L£(H) of the
product(A ® p)-B (B € L(H) ® L(H),VA € L(H)) one can find an operatd? € L(H)
defined by

Tr(A-D):=Tr(A® o-B)

as follows:
Tr(A-D) =" (¢; ® orlA® o1 ® om) (1 @ Pm|Blp; @ i)
7,k Im
= (@3l Ale) Y (erlolom) (91 @ om|Blo; © @) - (3.3.46)
7,0 k,m

(#11Dle4)

860ur considerations will be a little “heuristic” from mathematical point of view in this Subsection: we shall not
consider here the domain questions, hence we shall not be able to write equations as (2.2.10) with precisely defined
generalized differentials.
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Since

(pm @ @122 — po)V]er ® ©5) = (em @ @ilV|er ® ;) — (Pm ® @i|v[e; ® v),

we can write for the operator representationigf?y € Ty %~ L(H),:

(PAD 1) = (plhohs) + 5 S (pelolem) (0 ® eunlvlts @ o) —

k,m

(0 ® omlvlor ® Y) + (Pm @ p|V]er ® P) — (Pm ® ¢lv|Y ® @k)]'
(3.3.47)

Let us consider now that, on the chosen o@j(il), one has

0t = Q{]} =ug(t, 0)ogyun(t, @) =N~ ! Z LAXCA
k=1
Let us denote b)Efj} = Ng'%j} the N—dimensional projection corresponding to the Slater
vector—determinanilij}, according to the mappinG from (3.3.40). For each such= Qij}
occurring in (3.3.47), let us choose in th#e of the complete orthonormal systdmy } such a
complete orthonormal systefw} : j = 1,2,...} that contains they ;,—defining one—particle

VeCtOl’S{’l/J§ : 7 =1,...,N} numbered as the initial segment. Then we have for the obtained
orthonormal baseg{v : j € N} : t € R}:

for k,m < N,

1

L,
ot t N Ok,m
(prlodlpm) = (Vilerddm) {0 for max(k;m) > N;

these should be inserted into the formulas like (3.3.47). Matrix elements of thédsuher
equation (2.1.23) for arbitrary, » € H are then of the form

D (ol (t, ) = (P1Dg, b -un (1, Q) = (plho-win(t, o)) +

DN | =

N
33 (e ® whIvivt ® vh) — (0 © vhIvIeg © vl) + (3.3.48)
k=1 J

(h ® @lv]vr, @ ) — (i, ® elv]vh @ vi)] (Whluw(t, 0)[¥).

Let us rewrite this equation in “configuration representation’ if= L?(R™), and operatorsl
are (formally) expressed by they “kernels”:

y) = > (@) (W5 Al )k (y).
Jk

Let us, moreover, consider that, = vo1, hence for the multiplication operator v (in this repre-
sentation) one has:(z,y) = v(y, x). The projectionsEEj} have now the kernels

E{]} z,y) 21/1 y 3 ||¢§H =1
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We obtain then, with)? := ug (¢, 0)v, the usuatime—dependent Hartree—Fock equation

z’%wtg(aﬁ) = [ho +/dyE§j}(y7y)v(y,x)} Pi(x) — /dyv(m,y)Efj}((g’y)qpf(y).
(3.3.49)

We can insert into (3.3.49)7 := 11)} j=1,2,... N, to obtain coupled nonlinear equations for
w;fs. Evolution of the whole density matrices &h, (L) is expressed by

z’% 0t = [Dy, b3, 04]. (3.3.50)

Its stationary solutiong; = 0 = N—lE{j} commute withD,h#}, hence the selfadjoint operator
D,h%} leaves the subspade;,H of the Hilbert spacé{ invariant: D,h/ E(zH C EjH.

This means that its restriction to the subspagg H can be diagonalized, and the bagjs : j €

N} can be chosen (in the poigt the bases are point—dependent, according to their definition)
such that the vectorg;, v, ..., 1N are eigenvectors dDghfj. Hence we have from (3.3.49)
the corresponding eigenvalue equation, what is the (time indeperdiemntee—Fock equation,

cf. [175,810]:

[ho ; / dyE{j}<y7y>v<y,x>] () - / dyE (2, 9)v (@, y)bu(y) = exn (@),
(3.3.51)

We have shown how the time dependent, as well as the stationary Hartree—Fock theory is
described in the framework of our formalism.

3.3-e Nonlinear Schbdinger equation and mixed states

Let us give here another example of description of “a system” in the framework of NLQM. We
shall show here that a traditional “nonlinear Sidinger equation” [47, 11] can be included in
the scheme of EQM. We shall partly proceed, in the following example (taken from [34]), in a
heuristic way, by “plausible” formal manipulations; the necessary mathematical comments will
be omitted here. This example will be also used to show, in a nontrivial concrete case, that
the barycentre of a genuine mixtutec M (S.) evolves under nonlinear evolution differently
from the evolution of the elementary mixtugebeing its initial barycentre, (2.1.32)r(pa) :=
fs* Tr(va)u(dv), Va € L(H),.

Let us first recall that, for a given generat@re C>°(S.,R), the Schodinger equation (resp.
the Liouville—von Neumann equation) for the flgs? corresponding to the Poisson structure on
S. (cf. Subsection 2.1-c) can be written 8p in the form (cf. (2.1.23) and (2.2.9))

P8 o(1) = Dy @ o0, (3352)

o(t) = ¢ (0) = ug(t, 0)oug(t,0)*, 0(0) := o, (3.3.53)
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andug(t, o) satisfies the equation (one can use alternatively, in & of the “Hamiltonian
operator” in the following equation, an operator of the fofy,)Q + £0(o(t)), with f0(p) €
{0}, cf. Remark 2.1.18)

. d
i EUQ(ta 0) = DyyQ-ug(t, 0), ug(0,0) =0. (3.3.54)

The equation (3.3.52) can be rewritten for wave functions H, ¢ (t) := uq(t, Py)y € H (we
Seth) = Dpw):

i %W) — Dy Q-0(t). (3.3.55)

Let us take nowH{=L?(R") with (¢|¢) := [ (x)p(x) d"z. Let us write density matrices
“in the x—representation” with a help of their operator kerngls, y):

[oY](z) = /Q(w,yw(y) d"y, 1 €H. (3.3.56)

Projection operator®,, have their kerneld’; (z,y) = ||¢|~2¢(z)¥(y). Let the Hamiltonian
function@ will be taken as the (unbounded) functional

Q(Py) :==Tr(Py-Ho) + OéL-l-l /Pw(x,gc)o""ld"x7 (3.3.57)

with H, some selfadjoint (linear) operator dit(R™), anda > 0. Lett — Py ), ¢(0) :=

be any differentiable curve through, € P(H), and letP, € Tp, P(H) be its tangent vec-

tor expressed by an operator according to equations (2.1.14). Then the (unbounded, nonlinear)
HamiltonianD,, @ can be expressed by:

d

Tr(DyQ-Py) = it

Q(Py)), (3.3.58)

t=0

what leads to the corresponding form of “nonlinear ®dimger wave—equation” faf, := 1 (t):

i {M (2) = [Hove)(2) + eltbu(@) P (x), Il = 1. (3.3.59)

One possible extension of this nonlinear dynamics fil8(#t) to the whole spac8. is obtained
by “the substitutiorp — P,”", i.e. by the choice of the Hamiltonian

Q(o) :==Tr(e-Ho) + QLH o(x, ) d" (3.3.60)

and the corresponding dynamics is then described by (3.3.52)"with

D,Q(v) =Tr(D,Q-v) =Tr(v-Hyp)+¢ / o(z, )% (x,z)d"x. (3.3.61)

87 The notationD, Q represents here the linear functional according to the standard definition oéttteeEderivative,
as well as its operator representative, cf. (2.1.14), and Definitions 2.2.13.
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We shall compare the evolutions of the mixed states described by the same initial barycentre
= density matrixo

0= NPy, Y A=1X>0. (3.3.62)
J

J

for the two distinguished interpretations. The evolution of the elementary mixtisrdescribed
by (3.3.52), while the evolution of the “corresponding” genuine mixjure

pi=> by, (3.3.63)
J

(whered,, = ép, is the Dirac measure concentrated@nc P(H) C S.) is described by

(t;p1) = 1 = o %, (3.3.64)

This corresponds to such an evolution of the meagurepresenting a state, when each of the
vectorsy; entering into (3.3.63) evolves according to the equation (3.3.55).

Let us illustrate, by explicit calculation, the difference between time evolutions of the same
initial density matrix considered in its two different interpretations.

Let us take the system with its above determined “extended” dynamics, and let us fix a non-
trivial (i.e. A; < 1, Vj) mixture o of several vector stateB,,, as in (3.3.62). Let us calculate
the difference between the derivatives with respect to the tinte=in0 of the two evolutions:
(i) of the barycentre of the time evolved genuine mixthre )\j@tQ(ij), and (ii) of theele-

mentary mixture evolutiom?(g). We shall calculate the right hand side of (3.3.52) for the two
cases and take their difference. Let us write the kernet“irepresentation” op as the convex
combination of the vector—state kernels:

oz, y) = > Nl 2w ()5 (y). (3.3.65)
5

The (symbolic) “kernel” of the Hamiltonia®, () can be written:
DyQ(z,y) = Ho(x,y) + £6(x — y)o(z, ).

Here,d(+) is the Dirac distribution ofiR™. We have to express the differenﬁég}(x, y) between
the kernels (in x—representation) of the operators

> XDy, 1)@, Puyn)]s and [Dyny@Q, o(t)],
J

what expresses the difference between time derivatives of “the same density matsx”
> APy, in the two interpretations. The linear operafd does not contribute into this dif-
ference. The kernels of commutators entering into the calculation are (forallS,) of the
form

[D,Q,v](z,y) = [Ho, V|(2,y) + ev(z,y)(v(z,2)" = v(y,y)")-
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We can (and we shall) take 4y, || = 1. Let us denote

A (@) = [ () P — (Z Akwm)?) -
k

Then the wanted difference &&= 0 is

Afey(,9) = A5 (29) = € D A0 ()P, (0) (7 () = 3 (): (3.3.66)

By proving that the operatod,, is not identical zero for alf{ ¢}, we can prove nontrivial
difference of the two time evolutions explicitly. This can be proved easilypfor= 1 — A5, and
for 41,19 chosen to be specific three—valued (i.e. with two mutually distinct nonzero values)
functions concentrated on disjoint compact subse®"ofEachy;, (j = 1,2) has its nonzero
constant values on domains with different nonzero Lebesdfue) (measure.

Analogical examples could be constructed for, e.g. unbounded funcfionsdense domains
of S, expressed by the formula

Qo) :=Tr(o-Ho) +¢ A K(o(z,z))d"z, (3.3.67)
wherek € C*°(R,R) can be chosen (in this abstract approach) rather arbitrarily. Such possibil-
ities were mentioned (in a framework of S6dinger equations (3.3.55) for wave functions) also
in [11]; they include, e.g. the equations proposed in [18], and also WKB-equations.

Differentiation of (3.3.67) gives a formula for the corresponding “Hamiltoni&n @) (cf.
Footnote 87):

D,Q(v) =Tr(D,Q-v) =Tr(Hy-v) + E/K'(Q(x,x))-u(az,x)d”x,

or in terms of formal “operator kernels” (witk’ (s) := dﬁ@, s €R):

DQQ(xay) = H()(if,y) + 65(:17 - y)IC/(,Q(ZL',LC)),

We did not consider any domain questions here: that would need more time and space. It
seems, however, that the above formally given operaiQi@ could be correctly defined on (a
dense subset ofY, at least as symmetric operators.

3.3.14.Remark (Koopmanism).We have restricted, in the above considerations, our attention
to the “Schibdinger picture”, hence the algebra of observablesas not investigated: It could
be chosemd = L(H), as in linear QM. Its completion to an algebra of operator—valued functions
could give a “linear extension” of the system. Let us note, however, that such extensions might
be considered as a version of “noncommutative Koopmanism”, cf. a Koopman formalism in CM
(i.e. the “commutative” one), e.g. in [218, Chap.X.14], resp. [91, 152]. This can be expressed
schematically as follows.

In Hamiltonian classical mechanics, the system is describe®by-dimensional symplectic
manifold (M; ), where the symplectic forf2 provides for ascription to Hamiltonian functions
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(i.e. generators) € C>(M,R) the symplectic flowso? on M. Since then—th exterior power
of €, i.e. the Liouville volume\™( (corresponding to a measyug on M) is conserved by",

it is possible to introduce the Hilbert spaté(M, uq ), where the flowp” (let us assume, that it
is complete) is described by the continuous unitary grigtipt) defined by:

Jo(m) == [U(©)f](m) == f(pl(m)), forall f in classesf € L2(M, ug).

The selfadjoint (cf. [1, Proposition 2.6.14]) generafgy of U"(t) = exp(—itLy,) is called the
Liouville operator of the CM system. It is in fact the differential operator given by the Poisson
bracket (up to domain questions concerning possible choigg of

th = Z{hv.f}v f S D(Lh) C L2<M7 /’LQ)

In this way, the nonlinear finite—dimensional Hamilton’s equations are transformed formally into
a linear Schidinger-like “Liouville equation”

o d
Z'Ef—th

on infinite—dimensional Hilbert space. This Hilbert space description of CM is calladabe-
man formalism. Let us note that here, in the “commutative case” of CM, the transformation
Uh(t)f of elementsf € L?(M, ugq) of this “extended phase space” is uniquely given by the
transformationy! of the phase spack/, i.e. of the space of arguments of scalar-valued func-
tions (the real values gf(m) should stay real also fgf (m), due to their physical interpretation).
The situation in EQM can be considered in analogy with the preceding Koopman transition
in CM, cf. also [35]: The (nonlinear) transformatiaﬁg of S, are extended to one—parameter
automorphism group® of aC*-algebraC,, (cf. Definition 2.3.13 and Theorem 2.3.16), or some
of its subalgebras, what is a standard picturdiredar quantum theoriesThe difference from
the “commutative case” is, thé}, is generated by functions on the “quantum phase sp&gce”
with values in noncommutativg*-algebra(#). Hence, to obtain the automorphism gratip
corresponding to nontrivi@b?, we have to introduce in a consistent walgo transformations of
valuesof these functions. These are, however, nonunique, and the nonuniqueness is pointed out,
e.g., in Remark 2.1.18?

3.4 “Macroscopic” Reinterpretation of EQM

It might be interesting from technical, as well as from physically intuitive point of view to show

a simple way how ounonlinear quantum—mechanical dynamical systeorssidered in this pa-

per (in the framework of EQM) can be considered as subsystems of infinite physical systems
described in a framework of traditional (linear) quantum theory. A Hilbert space description
of such a “large” system would necessitate, however, also usage of a nonseparable Hilbert s-
pace, e.g. the space of universal representation of a certain aldétaging uncountably many
mutually inequivalent faithful representations (each one corresponding to a specific value of
macroscopic variables), cf., e.g. [227, 196, 238]. It is not very comfortable to have all these
representations simultaneously as subrepresentations in one nonseparable Hilbert space. A way
to describe this situation in a more transparent way can be found in the framework of formalisms
used in quantum field theory (QFT), or in theories of systems “with infinite number of degrees
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of freedom”, cf. [118, 119, 91, 42, 43, 120]. The main mathematical tool of these theories are
C*-algebras and their automorphism groups, cf. also [228, 196]. These theories are usually used
to describe “thermodynamic systems” considered as infinitely large in the sense of intuitive no-
tion of spatial extension, and also containing an infinite number of particles. Suicffirdte
approximation to finite, but large systenssconceptually acceptable and technically useful: It
allows clear mathematical descriptionrohcroscopic subsystemsf physical systems consist-

ing of very large number of microscopic constituents — so large that any detailed practical (e.g.
numerical) description and measurement of their states, taken even in any nontrivial a priori re-
stricted precision for individual subsystems, is hopeless; their macroscopic subsystems consist,
on the other side, of manageable sets of classically described parameters. Mathematically clear
description of states and dynamics of such sets of classical parameters of quantal systems is up to
now possible, however, only in the framework of “infinitely extended” systems. Its possibilities
include, e.g., a description of phase transitions, cf. [42, 238].

We shall sketch briefly in this section a possibility, how to introduc&*aalgebraC de-
scribing a “large” QM—system, “containing” in a certain sense the traditional observable algebra
L(H) of a finite quantum system, as well as a commutative subalgebra of continuous complex—
valued functiong”(M). This subalgebr&’ (M) is interpreted as thé'*-algebra of a classical
subsystem in such a way thétis determined by these two subalgebragether with an infi-
nite index sefll containing labels of the “elementary” (mutually equal) finite subsystems. This
algebraC can be chosen so that it “contains” thé-algebraC (cf. Definition 2.3.3) describing
any of the infinite number of equal “microscopic” subsystems composing the large system, as
well as its extension by a classical system (= a “mean—field”); the later can describe collective
influence of all the other subsystems onto the specified one, [130, 31, 33, 263, 264, 265]. In such
systems, the dynamics can be determined by a sequence of local Hamiltonians. If a Lie group
G is given so that it determines (via its unitary continuous representation) selfadjoint generators
entering into the expressions of the local Hamiltonians of the (arbitrarily large but) finite subsys-
tems, the spectrum space M of the classical subalgebra is the £anBED(IF)) in the dualg*
of the Lie algebra ofz, cf. Definition 2.2.17; we can even hafie = S, for G := U := U(H).

This approach can be considered either as a “phenomenological” introduction of a formal clas-
sical system to “complete” a given nonlinear quantum system to a linear one, or as a dynamical
theory of a large system with a long range interaction. The dynamics is thew@morphism
subgroup of thé-automorphism group af.

Since theC*-algebraC® is “essentially” (i.e. up to its completions in weaker—than—norm
topologies) the tensor produc{+) ® C$, it corresponds (in the sense of usual QM construc-
tions — again “essentially”) to a compound system consisting of a “standard (with finite number
of degrees of freedom) QM-system” described by the algebra of obsené{iifs and of a
“classical subsystem” described by the commutaﬁ\?ealgebracg which is isomorphic to the
space of all complex valued continuous functions on the quantum phase space of elementary
mixturesS.., C(S., C). Hence, the “nonlinear” EQM can be embedded as a subsystem theory
to a linear quantum theory, cf. also Theorem 2.3.16. This linear theory can be considered in
turn as a subtheory of a (nonrelativistic) quantum field theory (QFT), i.e. a theory of an infinite
number of “standard” QM systems, [118, 91, 119, 42, 31]; this can be done not only kinemat-
ically, i.e. by construction of the sets of observables, but also by postulating a “microscopic”
evolution in local subalgebras (given by local — linear — Hamilton@meean—field typg130],
depending on size of the local subsystems) and taking the thermodynamic limit, [31, 32]. As
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a result of such a limiting procedure, it is obtained, besidegjtrasilocal algebra.4 of ob-
servables of arbitrarily large, but finite subsystems, alsathebra of classical quantitiescg
(belonging to the “algebra of observables at infinity”, [223, 131, 42, 238]), without which the
time evolution cannot be defined as a (semi-) group of transformations of an algebra of observ-
ables, [185, 31]. A “simplest” and a “most natural” quasilocal algebra of an infinite system in
nonrelativistic QFT isA := ®,enL(H,), as it is introduced below. If the “standard” QM sys-
tem under consideration (the extension of which is the “considered” system described by EQM)
is described in finite—dimensional Hilbert space, then we have, as the algebra of observables of
the corresponding infinite system, directly the tensor prodiicalgebraC = A ® CS. [In
the case of infinitedimensional Hilbert spadgsthe algebra& containsA @ CS as a (possibly
proper) subalgebra, [27], (the fact, titatt A  C§ in this case is a consequence of weak, but
not norm, continuity of corresponding unitary groups, resp. of unboundedness of generators, cf.
also [42, 228] for some mathematical refinemeﬁltlss).these cases of infinite systems, the ele-
ments of the classical subalgelttg are naturally interpreted gglobal) intensive quantities
of the infinite system; hence, they correspondrtacroscopic variablesof this large quantal
system.

Let us introduce an example of such macroscopic algebraic elements. The description is re-
alized on, e.qg., infinite tensor produdt; := ®penH, (with II := an infinite index set labelling
the “constituent microsystems”), [190], of equal copies of the Hilbert space H,, and the
quasilocal algebral is generated (via algebraic operations and norm limits) by the subalgebras
(isomorphic to)

Ap = ®peal(Hp), A CII, [A] < o0, (3.4.1a)
where|A| := the number of elements jt C II, with the natural inclusions
ACAN = Ay C An, (3.4.1b)

acting onHi = Ha ® Hma (the tensor product of Hilbert spaces is, for finite number of
factors, associative, [190]) in the obvious way: Let us define an “identification” of the Hilbert
spacesH,, p € II with H by defining unitary mappings,, p € II of H, ontoH. A, is
generated by elemenisa,u, ' € £L(H), with a,’s “acting on thep-th factor"H,,, Vp € A, i.e.

for a vector® € Hy, one has

b = ®p€l‘[¢pa aq<I> = (aquq) &® <®p€H\{q}¢p) . (341C)

Now we choose any = upou;1 € L(H),,*® corresponding to “an observable of individual
subsystems”, and define

1
Xa

=T DX, € Aa, (3.4.1d)

pEA

Let a Lie groupG be unitarily and continuously represented % by U(G), and let
Up(G) = u,'U(G)u, be the corresponding action on eakh. Let theX = X* above be
an arbitrary generator df (G). The set of “intensive observables”d]ﬁ is generated byimits

88\We can choose also unbound&ds here, but in that case nontrivial domain questions should be considered, [27].
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X1 in some topology of X, for A 7 II, for all selfadjoint generatorX := X¢, £ € g

of U(G). These limits do not belong td,; their introduction to the algebra of observables is,
however, necessary for the “standard—-type” description of dynamics with long—range interaction-
s, [185], e.g. for MF—type evolutions, [31]. The quasilocal algetia canonically included into

its second topological duad** which is in turn all/*-algebra in a canonical way [227, 196]; the
limits Xy are then associated, [227, Definition 2.7.13], with a cert&iftsubalgebras af**.

On the algebra of functiorﬁf, Poisson brackets can be naturally defined. Then the mentioned
mean—field type dynamics defined with a help of local HamiltoniansA@is does not leave,

in the thermodynamic limit, th€'*-algebraA invariant (invariant with respect to such evolu-
tions is, however, the “classical subalgebs}).”® The dynamics of the classical algelttgd

is Hamiltonian (with respect to the mentioned Poisson structure)thendynamics of any local
subsystem (described (7)) “essentially coincides” with some of the nonlinear dynamics
described by Theorem 2.3.16, and by Definitions 2:3Th@ considered dynamics of the infinite
system is constructed as follows: Let us consider a funefjoa C*°(g*, R) as a Hamiltonian

for the dynamics (with respect to the natural Poisson structuge pdescribed by the Poisson
di1‘feomorphisms¢;§2 : g* — g*. The local Hamiltonians of the infinite quantum system are
(consider, in the following formulag) as a polynomial irF; := F'(¢;), F' € g*, for simplicity,
otherwise cf. [86])

HA = ‘A|'Q(X§1A7~";X§-,,,A)7 (342a)

with {¢;,5 = 1,...,n} a basis ing, and the “ordering” of operators is such, thatHlk's are
selfadjoint?! Then the limiting dynamics

8(x) = (?) - Ah/rr%I exp(—itHp)xexp(itHy), x€ A (3.4.2b)

can be defined, but only (for nonline@) as a dynamics of the “extended” algebra containing
also the classical (macroscopic) quantities, cf. [31, 33, 86]. If in an initial statev, € S(A)

the values —lima -1 7, (X¢a ) €xist, then in its time evolved states := wOTtQ (if canonically
extended to the states ofi*) we have

wi(Xem) = Ad”(gq(t, Fo))Fo(§), Fo(€) == wo(Xem), V€ € g, (3.4.2¢)

where the cocycleg (¢, F') is as in Proposition 2.3.10.

The subdynamics of the system “living” on any one of Hilbert spag¢gsyp € II, say onH
(if the indexp is skipped), is given then by a unitary cocyél€ (gq (¢, F)) : t € R, F € g*}°2,
cf. Proposition 2.3.10:

P(t) = Ulgo(t, F))¥(0), ¥(0) € H, (3.4.3a)

89The topology, in which this limit exists is rather special: It cannot be norm—topology fafr X such, that their
spectrum contains at least two points, [31]. The{s€, : A C II, |A| < oo} considered as a net in the von Neumann
algebrad** (:= the second topological dual of) has more than one cluster points, [31]. Hence, the topologf th
has to be chosen weaker thandt$—topology, [31].

90The Ble of the group is here in choice of the topology mentioned in the preceding footnote, as well as in determi-
nation of dynamics: It is very useful especially in the presence of unbounded generators (i.e. local Hamiltonians).

91The ordering and symmetry of the operators is not here very important, since in th& limif the elements}(gjn

commute with all observables: They belong to (a subspace of) the centr& of
92These cocycles are nonunique, cf. Remark 2.1.18.
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if the initial conditiont)(0) is chosen such, that for the initial value of “the macroscopic field
F =Fy, Fo(§) := wo(Xem) att = 0, itis fulfilled

F(§) == (F;¢) = (¥(0), X¢1p(0)), VEeg. (3.4.3b)
We can see that for

Fy == Ad*(go(t, Fo))Fo = 92 (Fy), teR, (3.4.3c)
the following relation is valid:

F (&) = (¥(t), Xe (1)), for Fy(§) = (¥(0), Xe1p(0)). (3.4.3d)

After insertion of (3.4.3d) fo; into the time dependent Sdidinger equation for(¢) obtained
from (3.4.3a) by differentiation, we obtain a nonlinear $ctinger equation of EQM, describing
now the evolution of a “small” subsystem of an infinite (linear) system of traditional QT, cf.
(3.5.1). Hence, the subdynamics of an infinite quantum system with an automorphic (hence
“linear”) time evolution appears as nonlinear evolution in a NLQM.

We shall return to the relations (3.4.3) in Section 3.5, where we shall rewrite nonlinear QM-
equations as a couple of equations: one nonlinear classical Hamilton’s equation, and a linear
time—dependent Scidinger one.

3.5 Solution of Some Nonlinear Schidinger Equations

LetdimG = n < oo, for a Lie groupG. Let an arbitraryl/ (G)—system be given, with¢; :
J = 1,2,...,n} abasis ofg := Lie(G), andF; := F(§;), j = 1,2,...,n, VF € g*.
LetQ € C*°(&r, R) be chosen. The selfadjoint generators of unitary one—parameter subgroups
U (exp(t;)) inthe Hilbert spacé{ areX; = X (). Let us consider the functiaf} as a function
of n real variables F;}, i.e. Q(F) = Q(F1, Fa, ..., F,) is expressed by vector coordinates of
the linear spacg*. Let there exists complete classical flof on &g, and letF(t) = ¢ (F(0)),
with F(0) := F(P,,) = F(xo), wherezy € D¥(G).

We intend to look for continuously differentiable curdes: z; € D¥(G) C H, x4—o := x¢
satisfying the following nonlinear Scbdinger equation:

d "0
zE|ﬂft> => ﬁ@(<$t|X1|$t>» (e Xalze), . (2| Xn|ze)) - Xj|20), (3.5.1)
g=1 "7

where the quantitieér,| X ;|z,) are inserted for the componerfs of F € g* into

9Q(F)
oF;

Feg.

It depends on the choice of the grotipand of its representatidii(G), and also on the choice of
realization of the Hilbert space what a specific form this abstract differential equation will attain:
It can be partial differential equation, and possibly also an integro—differential equation, and for
nonlinear (in variableg’;) function@ it is always nonlinear. We shall show, however, that in all
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these cases the equation (3.5.1) can be equivalently rewritten (for solutions Iyrg @) in a
more transparent form of two connected problems:

(i) The problem of finding solutions of CM—problem for Hamilton’s equations on the (gen-
eralized) classical phase spggewith its canonical Poisson structure, and with the Hamiltonian
Q, leading to the Poisson flow® on g*.

(ii) Then, after insertion into the expressiondf(@ in the equation (3.5.1) for the argument
F the appropriate solution (specified by the initial conditioAg}) := @?(F(O)), solving the
obtained time dependent linear Sgtlinger equation (resp. equivalently: solving (2.3.6) to find
the cocycleyg(t, F)).

Let us formulate and prove this result:

3.5.1. Theorem.Let the conditions imposed above on the objects entering into the equa-
tion (3.5.1) are fulfilled. Then, for any, € D“(G), there is a solutiodz; : t € R} of (3.5.1)
lying in D¥(G). It can be obtained as a solution of the time dependent linear equation

1

dlzy) <~ 9Q(F(1))
——— X 3.5.2
dt . aFj J |1‘t>, ( )
Jj=1
whereF (t) is the solution of the classical Hamilton's equations corresponding to the symplectic
flow ¢9 on that Ad* (G)—orbit which contains the initial classical stat€(0) := F(P,,). If
gq(t, F'(0)) is the solution of the equations (2.3.6), then a solutiof can be expressed by the

relation:

l2e) = Ugq(t, F(0)))]0)- (35.3)

Each (global) solution of (3.5.1) satisfies also (3.5.2), wWith= F(t), (x| X (§)|x:) = Fi(€)
satisfying the classical equations; = ¢ ((F(0)). &

Proof. D*(G) is U(G)-invariant,zy € D*(G), hence alsd/ (gq(t, F(0))) € D*(G) for all
t € R. The function|z;) from (3.5.3) leads to the identity

(24 X (&) |2e) = @ Fe(Pay), (3.5.4)

what is a consequence of (2.3.8), (2.3.7), and Definitions 2.2.17. Hence weFh@ye=
(x| X|x). Differentiation of (3.5.3) with a help of (2.3.5), (2.3.6), and of the group—representa-
tion property ofU gives:

GU 0l FO))lro) = | Ulsals F)T (oalt, F(0) o) 055

= —i X (dpeQ)U (9q(t, F(0))) |zo),

what is the relation (3.5.2) withe,) from (3.5.3). Insertion of (3.5.4) into (3.5.2) gives (3.5.1),
what proves that the functidm;) from (3.5.3) solves the equation (3.5.1).

Let|z,) be some global solution of (3.5.2) wifitx, || = 1, and fulfilling F;(0) = (z0|X;|z0).
Then it satisfies (3.5.4), what follows from the differentiatio.of| X ; |«;) with a help of (3.5.2),
(2.2.14), and (2.2.17). Consequently, thig) satisfies also (3.5.1).
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Conversely, letz;) be some global solution of (3.5.1). Again by differentiationftft) :=
(x¢|X;|z:), one obtains, as above, the identity (cf. also Notation 3.2.2)

n

L =35 20

d {Fijk}(]F(Xt))a

Jj=1

with F(t) = F(x:). This means that each global solution of (3.5.1) fulfills also the equation-
s(3.5.2) and (3.5.4). O

We can see that all the norm—differentiable solutions of (3.5.1) conserve their norms:
(x| Xj|ze) = (@o|Xj|z0), since the generator on the right side of (3.5.2) is selfadjoint for all
t € R (because it belongs to the generatorg/¢tr)). It follows also, that forf|zy|| = 1, one has
Fj(t) :=Tr(Pp, X;) = (e Xja2).

3.6 On an Alternative Formulation of NLQM

It might be fair and also useful to look onto another, a rather popular formulation of general
NLQM (on the set of pure statg®(#)) published by Weinberg in [273]. His proposal contained
some ambiguities, and also it had some physically unacceptable consequences discussed already
in literature, cf. e.g. [106, 272F Its mathematical framework can be, however, consistently
presented if it is restricted t&(H). In that case, it is in fact equivalent to our formulation of
NLQM on P(H).

Weinberg mostly worked with finite dimensional Hilbert spaces, and he used formalism de-
pending on components in a chosen basis of Hilbert space. We shall try to reformulate the Wein-
berg’s theory [273] in a coordinatefree way, but simultaneously preserving, as far as possible, the
main idea&* of the original formulation.

Let thenonlinear observables (and generatol®) differentiable functions, b, ..., of two
variablesr € H, andy* € H* from the Hilbert spacé{ and its dual(z; y*) — a(z,y*) € C. It
is assumed that the functions. . ., are homogeneous of the first degree in each of the variables,
i.e.

a(Az,y*) = alz, \y*) = da(x,y*), VA € C\ {0}. (3.6.1)
Another requirement is the “reality condition’a(z,z*) € R,V € H. A specific “ob-
servable” isn(z,y*) = y*(z) = (y,x); the observables,b,..., corresponding to tradi-
tional “observables” of QM determined by selfadjoint operatdrsB, ..., are of the form
a(z,y*) = (y, Az),..., whereA\(y*) = (\y)* (since the bijective mapping +— z* of H
onto* according to the Riesz lemma is antilinear). In Ref. [273], only valifesz*), . .., of
observables, b, ..., in “diagonal” points(z; z*) € H x H* corresponding to a specific vector

931n the presented formulation of EQM, some of these “unacceptable consequences” remain valid, as it was discussed,
e.g., in Subsection 2.1-e. We have overcome here, as the present author believes, at least the difficulties connected with
the inappropriate work with mixed states and subsystems (resp. composed systems; these we do not try to introduce here
as a general concept) in the Weinberg’s papers. We also proposed a consistent interpretation scheme, in which possible
ambiguities are well understood.

94\We mean here mainly thiermalism determining — mathematical ideas they were understood by the present
author.
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statex € H are used, except of the instants whe. . . ., are differentiated according to only
one of the variables, y* (in points withy = x). The Féchet differentials are

da(z,y*)

DI(Z = € H*a
Ox _—
Daly,z*) Y (3.6.2)
Dia:= 20000 e penr,C) = H.
or* —

Then we can write the nonlinear Sédinger equation, [273, (b):Eq.(2.12)], with a generator

h = h(x,y*) in the form:

Ox(t)
ot

As concerns the interpretation, let us only mention that the expectation value of an obsarvable
in the state described by a vectoe 0 is expressed by the number

7

a(z, z*)

a(x) 1= (3.6.4)

n(z,z*)’
This is in accordance with our interpretation from (2.3.4), and (2.3.9): The function a in (3.6.4)
depends on elements € P(H) only; it can be identified with one of our observables and/or
generators restricted #(#). In the case if finite—dimensional, any a in (3.6.4) can be written

as a functioriu(fy, f, . . . , f,,) of a finite number of quantitie§§ (x) given by an equation:
X
t;(x) :==f;(x,z"), with {;(z,y") := %, (3.6.5)

with X; € L(H),. In the finite dimensional case, we can insert into the nonlineard8orger
equation (3.6.3) the function

h(:c,y*) = n(ac,y*)Q(f(x, y*))’ f:= (fl; fa5. .. ;fn)v

where we write instead ofh from the text above (3.6.5). Let aldf(x) :=f(x,z*), with
componentd’;(x). An easy computation then gives:

"0 X
Diph = Zl CQ(I;;_}(LL)))XJ-:&Q»

" o (3.6.6)
+ (Q<F<x<t>>> - %@Fw«(m) [2(t)),

j=1

what expresses the right hand side of the nonlinear @iohger equation written in the for-

m (3.6.3) in accordance with Ref. [273]. The notation in (3.6.6) literally corresponds to that
introduced in Section 2.3, because the selfadjoint operdtirs: j = 1,...,n} in finite di-
mensional Hilbert spack generate a Lie algebra of operatdig(g) of a (finite—dimensional)
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simply connected Lie groug with representatio/ (G) in H generated by (integration of)
dU(g) > X;, andF is then the corresponding momentum mapping, cf. also [32, Sec.IV]. Direct
inspection shows that if — x(t) := P, corresponds to a solution of (3.6.3), then the function
t — F(x(t)) is solution of Hamilton’s equations gt with Poisson brackets

{F), Fr}(F(x)) = i Tr(P:[X;, X)),

with the Hamiltonian functiolF — Q(F), in correspondence with the canonical Poisson struc-
tures onP(H) and ong* := Lie(G)*. Let us denote

atx(t) = Q(eex() - 3 2 £y ey,

Since this is a real numerical function of time (for a given soluti¢t), ¢ € R), any solution
|z(t)) of (3.6.3) can be transformed into a solutipn) of the corresponding equation of the
form (3.5.1) by a gauge—transformation, namely by multiplication of the ve¢idts) by a
phase factoexp(i 8(t, o)):

|z¢) = exp(i B(t, 20))[x(t)),
where the phas8(t, x¢) is a solution of the equation

s _

= a(x(t)), (3.6.7)

corresponding to the initial conditian(0) := . The two solutions|x;) of (3.5.1), andz(t))

of (3.6.3), corresponding to the same initial conditigi) = x, are mutually physically indis-
tinguishable. A comparison of the “Weinberg type” nonlinear 8dirger equations with that

of geometric formulation of QM (essentially identical with the ours one) was presented in [11].
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A Selected Topics of Differential Geometry

We shall give in this appendix a brief review of some basic definitions, illustrative examples,
and some facts (theorems) concerning the elements of differential geometry and some of related
topics.

A.1 Introduction to topology

The general concept of topology is basic for mathematical description of continuity, stability,
connectedness, compactness, etc. This concept is useful for clear understanding of several issues
of this paper.

Let, for a given seft’ the collection of all its subsets (i.the power set 0ofX’) be denoted by
P(X).

A.1.1. Definitions (Topology).

(i) A topology on the setY is a collectionZ C P(X) of subseté{, V, - -- C X satisfying:
t1. Union of an arbitrary set of members®falso belongs t&@".
t2. Intersection of an arbitrary finite set of memberg/ois a member of".

t3. The empty sdl, as well as the whol&’, are members of .

The elements/ € 7 of the given topology’ are theopen sets(in this specific topology!).
The complementd’ \ I/ are called theclosed sets Topologies{7Z, } are naturally ordered by
inclusion: 7; < 75 iff 7y C 73, and, in this case?; is stronger (= finer) than 7; (also: 7;
is weaker & coarser) than7;). The set of all possible topologies dnis a directed set; it
is, moreover, a complete lattice (i.e. each subset has supremum and infimum). The strongest of
all topologies is theliscrete topologyfor which each subset o is both open and closed (=:
clopen sety. The weakest topology is the trivial one: only open (and closed) subsatsacd
the empty sefl, and the whole spac&. For any subsetM C X, there is unique minimal (with
respect to the set inclusion) closed subs¢bf X' containingM, called theclosure of M: M;
as well as there is a unique maximal open subset afontained inM, called theinterior of
M, denoted byM°. If the closure ofM is the whole spacé’, then M is dense inX. Given
an arbitrary subsysteny C P(X), there is a minimal topology o/ containing.S; it is the
topology generated byS. The couple {';7) is atopological space or also thetopological
spaceX. If cardinality of a dense subset 4f is at most countable, then thepological space
X is separable Any subsetM of X, such thatr € M°, is aneighbourhood ofx € X.

(ii) Any subsefy C X of the topological spaceX(;7) is endowed with theelative (orinduced)
topology 7y := {¥ NV : V € T}. With this topology, the subsgtis atopological subspace
of X.

(i) A topological space islisconnectedff it is union of two nonempty disjoint open (equivalent-
ly: closed) subsets. In the opposite case ttasnected The union of all connected topological
subspaces each of which contains the peiigt theconnected componenbf the pointp € X.

(iv) A topological spaceX;T) is compactiff for anycollection{V; : j € J} C 7 (with J an
arbitrary index set) coveringt: U;c;V; = X, there exists dinite subcovering i.e. there is a
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finite subsef C J such, thatJ;cxV; = X. A subsely C X of any topological spaceX(;7T)
is compact, if it is compact in the relative topology.

(v) Topologies used usually in analysis &tausdorff, i.e. for any two distinct pointg, o of the
considered topological space there are disjoint open ¥gt3/, each containing one of the cho-

sen points. This is one of the types of possible topologies wshigarate pointsof topological
spaces, cf., e.g. [148]. In Hausdorff spaces, each one—point set is closed, and any compact sub-
set is also closed. A Hausdorff spates locally compactiff each pointr € X has a compact
neighbourhood.

(vi) Let a topological spac&” be decomposed into a collection of its (mutually disjoint nonemp-
ty) subsets: X = U;N; : j € J, the decomposition being denoted by Let us form the
factor-spaceX’ /N (resp. also theguotient—spac¢ the points of which are the subsetg (it

is essentially equivalent to the index skt as a set). Lepy be the natural projection oft
ontoX/N, z € N; & py(z) = N;. The natural topology oi’/N, the factor—topology (resp.
quotient—topology), is the strongest topology for whighy is continuous, cf. the Definition-
sA.l2.

(vii) Let &', Y be topological spacesY x ) be their Cartesian product, i.e. the set of ordered
couples(z;y),x € X,y € ). Theproduct topology is generated on this space by Cartesian
products of all the couples of their open subdét V.U € Ty,V € Ty. This concept is
uniquely extended to products of any finite numbers of topological spaces (by associativity of the
Cartesian product)>

The perhaps most important “topological” concept is that of continuity.

A.1.2. Definitions (Continuity).

(i) Let f be a mapping (i.e. a function) from a topological spdé& 7~ ), into (¥, 7y,),f: X —
Y. Thenf is continuousiff =1 (i) € Tx,VU € Ty.

(i) The mapping : X — ) is continuous in the point € X iff for any open neighbourhoad
off(z) € Y, f(x) € U, there is an open neighbourhodtof z, V > x such, that its image under
f is contained irif: £f(V) C U.

(iii) Any continuous bijection f of a topological spadgeonto another topological spage such,

that its inverse f! is also continuous is #omeomorphismof the spacest and). Spaces
mutually homeomorphic are indistinguishable from the topological point of view - thegpoe

logically isomorphic.

(iv) Any given set of function§f; : X — J;,j € J}, where)); are arbitrary topological
spaces, determines a unique topologysuch, that it is the weakest topology for which all the
functions{ f;,j € J} are continuous. This topology oti is thetopology determined by the
functions {f;,j € J}. &

A.1.3.Examples(Various topologies) We shall introduce here some examples of topologies.

(i) The topology on a metric spacet’(d) generated by thepen ballsB. , = {y € X :
d(z,y) < e} (x € X,e > 0) is themetric topology. For X := R, the metric topology given by
thedistance functiond(z,y) = |z — y| is the “usual topology”. The metric topology is always
Hausdorff. The “usual” topology o™ is the product topology of. copies of the spaceR
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with their “usual topologies”. The complex lirié is considered as topologically equivalent (i.e.
homeomorphic) t&R2.

(i) Very different kind of topology orR is the following one: Let the open sets &nbe {z €

R : z < a}, Va € R. The obtained topology is not Hausdorff. Observe that there are no
nonempty mutually disjoint open subsets now. This implies that the only continuous real-valued
functions (where the image-spaRes endowed with the “usual topology”) dR endowed with

this topology are constants.

(iii) Consider the identity mappingdg : = — z,Vz € R; it is discontinuous if the image-
topology is finer than the “domain-topology”. E.g., the identity mapping on an arbitrary set
from discrete to arbitrary topology is continuous, and the inverse mapping is also continuous only
in the case, if both copies of the mapped set are endowed by the same (now discrete) topology.

(iv) Let B(I) be any set of real-valued functions (i.e. the image—sfateendowed with the
“usual” topology) on the unit interval := {r € R : 0 < r < 1}. It generates the weakest
topology on! such, that all function§ € B(I) are continuous. Consider, e.g. the cases, where
B(I) contains also some characteristic functions of subintervals sifich a topology makes the
interval I disconnected©

We are often working with linear spaces endowed with some topologies. Finite—dimensional
spaceR3VN of particle configurations, as well as infinite—dimensional spaces of functions with
values in linear spaces (with pointwise additions), are linear spaces in a natural way . To be
useful in dealing with linear mappings, topologies introduced on such spaces should be in a
“correspondence” with the existing linear structures on them.

A.1.4. Definitions (Topological linear spaces).

(i) Let £ be a linear space oveK € {R; C}, whereK is considered with its canonical (:="usu-
al”) topology. Let a topologyZ on L be given. Let us consider the multiplication of ele-
mentsz € L by scalars) € K as mapping from the topological product—spd€ex L into

L: (Az) — Az € L, and the addition:(z; y)(€ £ x £) — z + y(€ L), also with the
product-topology off x £. Then the topological spade’; 7) is a topological linear space
(=t.l.s.) iff the addition and multiplication by scalars are (everywhere) continuous functions.
This allows us to define any topology of a topological linear spac& day giving just all the
open sets containing an arbitrarily chosen point (e.g. x= 0).

(i) Most often used in applications are such t.l.s. which are Hausdorff, and their topology is
determined bgeminorms T.I.s. L islocally convex space (= I.c.siff its topology is determined
by a set{p; : j € J} of mappings (=seminormg); : L — R, z — p;(z) > 0 such that

pi(Az) = [Mp;(z), pj(z +y) < pj(z) +pi(y), Yo,y € L, Vj € J.

It is supposed (to be the topology Hausdorff) that the set of seminorms is “sufficient”, resp. that
it separates points

Ve e L£,(x#0)3j € J:pi(z) >0.

The topology is the weakest one for which all the seminorms are continuous. On finite—
dimensional linear spaces there is just one sutle.a(locally convex)—-topology
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(iii) If the topology of I.c.s.L is determined by just one seminogr, it is necessarily anorm

(i.e. po(z) = 0 = z = 0). A norm topology is naturally metric topology with the distance
functiond(z, y) := p(x —y). If the space is complete as the metric spatis called aBanach
space simplyB—space The norm ofr € L, p,(z) will be usually denoted byz||., where the
indexa can distinguish different norms ah

(iv) Let £ be a B—space, its norm being denoted||. A linear mapping : z(€ £) — o(x) =
(0;xz) € K is alinear functional on £. On general (infinite—dimensional) B—spaces, there
are also discontinuous linear functionals. The set ofcalhtinuous linear functionals on. is
denoted byC*, and it is called theopological dual (space) ofC. In £*, there is a canonical
norm-topology determined by that 6f

lloll = sup{'zggj)| :0#£z € /J} , 0€L.
With this norm,L* is a B—space. Its dual spad&* contains, as a canonically isometrically
embedded subspace, the original B—spAce: € L is interpreted as the mapping— o(z) =
(0; ), i.e. an element of **.

(v) Let M be a linear set of linear functionals on a linear spa€e Assume, thatt separates
points ofZ, i.e. o(z) = 0,Vpo € M = z = 0. The topology orC determined by alp € M
is called theM—weak topology onZ, or the o(L£,M)-topology. If we considet as linear
functionals onM, and if £ separates points aM, then we have also the(M,L£)-topology
on M. If L is a B—space, the (L, L*)-topology is theveak topology onL. Theo(L*, L)—
topology on the dual spac&” is called thew*—topology onL*.The closed unit balB; := {p €
L* : |lo|ll < 1} of the dual to a B—spacg is compact in thaev*—topology (=Banach-Alaoglu
theorem) <)

A.2 Elements of differentiation on Banach spaces

The differential calculus of mappings : € — 2R between two Banach spac&s andfR is
largely similar to calculus in finite dimensional spaces. A formal difference appears because
of coordinate free notation, what is useful also in the case, when the B-spaeare finite-
dimensional. We shall need mainly the case of an infinite dimensibifalg. ¥ = ¥,) and of

the one dimensiondk = R. Let us define th&réchet differential D, f at the pointy € T of an
R-valued functionf : ¥ — R:

A.2.1. Definitions.

() Let ¥, 7R be Banach spaces with (arbitrary) nornijs || (equally denoted for both spaces)
leading to their Banach-space topologies. IL&tC ¥ be an open subset containing The
Fréchet differentiglresp. theFréchet derivative of f at the pointy € ¥ is the unique (if it
exists) continuous linear mappig, f : € — R, n— D, f(n) (Vn € T) satisfying

lim [l =" £ (v + ) = f(v) = Do f(m)l] = 0. (A.2.1a)
If the derivativeD,, f exists, the functiorf is differentiable at the point v. If the derivative

Df:vw— D,f € L(Z,9R) exists inU, f is differentiable on U;; if, in that case,U = ¥, then
/ is calledFréchet differentiable functigror just: f is F—differentiable.
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(i) Let, by the above notation, the derivativetof> f(v + tn):

Diof(v +m)(1) = W . Df(w.m), Wnex, (A2.1b)
t=0

exists for allv € U. Thenf is G—differentiable, D f (v, -) is Gateaux derivativeof f atv € U,
and its valueD f (v, n) is thederivative of f at v in the direction 7.

F—differentiability implies G—differentiability, and then it3f (v, n) = D, f(n). Converse-
ly, if f is G—differentiable inU = U° C %, if the G—derivativen — D f(v,n) is bounded
linear® for all v € U, and if the function’ (€ U) — Df(v,-) (€ £L(T,R)) is continuous, then
Df(v,n) = D, f(n), cf. [234, Lemmas 1.13-1.15}>

In formulation of this definition, we have included also important assertions on unigueness,
and on the relation of the two concepts, [58].

Itis seen that the derivativé+— D. f is a linear operation (functionéwith values in a linear
spaceR form naturally a linear space).

A.2.2.Notes

(i) In finite—dimensional case, i.e. faim ¥ < oo, and alsadim R < oo, D, f (expressed in
some bases &, and offR) is just the Jacobi matrix of atv. ForR := R, the functiorw — D,, f

is the ordinary first differential of (understood as a linear functional @n the “differentials
of coordinatesiv;, j = 1,2,...dim %" are coordinates of vectors if); in the caset := R,
D, f(1) € R is just the derivative of the)f — valued) functionf according to the parameter
v € R (herel € R = T is the “numberl” considered as a vector froff).

(i) If ¥ is a function space, the derivative, f is thefunctional derivative, cf. [85, 61]. If f is
expressed in a form of integral over the spadeof arguments of the functionse ¥, 7 : z(€
M) — n(x)(€ R), thenD, f is usually expressed as an integral kernel:

5f(v)
dv(x)’

Dy fo) = veEST,
and D, f(n) is the integral containing in its integrand the functiprfand its derivatives with
respect to its arguments, denoted together by a vector—syjhboearly, e.g.

M

To be more specificf can be here, e.g., an “action integral” of the classical field theory, [192,
160], f(v) = [,; L(z,0(x))d*z, the functionsv : = — v(z) € R¥ are finite collections
(K < o0) of classical fields on the Minkowski spadé, and the functionl is aLagrangian
density i.e. it is a numerical differentiable function of a finite number-&f + 4 real variables,

r and(z) € R™K, attaining values € M, resp. equal to values of components/f), and of

(a finite number of) their derivatives taken simultaneously in the same paintM (locality):

U= {r,05°07" ...05°v : 1 < )" «; < r}. Then the derivative of : D, f(n), is expressed

by an integral oved of the integrandD,, L, -7(x), what can be considered as an application of

95| et us stress, that the linearity of G—derivative is a nontrivial requirement in general B—spaces.
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the chain rule for composed mappings, (A.222)~ L(-,7(+)) € C(M,R) might be considered
as a mapping between the Banach spaces C"(M,R¥) > v, and®B := C(M, R) (endowed
with some “appropriate” norms, if, e.g., the domain of integratioddnis bounded), with its
derivative D, L(.y (= a “multiplication operator” € L(%,B)) : n — D,Ly-7(-), and the
integral is the next (linear) mapping in the chain.

(iii) The derivative (A.2.1a) off : ¥ — R in any pointv belongs tol(%¥,R) = %5. Hence, for

T := L(H); D S the derivative would be in the double dua(*)’", what is strictly larger than
L(H), = T%, whereas the spacg, is the R-linear envelope of the) normal state space, i.e. the
“density matrices space”, which is, in turn, the spacalb§ymmetric linear functionals.e. the
state space of theé*-algebra® of compact operators oH.

(iv) It might be useful to stress here a (rather trivial) fact, that the derivative of a linear function
f € L(Z,M) equals, in any point € T, to the elemenf = D, f € L(%,R) itself. O

An important formula can be proved for differentiation of composed mappings [58,
Ch.152.2]. Let%, R, £ be three B-spaces, and Igt: T — R, g : ® — £ be differentiable
mappings. Then the composed mapping-= g o f : ¥ — £ is differentiable, and

D, h = Df(l/)g o Dyf (A22a)

SinceD, f is a linear mapping front into ‘R, and D¢, g is a linear mapping fron into £,
we have for ally € %:

Duh(n) = Df(u)g(DVf(n)) = (Df(u)g o Duf) (77) (A22b)

Specifications of these concepts lead to infinite dimensional analqueridl derivatives, cf.
[58, Chap.155.2].

A.2.3. Definitions.

(i) The second derivative D2 (-, -) of the differentiable functiorf : T — R, i.e. the first
derivative of the functioD.f : ¥ — L(%,R), n — D, f, at a pointv € ¥ belongs to a
subspace.(? (%,M) of the spacel (%, L(F,R)), what is canonically isomorphic to the space
L(T x %, R) of bilinear continuous functionals ok The subspace!? (Z,M) = L(TXT,R)

is the space afymmetricbilinear functionals: D2 f(o,w) = D2 f(w, 0).

(i) Similarly as above, then—th derivative Df,")f(y,...,-) is a symmetric continuous
\w—/
n—times

n—linear functional on%, an element of the canonically defined Banach spﬁ&”é(‘{, R) =
L (X"T,R).

(iii) The space of.—times continuously differentiable functiofioon the B-spac& with values
in 2 will be denoted by”* (T, RR). The space of all infinitely differentiable functions Srwill
be denoted by’ (%, R) (= F(X), If R :=R). O

Also the notion of the Taylor expansion can be introduced similarly as in finite—dimensional
case, [58, 234, 61]. Itis clear from the point (iv) in Notes A.2.2 that the second derivative of any
linear function (with respect to to the same argument) equals to zero.
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To deal with differential equations, resp. dynamical systems in different conditions, it is
useful to generalize the differential calculus to more general speceplacing the linear space
%. Such convenient spacé@g are for us topological spaces endowed with the structures called
“manifold structures”, and thesi’s are called “manifolds”.

A.3 Basic structures on manifolds

We shall start with the concept of differentiable manifold as a basis of further geometrical con-
structions, cf. [219, 40]. Intuitively, a manifold is a set “piecewise similar” to a t.l.s.

A.3.1. Definitions.

(i) A chart on a topological spacé/ is a triple ¢ := (U;¢; L), whereU° = U C M, ¢pis a
homeomorphism df onto an open subset of a Banach spaceWe shall often tak& := R”

for some natural numbet < ooj; in this case, the existence of such a chart means possibility of
introducingn continuous (local) coordinates on the open sulisetf M. U is thedomain of ¢,

resp. (also) ofp: We shall call the “chartc” alternatively also “the charty”.

(i) A topological (Banach) manifold M (simply: a manifold is a Hausdorff topological space
M every point of which has an open neighbourhood homeomorphic to some open subset of a
Banach spacé&. This means that/ can be covered by domains of charts defined on it.

(iif) A C™-atlas on a manifold) is a collection of chart{c; := (U;; ¢;; £;) : j € J} such,
that the open subsetd/; : j € J} (J is an index set) coveb/: UjeJ U; = M, satisfying
simultaneously the condition that for the set of homeomorphispthe mappingsp; o @,;1 :

¢ (U; NU;) — ¢;(U; N Uy) are, for all j, k € J, C™—diffeomorphisms, i.e. the mappings
together with their inverses are m-times continuously differentiable in all local coordinates. Two
C™-atlases areequivalentif their union is again aC™-atlas. All the equivalent atlases compose
the maximal atlas. If all the B-space< of the charts of the atlases are finite dimensioRal
spaces, and an atlas i&; := (Uj;p;;R™7)) : j € J}, the numbers:(j) occurring in the
specifications of charts alecal dimensionsof M. For a connected/ it follows thatn(j) = n

in which casen is thedimension of M, n = dim(M). In the case of a manifold/ with the
image-spaceg being infinite—dimensional B-space¥, is a manifold of infinite dimension.
The manifoldM endowed with aC"*-atlas (equivalently: with an equivalence class@f’-
atlases) is called & -manifold The atlas(-es) definesstructure of (C™ —)differentiable
manifold on M. Equivalent atlases determimguivalent manifold structureson M.

It is a theorem, [135], that on any finite dimensioG&l’-manifold withm > 1 there is also
a C>-atlas in the equivalence class defining the manifold structure. Hence, on differentiable
manifolds of finite dimension we can always introduce local coordinates the transformations of
which on the intersections of their domains are all infinitely differentiable. In the following, any
manifold will be aC>°-manifold. Let us note also that on a given (topological) manifold it might
be possible to introduce many nonequivalent differentiable structures; e.g., on the Sphiere
n < 6, it can be introduced exactly one differentiable structure, but:.for 7 there are several
dozens of nonequivalent differentiable structures, cf. [148].

Let us introduce now some examples.
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A.3.2.Examples

(i) Let M = R"™ considered with the (unique) locally convex topologyRif. Let an atlas
consisting of a unique chart with domald and being the identity map be given. This atlas
defines aC°°-manifold structure o/

(i) Let M := S™ c R™*! be the n-dimensional unit sphere. We can construct charts of an atlas
on M by stereographic projections onto hyperplaitis ¢ R"*! orthogonal to coordinate axes:

If M is described by the equatkﬁﬁil1 z3 = 1, then, for the j-th projectior;, the point with
coordinateszy, : k = 1,...n + 1} is mapped into the pointy; := 2x;/(1 — x;),l # j}, for

all the points i{z € S™ : z; # 1} =: U; composing the domain af;. As a simplest case of
these manifolds, the circl§' needs at least two charts to compose an atlas.

(iii) The torusT™ = (S*)™ is an example for multiply—connected (cf. below) manifold. Its charts
are constructed, e.g., as Cartesian products of the charts of circles.

(iv) Let a setN be homeomorphic to the subset®f consisting of several mutually different
straight lines intersecting in some points, with the induced topology. Theannot be endowed

with a structure of manifold, since any point of intersection has not a neighbourhood homeomor-
phic toR (or toR", for anyn > 0). ©

The real lineR will be always (if not mentioned contrary) considered with its usual topology
generated by open intervals. Similarly, the complex pl&rng considered with the usual product
topology of R?. The manifold structures of these spaces are given as in Example A.3.2(i). We
shall define now important subsets of a manifold, that are endowed with canonically induced
manifold structures.

A.3.3. Definition.

(i) A subsetN C M is a submanifold of M, dim(M) = n, if every pointz € N
is in the domainU of such a chart(U;y), that for all z € U N N one hasy(z) =
{xt 2% ... 2% al,a?,...a" "k}, where{a!,...a" ¥} isaconstantiR"~*. The obvious man-
ifold structure onN determined by these charts is thmluced manifold structure from the
manifold M. Dimension of the manifol&/ isdim N = k.

The usual model of a submanifold in A/ := R” is realized as the a “surface” IR",
i.e. as the inverse imagg *({a}) =: N of a pointa € R"~* by a differentiable function
f : R* — R"* (i.e.n — k real differentiable functions of, real variables) with its Jacobi
matrix of constant maximal rank aN; this means, thalv (with dim(N) = k) consists of roots
x € R™ of the equation

f(x) —a=0(cR"F). (A.3.1)

Hypersurfaces of the dimension— 1 are determined by real-valued functiofison M with
nonvanishing differentiaff at pointsz satisfying (A.3.1) .
Let M, N be two manifolds, and let a functigfi: M — N,z — f(z) be given.

A.3.4. Definition. A function (respmapping f : M — N,z — f(z) is differentiable in
x € M iff there are chartU; ), (V;¢) on M, N, respectively, with: € U, f(z) € V such
that the functiony o f o =1 : (U) — (V) is differentiable inp(x). That f is differentiable
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means differentiability in each pointe M. If f : M — N is a bijection and bothf and f~!
are differentiable, then f is diffeomorphism of the manifolds\/ and V.

Let I c R be an open interval containing. A differentiable functiorc : I — M is a
differentiable curve on M. $

These concepts do not depend on a specific choice of charts in an equivalence class of at-
lases. We shall mean in the following by “differentiability” the infinite differentiability, if not
stated otherwise. Differentiable mappinfis M — R compose the spacg(M) of infinite
differentiable real-valued functions a¥/. The real linear spac& (M) is alsoan associative
algebrawith respect to pointwise multiplicatiorfyf »)(z) = f(z)h(z).

These concepts allow us to introduce an intrinsic definition of tangent spddestiva point
x € M. This has an advantage with respect to intuitive notions of tangent spaces as a certain
“plains” in some higher dimensional linear space containing our manifdlds a submanifold:

Such intuitive notions needn’t be invariant with respect to diffeomorphisms, since after a dif-
feomorphic deformation of\/ the “tangent plain” might become “tangent” in more than one
points of M, or even intersect/ if this is not embedded in an “appropriate way”. Our definition

is, however, physically intuitive, since it directly defines tangent vectors as invariantly specified
“instantaneous velocities” of motions along curves lying on the manifold.

A.3.5. Definition. Letc;,j € J be differentiable curves on a manifald through a pointr €
M :¢;(0) =x,Vj € J. Let(U; ; £) be achartonM atxz € U. Then the derivatives

R C10)

I g7 = Di—o(poc;)(1) € &

t=0

exist. If they are equal for differente J, as vectors:f in the B-space, this mutual equality
is independent of a chosen chart We shall calle; andcy,, with v¥ = v, equivalent curves
at x € M. Hence, the differentiable curvesate M are distributed intcequivalence classes
[c]4 Of curvescatx € M.

Let ¢ be a chart onM/ as above in Definition A.3.5, and |ét be considered as a mani-
fold with the atlas consisting of single chart given by the identity mapgifagon £. Then the
equivalence classed], of all curvesd; : I; — &,d;(0) = n € & throughn are in canon-
ical bijection with vectors ir€ given by[d],, < Dod;(1) € £, d; € [d],. Any curved,
throughn := ¢(z) € & gives a curvet — ¢;(t) := ¢ 1(d;(t)) throughz € M. This
helps us to see that there is a bijection between the above defined equivalence[classes
curves onM, and vectors ir€. Now it is possible to introduce linear operations into the set
{[c]+ : ¢ is adifferentiable curve o/ througha} of equivalence classes of the curves, by ex-
tending the above bijection to a linear mapping. It is important thatinear structure on the
set of classef], does not depend on a chosen chdthis leads us to important

A.3.6. Definitions.

(i) Let M be a differentiable manifold; € M. The above introduced linear space of equivalence
classeqc]|,. of differentiable curves throughis called thetangent space taM/ at =, and will be
denoted byl M = T,,(M). An element¢ := [¢|, € T, M is atangent vectorat « to M. If

U C M is an open subset (considered as a submanifolfi/dfcontainingx, we shall identify
the tangent spaces,.U = T, M, sinceT, M is determined by “the local structure” of/.
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(i) Let f : M — N be a differentiable mapping (cf. Definition A.3.4) of manifolds. &et
[cl. € T.M. Then the equivalence class of the curves> f(c/(t)) € N through f(z) is
independent of a representativec [c,, hence the mapping induces a well defined mapping
T, f of classesc|,, into classesf o c| ;) € Ty N

xT

Tof =To(f) : TeM — ToN, v :=[cle = Tof(vy) == [f o @) (A.3.2)

The mappind’, f is called thetangent of f at x.

(i) Let a manifold A/ with an atlas{(U;; ¢;; ;) : j € J} be given. Lef"M be the manifold
determined as the set

{lc]e € TuxM :x € M}

of all tangent vectors in all points of the manifald, endowed by the atlas consisting of charts
(U{TIM cx e Uk ;& x 5]-),

where the mappin@; is defined:

®;([c]) := (‘Pj(x);TmSOj([ P )) € o(U;) x & C & x €.

In the last relation, the image of the tangentgfon the vectoic], atz € U; C M equals to the
derivative of the curve — ¢; oc(t) € &; in pointt = 0 taken at “the vector'l € TyR = R, cf.
Definition A.2.1, and’, ()& is |dent|f|ed with€;. Moreover, let thgrojection 7, be defined
on the manifold" M by

wy TM — M; ey — x. (A.3.3)

The differentiable manifold’M endowed with the projection (A.3.3)tise tangent bundle of
M. The projectionr,, is thetangent bundle projection of M.

(iv) The tangent bundle is an example ofexctor bundle (P, wps, E) , i.e. of a manifoldP with

a differentiable mapping,; : P — M onto another manifold/ with a given open covering
Uy = {U; : j € J} by domaindJ; of its charts, and a topological vector (let it be Banach)
spaceFE (considered with its natural manifold structure) such thay' ({z}) =: E, C Pis
homeomorphic td, the homeomorphism being the restriction of a diffeomorphiswjp(U
ontoU; x £, and the homeomorphisms corresponding t6 k£ and to pointsc € U; U}, induce

a group of linear transformations oA in a natural way, [61, 151, 1, 40], called thegructural
group of the bundle. Such homeomorphishis <+ E allow us to introduce a natural linear
structure on allE,., x € M, by transferring it from that orE.

(v) LetT} (M) := (T, M)* be the topological dual df,, M. This space is called theotangent
space to M at x Let us takep copies ofT,, (M), andq copies ofT; (M), and let us form the
tensor product spaces

T0,M = @_ T,(M) Q) &% _ T (M), = € M. (A.3.4)

Let us denot/? M = TP (M) the set theoretic union of these linear sets. With a use of the
manifold structure on\/, they can be “sewed together”, i.e. there can be introduced a manifold
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structure on the seT’?(M) in an obvious analogy with that Gf M. The resulting manifold
will be denoted by the same symligfi(A1); it will be called the (vectorundle of tensors of
type (2’), or of the tensorgontravariant of order p, andcovariant of order q. The manifold
TY(M) =: T*(M) is thecotangent bundleof the manifold\/, andT} (M) = T M.

(vi) Let a bundle(P, ), F) be given, and lev : M — P,z — v(x) be a differentiable
mapping such, that

mu(v(z)) = x. (A.3.5)

Such mappings are calleskections of the (vector) bundle A section of the tangent bundle
TM = (TM,my,€) is avector field on M. Sections of the tensor bundi& (M) are tensor
fields of type (5) The tensor fields of the typ(g) form an infinite dimensional vector space
T2(M). The space of vector fields &' (M), the spaceZ’ (M) is identified withF (). The
direct sum7 (M) = @,>0,4>07F (M) is the algebra of tensor fieldson M, the algebraic
operation being the pointwise tensor product.

(vii) Let f : M — N be asin (ii). Theangent mapping of f is the mappind’f : TM — TN
defined by (cf. eq. (A.3.2))

Tf:ve (€TeM) = Tof(vy) =Tof - Ve (€ Tyiz)N). (A.3.6)

The tangent mapping is also denoted fiy:= T'f. If f is a diffeomorphism, then we denote
by f. also theunique natural extensioof this mapping to the whole algebra of tensor fields,
S« : T(M) — T(N), determined by its “commuting with contraction”, and conserving the
type ({;) [151, Chap.l, Propositions 2.12 and 3.2])

Any vector fieldv on M uniquely determines a differentiatiofi, (i.e. a linear mapping
satisfying the Leibniz rule for its action on products) of the associative algeftd). Letv(x)
corresponds to the clags’], of curves through: € M, and letc¥ be in this class. Thed is
defined by the formula

d
£vf(x) T Vz(f) T dt —0
Let us stress that this definition depends on vectarse T, M only, independently of their
possible inclusions as values of some vector fields: The mappiag?7, M) — £ is well
defined for any fixed: € M. On finite dimensional manifolds, any differentiation on the algebra
F (M) is given by a vector field according to (A.3.7); cf. [61] for comments on infinite dimen-
sional cases. Hence, each vector fieldetermines a differential operatdk,, and the mapping
v, (€ T, M) — £, is a linear injection into the set of differential operators on the “algebra of
germs of functionsF (M) in the pointz € M™; this injection is also onto (i.e. surjective) for
dim M < oo. We shall often identify£, with v € T M. The derivationf, can be naturally
(under the requirement of “commutativity with contractions”, [151, 1], and of satisfaction of the
Leibniz rule) uniquely extended to a derivation on all spafig6M). It acts on the vector fields
as

f(e¥(t)). (A.3.7)

Lyw = ["€V7 "Ew] =Lyl — Lwdy = £[v,w]7 (A.3.8)

and, for given vector fieldg andw, it represents a vector field, [40], denoted[byw].
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A.3.7. Definition. The above determined mappiidg : 7 (M) — 7 (M) (leaving eactz P (M)
invariant) is theLie derivative of tensor fields with respect tov € 7' (M). The result of its
action on a vector fielév : £, (w) = [v,w]isthe commutator (or Lie bracket) of the vector
fields v and w. This Lie bracket satisfies ttdacobi identity;

[£u, [£v, Lw]] + [Lw, [Lu, £6]] 4+ [£v, [£w, £u]] = 0,
what is a consequence of the definitiof.
Let us note that the mapping
dof : ToM — R,v = do f(v) := £4(f) = v(f),Vv € T M, (A-3.9)

is a bounded linear functional dfi, M (this is a consequence of definition of Fre'chet differ-
entiability of f € F(M); d.f equals toT’ f, if Ty,)R = R is the canonical identification):
dyf € TrM. Each element of ; M has the formd,, f of differential of the function f for
somef € F(M). Hence, each tensor ifi, (M) can be expressed as a linear combination of
tensor products of the forl®’j’=1vj QR @F _dufr,vj € TuM, fr, € F(M).

Any vector fieldv € 7' (M) =: X (M) determines differential equation on the manifold
M, written symbolically for annitial condition z(0) = z:

(t) = v(z(t)), =(0):=x€ M. (A.3.10)

Its solutions arentegral curves of the vector field v i.e. curves(€ I, = I C R) — z(t)
throughz such that for any, € I, the curve{t — x(t+1o)} € “the class of curves determined
byv(z(t9))”. The open interval,, can be (and is supposed to be) chosen maximal. Let us define
the setD,, := {(¢t;z) : t € I,,x € M}, called thedomain of the (local) flow of ve X' (M).
There is defined on it the mapping

Y i (t,x)(€ Dy) — @) (x) == z(t),z(0) = x, (A.3.11)

wherex(t) is the solution of (A.3.10); the mapping’ is called the(local) flow of v. The
locality means, that there might be for some= M : I, # R. If for all the intervals one has:
I, = R,Vx € M, the vector fieldv as well as its flow are calledomplete On an arbitrary
compact manifoldV/, any vector field is complete. Any (local) flow satisfigs its domairthe

group property:
PYitts = Py O Pry- (A.3.12)

Vector fields are typically used to determine flows on manifolds as solutions of the corre-
sponding differential equations. There are, on the other hand, other kinds of (covariant) tensor
fields typically used for integration on manifolds. We shall not review here the integration theory
on (finite dimensional) manifolds leading to the general Stokes theorem generalizing the partic-
ular Stokes, Gauss’, Green'’s, and Stokes’ theorems connecting some integnasiémids N
with boundary® 9N with corresponding integrals on the boundary. The formal expression

96 A manifold with boundary has, besides the usual manifold charts, also chaftsvhose ranges are intersections
of open subsets of linear spag@swith their closed “halfspaces”, [4@11.1]. The boundary of the manifold consists of
its points lying in inverse images of the boundaries of the halfspaces with respect to the chart-mappicigslso [1,

p. 137].
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of the general Stokes’ theorem is the followiStpkes formula

/Ndw:/an. (A.3.13)

If N C M,dim N = n, andM is a manifold {lim A/ > dim N := the dimension of the sub-
manifold N°), inducing onN its structure of aubmanifold with boundarghe objects entering
into the Stokes formula are tensor fieldse 7,° ; (M), dw € 7,° of special kind callediiffer-
ential forms Another usage of differential forms is in formulation of some partial differential
equations on manifolds with a help ekterior differential system$61]. We need such tensor
fields, in the present work, in connection with Hamilton’s formulation of mechanics on “nonde-
generate” phase spaces (i.e.symplectic manifolgsand also in some modified situations (e.g.
on Poisson manifolds

Let us consider the elements B]fz(M) asp—linear forms orl, (M), e.9.d, f1 ® d fo ®
- ®d, fy € T),(M) is determined by specification of the mapping

(Viivas...;vp) (€ XPTL(M)) = ] vi(£:); (A.3.14)
j=1

the space of boundeg-linear forms.,, (T, M, R) can be identified with')), (1/) by the linear
extension of this correspondence. Let us introduceatternation mapping A of this space
into itself. Let foro € ¥(p) := the permutation group qf elements, and let, = +1 be the
“parity” of o, i.e. the nontrivial one—dimensional representatiol gf). Let nowA be the linear
mapping determined by

1

= H Z Eat(vo—(l),vo-(2), ... ,Vg(p)),vt € [:p(Tm]W7 R),

a€X(p)

At(vy,va, ..., vp)

(A.3.15)

One can see that this mapping is idempotént:A = A. Let us define now the subspas& (M)
of T, (M) by

AP(M) := ATy, (M). (A.3.16)

Let us denoteAP (/) the space of tensor fields : = — w, on M with valuesw, € AP (M),

for any integel) < p < dimM + 1 < co. Suchw are calledp—forms on M. We identify
0—forms with differentiable functions, i.eA°(M) := F(M). A useful associative algebraic
structure on the spack (M) := &3 AP(M) can be introduced: Theredge—productA :
AP(M) x A4(M) — APTI(M), (w1;ws) — w1 A wa, WhereAP(M) = {0}, if p > dim M.

For arbitraryf; € F (M) we define the wedge—product of their differentials (for the consistency
of various definitions of\ cf. [7]):

dfs Ndfao A--- Ndfp = pl-Aldfr @dfe ® - - @dfp), p=2,3,...,dim M, (A.3.17)
where the alternation mappinyy acts pointwise onl/. More general formula for an arbitrary
wedge—product of @;—formw, and ap,—form w, reads:

(p1 + p2)!

pl'p2' A(wl X WQ). (A318a)

w1 N\ wg =
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Then we have

w1 N\wg = (—1)p1p2w2 /\wl, (A318b)

FAw=wAf=f w VfeA(M),weAP(M)(p=0,...,dimM). (A.3.18c)

A.3.8. Definition. The linear space\ (M) := @3 AP(M) endowed with the above intro-
duced wedge—produet is called thealgebra of exterior differential forms on M. Its ele-
ments lying in the subspack? (M) are calledp—forms on M; specifically, the elements of
AY(M) = x*(M) areone—forms and the elements &° (M) = F(M) are zero—forms <

Let us introduce now some operations on the algebfa/), i.e. some linear mappings of
A (M) into itself. Let us first note that thkie derivative £, as it was extended to the w-
hole tensor algebrd@ (M), leaves its linear subspadg( M) invariant, and the Leibniz rule with
respect to the wedge—product is fulfilled:

£v(w1 /\WQ) = (-’val) Nwo +wys A (,€vw2). (A319)

Another important linear mappind : A(M) — A(M) called theexterior differential is
uniquely determined by the below listed properties, [1, Theorem 2.4.5]:

A.3.9. Theorem. The following properties determine a unique linear mappthgn A (M)
(called the exterior differential ofi{):

(i) dAP(M) C APFY(M);

(i) d(w1 Awg) = (dwr) Awa + (=1)Prwq A (dwz), Yw; € AP (M),

(i) dod = 0;

(iv) Forany f € F(M),df € AY(M) = X*(M): df(v) = v(f) := £,(f), Vv € X(M).
This means, that the exterior differential of a functipoincides with the differential df intro-
duced above, in (A.3.9%

Explicit expression of the differentialv of anw € AP(M) given by

wi= > hygeg,dfi Adf A AdS,, (A.3.20a)

J1<j2<<Jp

with hy, 5,..5,, f; € F(M), is easily obtained by linearity and by the (modified) “Leibniz rule”,
as well as by the propertyo d = 0:

dwo= > dhjg, Adf Adfi A AdS (A.3.20b)

J1<je2<--<jp

A.3.10. Definition. Let a vector fields on M be givenv € X(M). Then the linear mapping
iy A(M) — A(M),AP(M) — AP~1(M), determined by

(Byw)(V1, Ve, ..., Vpo1) == w(V, V1, Vo, ..., Vp_1), v f:=0(f¢€ A°(M))

is theinner product of v and w.
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One of the main statements of this section will be a list of mutual relations between in-
troduced operations on exterior differential forms. Before quoting it, let us introduce still one
transformation which allows us to “transfer” differential forms (and other tensor fields) from a
manifold to another one.

A.3.11. Definition. Let 3 : N — M be a differentiable mapping of a (differentiable) manifold
N into a manifoldM, and letT3 : TN — TM be its tangent mapping. For arpform on
M : we AP(M), let us define a—form*w € AP(N) on the manifoldV by the formula:

(Bw)y(Wi,...,Wp) = wgy)(TyB-wy,...,T,6-w,), Vy € N,w; € T,N.

The mappings* : A(M) — A(N) is called thepull-back by 3. Let us note, that in the
particular casep = 0 we have forf € F(M): 5*f(y) = f o B(y). ¢

We can now present a basic tool of the “machinery” for such a differential computation on
manifolds which does not need introducing any coordinates on them; we shall collect also some
earlier recognized relations, cf. [40, 151, 1, 61].

A.3.12. Theorem. For above defined operations on (infinitely) differentiable manifolds repre-
sented by the symbats, £.,d, 7., as well as by theommutator (if it is defined) of any opera-
tions;:

[7'1,7'2] =T10T2 —T20T1,

with v, w any differentiable vector fields on a manifold, the following identities are valid:
() [£v, £w] = "E[v,w];
(i) [£v,d] = 0;
(iii) [£v,tw] = T[v,w]s
(iv) [67,d] =0
where, forg € C*°(N, M), d acts interchangeably oA (M), and onA (N);
(V)dod=0;
(viy)doiy +iyod = £y;
(Vi) 2y 0ty + T 0 4y = 0;
If 3: N — M is a diffeomorphism, and, for any € X (M), we defingd*v € X(N) by the
identity
(dg)y(B*v) = ((871)"dg) 4, (v), Vg € F(N), Vy € N,

then the following two items, (viii), and (ix), also express identities:
(viii) 5% o £y = L=y 0 57
(IX) ﬂ*zv = iﬁ*vﬂ*-

Moreover, the following elementary properties are identically valid (yith A°(M) = F(M),
and f-means poinwise multiplication, e.f:a = f A a, o € A(M)):
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(X) £v+w - va + £w:

(XI) ’Efv = df Ny +f£v;

(Xii) tyqw = v + tw;

(xii)) 2y = fr2y.

Let us give also the following useful formula for coordinate—free calculation of the exterior dif-
ferential:

(xiv)
P
dw(vo,vi,...,vp) = Z(—l)-jfvj (w(v(),vz,...7\?j, . ,Vp))
7=0 (A.3.21)
+ Z (—1)j+kw([Vj7Vk],V07...,\A’j,...,\A’k,...Vp)7
0<j<k<p

for all w € AP(M), wherev; meansskipping ofthe vector fieldv; in the arguments, so that
it is replaced byv;_;, and other arguments are also shifted by keeping their original order
unchangedéd

We shall introduce here also the following standard terminology:

A.3.13. Definition. Letw € AP(M) be such g—form, that its differential vanishesiw = 0,

hence it equals to the zero elementAdf+1(M). In this situation,w is a closed p—form.
Clearly, if w = da for somep — 1-form o, thendw = 0; for such a closed form we say, that

w is anexactp—form. Let us assume now, thdim M < oco. Since exacp—forms form a

linear subspace in the subspace of all clopedbrms, one can form the factorspace of the later
p—forms according to its subspace consisting of the former ones. The resulting linear space is
denoted byH?(A(M)) = HP(M), and it is called thep—th cohomology group of M, where

the group operation is the vector addition, cf. [148, 6X}.

The mentioned cohomology groups are important algebraic—topological characterizations of
manifolds, but we leave it here without giving any further comments and results, cf. [246, 219,
148, 80, 61].

If there is given a bilinear continuous ford on a vector spacé, it determines a linear
mapping®’ from £ into its topological duaf* by

W& E \IIF;, with <\Ifi,y> =U(x,y), Yo,y € £. (A.3.22)
The mapping?” is injective iff
r#0= 0 £0. (A.3.23)

In the case of finite dimension4l this condition means thal’ is a linear isomorphism (hence
also bicontinuous in the natural I.c. topologies). OtherwiBeneedn’t be even a bijection: it
might injectively map the spackonto a proper subspace&f. It is useful to distinguish several
cases, [1, 178, 61]:
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A.3.14. Definition (Nondegenerate 2-tensors).

(i) Let the above introduced mapping fulfills the condition (A.3.23). Then the we say that the
bilinear form ¥ is weakly nondegeneratelf ¥’ is bijective (henceS is mapped also onts*),
thenW is calledstrongly nondegenerate

(i) Let nowW¥ € 7,?(M) be a two-covariant tensor field on a manifald, ¥ : z(€ M) — V¥, (€
T9 M). Let us assume, that is either symmetric (i.eV,.(v,w) = ¥, (w,v), Vo € M,v,w €
X (M)), or antisymmetric (i.e¥,(v,w) = =V, (w,v), Vo € M,v,w € X(M)). Then¥
is weakly (resp. strongly) nondegenerateif all ¥, Vo € M, are weakly (resp. strongly)
nondegenerate.

(iii) Let T' € 7(M) be symmetric. If it is weakly (strongly) nondegenerate, then it is called
weak (strong) pseudo—Riemannian metric onM. If T' is, moreover, positive definite (i.e.
L.(v,v)>0,Yv #0,v € T,M,Vx € M), thenitis called aveak (resp. strong) Riemannian
metric.

(iii) Let © € A2(M), and assume, moreover, that it is closetf2 = 0. If the two—form() is
weakly (strongly) nondegenerate, it is calldak (strong) symplectic form onM.

The Riemannian metrics are the basic objects of Riemannian geometry, [129, 61, 1], pro-
viding a mathematical formalism for the relativistic theory of gravitation (general relativ-
ity” ), [88, 195, 226], and it is useful also for a description of classical “continuous media” (i.e.
the phase spaces are infinite—dimensional), e.g. [7, Appendix 2], [178, 110]. The symplectic
forms are basic for (finite—, or infinite—dimensional) classical Hamiltonian mechanics (CM), cf.,
e.g. [1, 59, 178]. In our extension of quantum mechanics (EQM), symplectic forms on manifold-
s of density matrices generate dynamics and symmetries with a help of scalar—valued functions
(“Hamiltonians”), and simultaneously canonically defined Riemannian metrics on that manifolds
of density matrices are tools for determination of specifically quantum probability interpretation
of the theory.

A.4 Elementary concepts of Lie groups

We shall restrict our present brief exposition mainly to finite dimensional Lie groups; for infinite
dimensional Lie groups see, e.g. [39, 155]. Let us start, however, with some basic definitions and
relations, [207, 19, 267], concerning general groups.

A.4.1. Definitions (Abstract and topological groups).

(i) A group G is a set with a distinguished element G called theunit elementof G, and with
two mappings: (a) a bijection af onto itself,g(€ G) — g~!(=the inverse ofg); and (b) the
group multiplication ( equiv.: product),

(91:92) (€ G X G) — g1-92 = g192 (€ G),
whichis associativeand such, that
eg=g,9 "g=e, Vg €QG.

Then itis alsoge = g, g9~ = e. If g-h = h-g (Vg,h € G), thenG is abelian (equiv.:
commutative) group.
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(i) A subset C G such, that it is invariant with respect to taking inverse and also with respect
to group multiplication of its element#:; -hy € H, Yh; € H, j = 1,2, is called asubgroup of
G. Any subgroupd of G is a group with the induced operations frath

(i) If the group G is a topological space, and the inverse operation and group multiplication
are in this topology continuous (by whi¢hx G is endowed by the product topology), then G is
topological group. If H is a subgroup ofs and a closed subspagdtis a topological subgroup

of G.

(iv) Let G be a (topological) group, and its (topological) subgroup. I§Hg~ ! := {ghg~! :

h € H} = H, ¥Yg € G, thenH is normal (equiv.: invariant) subgroup of G. Since any
subgroup contains the unit elemenof G, the subsetg- H C G, g € G (calledleft cosets of

G) cover wholg, and any two of them are either equal, or disjoint: They define an equivalence
relation onG. The factor spaceS/H corresponding to this decomposition@to left cosets are
important in the theory of actions ¢f on some arbitrary spaces. Similarly, another equivalence
relation onG determined by theght cosets{Hg : g € G} of G; for normal subgroupd? (and
only for them) these two decompositiongtbtoincide. If H is a normal subgroup, the space
G/H is again a (topological) group with the group multiplication

(97"H)-(¢H) = (97 "¢')-H, Vg,9' € G.

In this case, the factor spac&/H is called thefactor group of G by H.
(v) LetG, G’ be two (topological) groups andl : G — G’ be such a (continuous) mapping, that

d(g1-92) = (991)-(¢g2), de := €';

the mappingp is a group homomorphism of G into G’, with ¢’ = the identity of G’. If ¢ is
bijective (i.e. injective and onto) (resp. homeomorphism), it is cadledchorphism of (topologi-

cal) groups(z, andG’. An isomorphism aff onto itself is arautomorphism of G. The set of all
automorphisms aff forms, with respect to the group multiplication given by the compositions of
mappings, a groupAut(G), called theautomorphisms group of G. Let any fixed; € G be
given. Then the mapping

g (€G)—gg-g7",
defines aninner automorphism of G, and all of them form theroup of inner automor-
phisms In(G). The groupIn(G) is a normal subgroup ofiut(G), and the factor group
Aut(G)/In(G) is called, [19], thegroup of external automorphismsof the group G

The groups defined above are certain abstract sets endowed with their “inner” operations.
We find usually in applications groups as some sets of transformations of some other sets of well
defined (i.e. formalized) elements, e.g. some reversible motions of physical systems. Having
defined a group, on the other hand, we could find some transformations of a set which act as a
homomorphic image of the given group; e.g. a group of some mechanical motions can act on
electromagnetic field in some electronic device. To enforce intuition about transformations of
an arbitrary (in general infinite) set, we can imagine them as some “permutations” of elements
of that set: The “number of elements” remains the same (transformation is invertible and onto),
but at least some of elements are “replaced to places occupied before by some other replaced
elements”.
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A.4.2. Definitions (Actions of groups).

(i) The set of (all such “permutations”, i.e. of) all transformations of a sétform a group
G(X); it will be calledthe transformations group of X. If the setX is endowed by a structure

(e.g. topology, algebra, metrics,. ), the subgroup of all transformations of consisting of

the transformations preserving this structure (e.g. homeomorphism, algebraic automorphisms,
isometries, .. ) will be denoted bylut(X) (with a corresponding specification), and called the
automorphism group of X. If there is no structure specified ox (i.e. the only structure is the
set-structure), then we shall ugg X') and Aut(X) interchangeably.

(i) Let G be agroup, andlek beaset. LeT" : g — T, € Aut(X), g € G, be ahomomorphism
of G into Aut(X). The mapping’ is called anaction (or realization) of G on X, and the space
(resp. set)X endowed with such an action is calledza—space For any fixedr € X, the set
of elementy € X : 3g € G, T,z = y} is called theorbit of T (equiv.: of G) through

x € X. The belonging to orbits is an equivalence relation. If the whole spé@amincides
with an orbit, it is ahomogeneousédquiv.: transitive) G —space We shall usually use notation
g-x = Ty(z) = Tyz, Vo € X,g € G. Each orbit of anyG—space is a transitiv&—space.
If G is a topological group and{ a topological space, the mapping— 7, is assumed to be
continuous in a certain topology afut(X); usually it is assumed continuity on the topological
product spaceG x X — X, (g;x) — T, is jointly continuous, cf. e.g. [20824]. If X is a
linear space, ande C Aut(X) = L(X), thenTg is a representation ofG.

(iii) Let X be a transitiveG—space, and let € X be fixed. ClearlyG-z = X. ltise-z = =z,
and the set of alh € G such, thath-x = = forms a (closed) subgroufl = G, of G. The group
G, is thestability subgroup (of G) at z. Itis called also thestationary subgroup of z. Since
the left cosely- H consists of all the elements transformingnto ¢-x, the homogeneous space
X is isomorphic to the factor spac&/H.

A.4.3. Definition. LetG be any group. Take the spagé:= G, and define théeft translation

g — Lg asanaction of5 onitself byL,(¢') := g-¢’. ThenG is a transitiveG—space. Similarly,
another action of on itself is defined by theght translations R,, R,(g¢’) := ¢’-g, by taking
the group homomorphisi®@ — G(G) : g — Ry,-1. These two actions mutually commute:
LyR;, = RyLy. The mappingy — A(g) := Ly o R,_, is also an action ofG on itself,
A(g) € Aut(G). &

Let us turn our attention to Lie groups now.

A.4.4. Definition (Lie groups). LetG be a manifold with such a group structure, that the group
mapping(g:; g2) — g1-g, - is differentiable (equiv.: continuous, equiv.: smootfiiifi G < co)

as a manifold—mapping @ x G — G. The groupG endowed with such a manifold structure is
alie group.

Equivalently: The Lie group is a topological group wittCd—manifold structure consistent with
the group topology (fodim G < oo one need not specify. ¢

A.4.5.Note. Let us note, that the mentioned equivalence (i.e. sufficiency of mere topological
manifold structure, and continuity of the group operations for smoothness of these) is the content
of positive solution of the fifth Hilbert problem by Gleason [108], and Montgomery with Zip-
pin [184], fordim G < oo. A partial solution is given in the book [207], according to which the
original papers are cited herg.
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A.4.6.Examples The following groups are simple examples of Lie groups:

(i) Abelian connected Lie groups aR¥ x T, whereT is one dimensional torus (circle), and
multiplication is componentwise additionifnod (27) on the torus with a marked element).

(ii) The groupGL(n,R) of all real invertiblen x n matrices with the matrix multiplication

as the group operation, and the topology given by continuity of all matrix elements. Also all
closed continuous subgroups of this group are Lie groups, (&), O(p, q), Sp(2p,R). Such
groupsG of matricesg € GL(n,R) can be obtained by specification of a matdx and by
requiring, [148, p. 78]yT Ag = A, Vg € G.

(iif) As an example of infinite-dimensional Lie group, [39, Chap.l11.3.10, Propaosition 37], let us
take an infinite dimensional Hilbert spakg and letil be the group of all unitary operators on it.
Thenil is a Lie group, if taken in the norm-topology 6fH), as a submanifold of (H), what
can be taken, in turn, as a manifold with the single chart with the identity mapping onto itself, as
a B-spaceC(H). ©

Let us consider a Lie grou@ with unit element, and let¢,n € T.G be arbitrary tangent
vectors ak to G. We shall construct, to eagh a vector fieldw, on the manifold= by a help of
left translations, cf. Definition A.4.3, with a help of their tangent mappings, Definition A.3.6:

we(g) :=TeLy(§), g € G, we(e) ==&, VEeTLG. (A4.1)
These vector fields ateft invariant , i.e. for anyg € G:
Lywe = we, i.e.T,Ly(we(h)) = we(g-h), Yh € G, (A.4.2)

what is an immediate consequence of the definition (A.4.1). The magpirgw,(§{ € T.G)

is linear. Conversely, all left-invariant vector fields @hare of this form. These vector fields
are complete. Let us form a commutator, cf. Definition A.3.7, of two left—invariant vector fields,
[we, wy] € X(G). It can be shown, that the commutator is again left invariant, hence

[WE7W77] = Wign]s [5777] = Wi ] (6) (A43)

This shows, that the subspacedfG) consisting of all left—invariant vector fields @hnis also an
algebra with respect to commutations. The mapping— w¢(e) = £ is a linear isomorphism
of the space of left invariant vector fields orifpG; they are isomorphic also as algebras with
the “commutation-, -].

A.4.7. Definition. A linear spaceX is aLie algebra, if it is endowed by &.ie bracket, i.e. by

a bilinear mapping[-,-] : X x X — X,(&n) — [€,17] € X, such that it is antisymmetric:
[£,m] = —[n, &], and theJacobi identity is fulfilled:
(€ Cll+ [ nl] + [0, 6 €] =0, VEn, (€ X. (A.4.4)

The Lie bracket¢, n] is called also thecommutator of the elementg and . A mappingy
between two Lie algebras is lae algebra morphism, if it is linear, and conserves the Lie
brackets:o([€, n]) = [¢(€), ¢(n)]. If ¢ is a bijection, it is aLie algebra isomorphism <

We shall next consider the Lie algebras determined by given Lie groups.
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A.4.8. Definitions.

(i) Since the commutator of vector fields satisfies the Jacobi identity, cf. Definition A.3.7, the
tangent spacé’. G is naturally endowed by the Lie algebra structure induced by that of vector
fieldswe. This linear space with the Lie algebra structure is the algebra of the Lie group

G; itwill be denoted alternatively bie(G) = g. Itis considered also as topological space with
the topology of . G. It is also a B-space, in this natural way, cf. [39, Chap.lll]. Tiogological

dual of g will be denotedy* = Lie(G)*.

(ii) Let the integral curve througle of the left-invariant fieldw, be denoted by(e R) —
exp(t€)(€ G). This curves fornone—parameter subgroupR — G of G:
t1 +to = exp((t1 + t2)€) = exp(t1€)-exp(t2f), t; € R, € € g.

The mapping (€ g) — exp(§)(€ G) is called theexponential mapping it is a local homeo-
morphism of neighbourhoods @fc g ande € G, hence its (local) inverse provides a chart@f
arounde.

Let us define now a representation of any Lie gra@wn its Lie algebrag. The action
A:g— A(g) := Lyo R, of G onitselfis differentiable, it leaves the unit elementivariant,
and its tangent at, T.A(g), is a linear automorphism of the Lie algebra (identified vifitls).
It is an element of the wanted representation.

A.4.9. Proposition. The linear automorphismdd(g) := T.A(g) : ¢ — g, g € G, form a
representation ofs in linear endomorphisms of

Ad(g1-g2) = Ad(g1) o Ad(g2),

(this is a consequence of the chain rule for the tangent mappings). They are also Lie algebra
automorphisms:

Ad(g)([€,n]) = [Ad(g)€, Ad(g)n].

The tangent ofdd(-) in the unit element is a linear mapping denoteddolyad : £ — ad¢ of g
into £(g,g) such that the identity

TeAd(§)-n =: ade(n) = [€, 7]
is satisfiedé
A.4.10. Definitions.

(i) The representatiog — Ad(g) is called theadjoint representation of G.

(i) Let I, F’ € g* be elements of the dual space of the Lie algghtheir values on the elements
¢ € g are denoted byF; ¢) = F (), etc. Then the mappinds — Ad*(g)F, g € G, of g* into
itself determined by

(Ad*(g)F;€) := (F; Ad(g™)¢), ¢€g, g€,

form also a (linear) representation ¢f called thecoadjoint representationof the Lie groupG.

o
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Let the tangent spac&%-g*, F' € g* are all identified withg* in the canonical way (as in any
linear space). Their dualB;g* are then canonically identified with the second dgfél of the
Lie algebra, and alsg is canonically included intg** as ac(g**, g*)—dense subset, but in the
norm topology it is identical with a norm-closed subspace of the (canonically defined) B-space
g**. Since the commutatdg; ) — [&, n] is continuous in norm (from the continuity of&shet
derivatives), it is also continuous i{g**, g*) topology, ifg is considered as@(g**, g*)—dense
subspace of**. Hence, the double dugl* is canonically endowed with a Lie bracket — it is
also a Lie algebra. This is, clearly, trivial fdim G < oo, in what casg = g**, by the canonical
identification.

A.4.11. Definition. Let F(g*) be the space of infinitely differentiable functions gin Then
differentialsdr f € Trg*, f € F(g*), can be (canonically) considered as elements of the Lie
algebrag**, according to the above written arguments. Let

[drf,drh] € g (2 9), f,h € F(g")

be the corresponding commutator. Let us define the bilinear mapping

{--}: F(g") x F(g") — Flg"),with { f, h}(F) = —(F; [dp f,dph]), Vf, h € F(g"),
(A.4.5)

where the evaluations dt € g* of linear functionalsy € g** are denoted by : F — (F;~).
The mapping (A.4.5) is called tf®isson bracket defining thecanonical Poisson structure on

g". ¢
A.4.12. Lemma. LetG be a Lie group, and let the canonical Poisson structijfeon Lie(G)*
be given. Let us accept the above mentioned identificatiofig bie(G)* with the second dual

of Lie(G). Then, for anyf € F(Lie(G)*), and for an arbitraryF' € Lie(G)*, the restriction
to Lie(G) C Lie(G)** of the linear map

drh(€ Lie(G)*™) — —(F;[drf,drh]), h € F(Lie(G)*), (A.4.6)
to the Lie algebral.ie(G), identified with the set of (differentials of) the functions
he(F) = (F;¢€), € € Lie(G),

is norm—continuous, cf. Definition A.4.8. Hence, as an elemeft«i)*, which in turn is
identified withT= Lie(G)*, the map (A.4.6) can be considered as a tangent vectbid(=)* at
the pointF'. With f fixed, these tangent vectors (fbr € Lie(G)*) form a smooth vector field
vyonLie(G)*. &

Proof. The Poisson bracketf, g}(F) is a norm—continuous bilinear form of the variables
drf,drh € g**, hence (with the above mentioned identification) the linear functiorfals:
(F'; [dr f, £]), are norm continuous oy representing some vectorg(F') € Trg*. Letn) € g**

be an arbitrary element. Then the (bounded linear) fundtipn F(e g*) — (F'; 1) is smooth,
hi € F(g*), and its differentiald zh; (in any pointF) is identified with7 itself. Hence, the
mappingf(e F(g*)) — drf € g** is onto. Since the functiong, h are smooth (in the sense
of the underlying norm—topology), all the functiods — dph(vs(F)), h € F(g*) are also
smooth. This, due the Leibniz property of derivatives, implies smoothness. of O
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Now we can define some of the key structures for the present paper.

A.4.13. Definitions.

(i) Let f € F(g*) be given. The vector field; on g* determined (according to Lemma A.4.12)
by the canonical Poisson structure:

drph(vy(F)) ={f,h}(F), Yh € F(g")

is called theHamiltonian vector field corresponding to thélamiltonian function f. Let us
denote byp/ the local flow ofv ;, called theHamiltonian flow of f. Lety* be the Hamiltonian
flow of the linear functiork.. Then we have

#; (F) = Ad* (exp(t6)) F.

Thestability subgroup G of the coadjoint action af’ € g* is a Lie subgroup ofs generated
by thoset € g, for which

(F;[&m) =0, Vneg,

cf. Lemma 2.2.20. The Lie algebra generated by these elemesttbifity Lie algebra of F

with respect to thedd* (G)—representation.

(i) The setsAd*(G)F := {Ad*(g)(F) : g € G} arecoadjoint orbits Or(G) of G. They are
identical with the symplectic leaves (cf. Section 1.4, Definition 1.4.1) of this Poisson structure.
They are conserved by all the Hamiltonian flows' I € Ad*(G)F := Op(G), Vt € R. In

this sense, all the vectons;(F”), F' € Or(G), f € F(g*), aretangent vectors to the leaf
Or(G). (These “tangent vectors” needn't form a closed tangent space to a coadjoint orbit
Ad*(G)F for a generalF’ € g*, cf. Proposition 2.1.5. Fodim G < oo, all the Ad*(G)F are
smooth submanifolds aif, hence the (“tangent vectors: (tangent vectors) now.)

(iii) Let us define, on eac®r(G), a two formF — Qp by defining it for all the tangent vectors
to Or(G) by

Qp(vi(F),vi(F)) = {f, h}(F), Vf, h € F(g").

This is a well defined (i.e. it depends only on the vector&F), ..., and not on the various
functionsf, ... giving the same vectors), closed (from the Jacobi identity for the commutator
in g), weakly nondegenerate two—form 6n-(G)called thecanonical symplectic form on the
coadjoint orbit Or(G). Endowed with this formQ(G) is a (weakly) symplectic manifold,
called thesymplectic leaf ofg*. <

Itis clear, that the Hamiltonian flows’ of the canonical Poisson structuregnare identical
on each orbitO(G) with the symplectic flows corresponding to the Hamiltonian functions
which are equal o0 »(G) to the restrictions of’s to that orbit.

B On Bounded Operators andC*-algebras

Conventional nonrelativistic QM is (or can be) formulated with a help of the algét¥g of all
bounded operators on a separable Hilbert sgacg4, 230, 194, 189, 201, 181]. This is essen-
tially true also for the conventional (but mathematically largely heuristic) quantum field theory
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(QFT), [236, 142]. That such a formulation is not satisfactory for systems with infinite num-
ber of degrees of freedom became clear at least since the Haag’s paper on nonexistence of the
“interaction representation” in cases of nontrivially interacting fields, [121]. The problems of
description of “infinite systems” (i.e. quantum fields, as well as infinite—particle “thermodynam-
ic” systems) were connected with the mathematical phenomenon of appearance of “inequivalent
representations”, either of CCR, or CAR, or in some other way defined sets of observables. This
phenomenon was formalized in the framework of QFT by Araki, Haag and Kastler in terms
of C*-algebras. It offered possibilities to describe in mathematically well defined terms also
such physical phenomenapisase transitions [91, 42, 238, 228], or, more generaltgllective
phenomenain “large systems”, including “macroscopic (classical) variables” of large quantal
systems.

We shall give here a brief description of several basic concepts of the theGri+alyebras
important for understanding of description of “the quantum world”, including our nonlinear ex-
tensions of QM: These last mentioned applications to finite systems with nonlinear “quantum
rules of behaviour”, can also be included into the (lingar}algebraic formalism; in that con-
nection,C*-algebras composed of operator—valued functions on a Hamiltonian (better: Poisson)
phase space consisting of, e.g., density matrices of the traditional QM, were introduced, cf. Def-
inition 2.3.3; these density matrices are here, perhaps rather paradoxicallypleaf (in the
presented proposal of interpretation of EQ&Igssical macroscopic parameters— they can be
considered in this place as classical fields describing a “macroscopic background” of the consid-
ered microsystem, cf.3.4.

B.1 Bounded operators on Hilbert space

A linear operator A on an infinite—dimensional Hilbert space is a linear mappingD(4) —
H of a linear subseD(A) C M called thedomain of A, into . If possible, we shall assume
thatD(A) is dense ir{. For bounded operators it is always eithetD(A) = H, or the domain
is a closed subspace &f. We shall assume that, for bounddds, if not explicitly stated a
contrary, the domain i®(A) = H.

Bounded linear operator$ : H — H on a complex Hilbert spack form a specifid®anach
algebra with involution, i.e. they are endowed with a natural nofii|| := sup{||Ay| : ¥ €
H, |||l < 1} (with the Hilbert—space scalar produgt, v) = (¢, ), and||[¢] := / (¢, ¥));
their productd B := Ao B, and the (adjoint—linear, i.e. antilinear, involution, i.e. thedperation
(*): A— A* (A%, p) = (v, Ap), satisfying also (besides the associative linear algebra and
the Banach space properties):

(A*)* = A, (AB)* = B*A*,
(B.1.1)
IABI| < | Al-IBl, 14"l = [|All, [[A~All = [|All?,
and the B-space of all such operators is denoted git). The elementsl = A* areselfadjoint.
The operatol;; = I = 1, for whichTA = Al = A (VA € L(H)), is theidentity (or unit
element) of L('H). If, for a given 4, there is and’ € L(H) such, thatd’A = AA’ = Iy, it
is called thenverse of A, denotedd’ =: A~', and A is called arinvertible operator; clearly,
(A")~1 = A. The subset of all invertible elements 6f7) will be denotedGL(H). The
operatorsd/ € GL(H) : U* = U~! are calledunitary, and compose a subset 6{+) — the
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infinite—dimensional Lie group, [39, Chap.lll] denoted Hy(:= the unitary group of H). For
any givenA € L(H), the set of complex numbefgA) := {A € C: (A - A) € GL(H)} is
called theresolvent set ofA; it is an open subset @. Its complement(A) = sp(A) is called
thespectrum of A: o(A) := C \ p(A). The spectrum contains also all teigenvalues of4,
i.e. the numbers; e C, for which there are some (nonzero) vectprse H such that

Ap; = Xjp;,j € J (= an index sét (B.1.2)

Dimension of the subspace &f spanned by all the vectors; € ‘H satisfying (B.1.2) for the
same complex value of; is called thedegeneracy of);, it will be denoted degy;). Let
A = A*. Theno(A) C R. The set of eigenvalues is denoteddyy,(A). The closure of the set
of all the eigenvalues of: 0,,(A) =: 0,(A) C o(A) is called thepure—point spectrum.

If the vectorsp;, j € J, (B.1.2), form a basis ift{, the spectrum of the operatdrreduces
to the pure—point spectrura(A) = o,,(A). Otherwise A has also someontinuous spectrum
As subsets o (A), these two parts of spectra needn’t be disjoint. The spectrum of any bounded
operatorA is compact, enclosed in the closed disc centereddnC of radius|| A||.

The selfadjoint operators form the subspace (a real B-sp&(@¢); they have spectra lying
on the real lineo(A) C R. The selfadjoint operatord with positive (i.e. nonnegative) spectra
are calledoositive operators what is denoted byl > 0, or alsoA > 0.

The (positive) operator® € L£(H) such, thatP = P? = P* are called(orthogonal)
projections, or projectors. There is a natural bijection between projectors and closed subspaces:
Hp := PH(C H) <« P. The projection onto the one—dimensional subspace spanned by a
nonzero vectoy € H is denoted byP,,. ProjectorsP;, P, aremutually orthogonal iff Py P, =
0. The projector onto the subspacefspanned by all eigenvectors of a selfadjoint operator
corresponding to the same eigenvaluis its eigenprojector E 4 ({A}). The dimension of the
eigenspace := E4({\})H is degp).

Important objects for analysis of structure and of representations of a Banach algelza
its left (resp. right, resp. two—sided) idealsi.e. such linear subsets C A, {0} # J # A, that
multiplication of their elementby an arbitrary elemenB of A from left (resp. right, resp. any)
side gives again elements frafhi.e.vB € A: BJ C J,resp.J-B C J,resp.BJUT-B C J.
Two-sided ideals are called justeals It follows that an (also one—sided) idedl C A is also
a subalgebra ofA. For A := L(H), and’H separable, there is only norm—closed idéah
L(H), [187,§22] consisting of alcompact operators i.e. such linear operators @i, that map
any norm-bounded subset &f into a norm—compact subset Bf. There are other important
ideals in£(H), which are subsets &, e.g. the set of alHilbert—Schmidt operators: $, and
its subset? of all trace—class operatorsin £(H); these ideals are characterized below. All
these sets are (as are all twosided idesyshmetric, i.e. they are invariant with respect to the
involution (*). Hence, they are generated by their selfadjoint elements: each their eléroant
be decomposed into the complex—linear combination of its two selfadjoint elements:

g AT A A
2 21
The ideal¥ contains exactly those selfadjoiAtwhich have pure point spectra, and the set of all
their eigenvalues is absolutely summable (by respecting the degeneracy):

A* = A € ¥ & A has pure point spectrum andz deg(A) A =: ||All1 < oo.
AEopp(A)
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Then we can define the finite number (for= A*)

Tr(A):= Y deg(M)\,

A€opp(A)

called thetrace of A. Its value does not depend on unitary transformatiofis:(A) =
Tr(UAU*), VU € $l. The traceA — Tr(A) can be uniquely extended to the whole com-
plex spacet by linearity. Then it is defined for all products (sinGeis an ideal)BA : B €
L(H), A € T, and we have

Tr(AB) =Tr(BA),YB € L(H),A€%.
It is also valid:

IAB|y < |AILIBIL, [BAIL < IAILIBll, VA€ T, B e L(H). (B.1.3)
The Hilbert—Schmidt idea is defined:

AeH o Ac L(H)&A"AeX.

Then alsoAB € ¥ for all A, B € §; the algebraf of operators irf{ can be made a Hilbert
space in a canonical way, by defining the scalar product by

(A, B)y := Tr(A*B), VA, B € $.

The sets) is closed with respect to thdilbert—Schmidt norm || A||2 := /Tr(A*A). Also¥
is closed with respect to thieace norm || A||1 := T'r|A|, where the operatd#|, theabsolute
value of A can be defined by a “functional calculus” g4 := v A*A. The elements of the
subsetf ;; C ¥ of positive trace—class operators with unit norm:

0ET 1o 0eET&o>0& |01 =1, (B.1.4)

are called in physics thegensity matrices
The bilinear form

(B; Ay :=Tr(BA), A€ ¥, BeL(H),
provides aduality between the B-spacég and £(H), and similarly between the B-space of
compact operatorg, and¥, in the sense that the operatdssfrom the second of a couple of
spaces represent (all) continuous linear functiofialen the first of spaces, by the evaluations
A~ lp(A) :=Tr(BA) = (B; A).

In this sense, the following assertions are valid for the topological duals:

¢ =%, T =L(H) = (B.1.5)
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Since the mathematical objects B, - - - € L(H) are not only elements of a Banach algebra,
but they also realize linear transformationstofthey are endowed by other natural I.c. topolo-
gies. Let us introduce theeak operator topology 7, by the set of seminorm@gj s € HY:

py A pp(A) =, AY)|, Y eH,Ae L(H). (B.1.6)
Thestrong operator topology 7 on L(H) is determined by the seminorr{npfb s € HY:
Pyt Ay (A) = [|[AY|l, v e H, A€ L(H). (B.1.7)

There are important also other topologies 6f#), namely theo—strong (equiv.: ultra-
strong) topology 7, s, the o—weak (equiv.: ultraweak) topology7,.,, and also thestrong*
topology 7Z;., and theo—strong* (equiv.: ultrastrong*) topology 7,s«, [187, 91, 42, 254].
These topologies, including also therm topology 7., are ordered in the following hierarchy
(with respect to the ordering introduced in Definitions A.1.1):

T, < T, =< T
x A x (B.1.8)
Tow < Tus = Tuse < T,

We did not considered now the topological dual&fH) with respect to the norm-topology:
L(H)" contains also “nonnormal states” d@{*), cf. Definition B.3.1. In QM, mainly linear
functionals fron® C £(H)™ are used in thedle of (normal) quantum states described by density
matrices. The spac® can be considered as the dual &fH), if the last space is endowed
with the o(L(H), T)—topology, which is identical with the—weak topology7,,,, determined

by all density matricep by seminormgp,* : A(e L(H)) — py*“(A) = |Tr(oA)|. The
“nonnormal” states fronC(H)" \ T include, e.g.dispersionless states for observables with
purely continuous spectrg e.g. the “eigenstates” for position coordinates, [27].

Theoretical physics is mainly interested in selfadjoint operators, resp. in unitary operators
(these all belong to the “equally nice&lormal operators A characterized bydA* = A*A).
Normal operators can have their spectrum als€iiy R. Selfadjoint operatorst (not only
bounded) are generators of one—parameter groups of unitariesixp(itA) € 4, and also are
representatives of “observables” in QM; the most clear understanding of their interpretation is
expressed, perhaps, via thgectral theorem This theorem shows, that any selfadjoint operator
can be, roughly speaking, expressed as a real linear combination (resp. integral) of mutually
orthogonal “eigenprojections”, which are multiplied by the corresponding “eigenvalues”.

The key concept in this connection is a projection—valued measure (PM, or PVM). Let us
introduce simultaneously its generalizations, i.e. positive operator valued measures (PQV, or
POVM).

B.1.1. Definitions (Projection measures, and POV measures).

(i) Let (X; 7) be a topological space, artfl( X)) C P(X) be the set of all subsets obtained from
the operand closedsubsets o by countable unions and/or intersections. Elements B(X)
are calledBorel sets of X. The class of Borel sets is topology—dependent; if, on sonié,she
topology is standard (e.g., d&"), then the specification &(Y") is not usually given. A function
f from a topological spacéX;;77) into a topological spacé€X; 7,) is called aBorel function

iff forany V' € B(X,) the inverse imagg¢—[V] € B(X;); the set of all such uniformly bounded
Borel functions will be denoted W%, (X, X5).
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(i) Let a mappingE : B(X) — L(H) be such that eaci’(A) is an orthogonal projection, and
@EX)=1, E(0) =0;
(b) for any at most countable collectioky;, j € J,|J| < X, of mutually disjoint Borel sets
Aj e B(X),Ajn Ay =0(Vj# k), one has

(Ujeshy) =D E(4A,

jeJ

where the sum converges in the strong operator topology(®f).

The mappingFE is a projection (valued) measure (PM,equiv. PVM) (on X with values in
L(H)).
(iii) Let S C L(H) be any set of bounded operators. Tdwnmutant S’ of S is the setS’ :=
{B€L(H): AB— BA=0,YA € S} C L(H). Clearly,S c §” := (5’)’, and S" is called
thebicommutant of S.
(iv) Let a mappingF' : B(X) — L(H) be such that each’(A) is a positive operator, and

(@ F(X) =1L F(0) =

(b) for any at most countable collectiawy;, j € J,|J| < X, of mutually disjoint Borel sets
A; € B(X) one has

UJGJA ZF

jeJ

where the sum converges in the strong operator topology(®f).

The mappingF is anormalized positive operator valued (POV) measurdon X with values
in L(H)), called alsoan observable onX, resp. alsa POVM,[71, Sec.3.1]. &

The POV measures are generalizations of PM; they are useful in description of “nonideal
measurements” in QM, cf. [71]. Let's note, that now the operafofd) for different A €
B(X) needn’t mutually commute. There is an important construction giving also a criterion for
distinction of PM from POVM, cf. [71]:

B.1.2. Proposition. Let X be a compact Hausdorff space, and et: B(X) — L(H) be
a normalized POV measure (i.e. an observable). €€K) be the space of complex—valued
continuous functions oX . Then the strongly convergent integral

/ f(x ), feC(X), (B.1.9a)

defines a bijection between observahlés) and linear mapsF : C(X) — L(H) such that
f>0= F(f) >0,F(I) = Iy. The POV measurg is PM iff the mapF" : C'(X) — L(H) is
a*—homomorphism of the algeb€( X) into the algebral (7). &

B.1.3. Theorem (Spectral theorem).Let A € L(H) be a normal operator. Then there is a
unique PM,E 4, on the spectrura(A) such that:
() Ea(A) € {A}", VA € B(a(A));”"

97{ A} is the bicommutant of the one—point fet} C £(H).
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(i) For any f € By(o(A),C), there is an operatoZ4(f) = f(A) given by the strongly
convergent integral (being the strong-operator limit of any sequence of expredsidifs) for

“simple functions” f,,(A) := Zj cgn)XA(") (M) approximatingf by pointwise limits)

Ea(f) = f(A) = / PRLCVHCY (B.1.9b)

(i) The mappingE4 : By(c(A),C) — L(H), f — Ea(f) = f(A), is a unique continuous
*—homomorphism (callethe functional calculus) of commutative algebras (i8,(c(A4), C),

the multiplication and addition are defined pointwise, and involution is the complex conjugation)
determined byZ 4 (id¢) = A. Continuity is here understood so thaf(A4)| < ||f]|, where the
norm of f is the supremum nornd

Important features of the algebras of operators, also from a physical point of view, are their
representations as homomorphic images in sdlti€), where/C is a complex Hilbert space.
There are two kinds of nonzero representations of the algéprf), if H is separable [187]:
There are orthogonal multiples of the identical representation, and the representations setting
the ideal€ into zero, in which case the (simple) factoralgeldr@t)/¢ (= the Calkin algebrg
is isomorphically represented. Representations of the first mentioned kind are “trivial”, and that
of the second kind are “physically irrelevant” (with respect to the standard nonrelativistic QM),
since it might be difficult to interpret states, in which all finite—dimensional projections in the
“given algebra of observable&’ () are mapped to zero (probabilities of values of all quantities
with pure point spectra with finite degeneracies would be zero!); cf., however, Note B.4.1. More
“colourful” picture of “physically interesting” representations of algebras of observables arise
for some closed symmetric subalgebrasCét{), and, more generally, for gener@f-algebras
(these might not be faithfully represented on separable Hilbert spaces).

B.2 Elementary properties ofC*-algebras andiV*-algebras

We shall reformulate now algebraic properties&fH) to be able to obtain a more general
framework for quantum theories (QT). All (mathematical) fields of scalars will be the complex
numbersC, and in the natural restriction also the field of reRls

B.2.1. Definitions (C*-algebras andWW*-algebras).

(i) A Banach algebra2 is a B-space endowed with an associative and distributive multiplication
(i.e. thealgebraic product, resp. theproduct, converting the linear spac# into an algebra):
(yy)e AxA) —zy=ayle A),z-(y-2) = (z-y)z (+Ay)-z=z-2+Xy-2, -

(y + A\z) = z-y + \z-z; the multiplication is connected with the norm2hby the requirement:
lzyll < llz|lllyll; Vo, vy, 2 € A, X € C. If zy = yx,Va,y € 2, the algebradl is calledabelian,
resp.commutative.

(ii) If there is an element € 2A such thate-x = z-e = z,Vx € 2, the Banach algebral

is a unital algebra and the element is the unit element(or unit) of 2. If a unit exists in,

it is unique. If there is, for an element € 2, an element (denoted by)"! € 2 such that
vt =27 t.a = e, the element is invertible, andz ! is the inverse ofz. If x is invertible,
the inverse element~! for x is unique; then alsa:~! is invertible, and(x~!)~! = . The set
of all invertible elements ifl is its general linear group G/(2(), denoted also b(—*.
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(iiif) An algebra®l is symmetric, if there is defined in it agantilinear) involution , i.e. a mapping
(YA = Az o™ = () =2, (x+y)* = 2*+\y*; and, moreover, this involution
is connected with the product byzy)* = y*2*. We shall call the linear combination, product
and involutionthe algebraic operations

(iv) If, for a symmetric Banach algebf, it is satisfied theC*—property: ||z*-z| = ||z||?, then

2 is a C*—algebra If 2 has also the unit element, then it isuaital C*—algebra We shall
usually assume, thaX is unital, and the converse will be pointed out. A Banach subsface
of aC*-algebra®l, which is invariant with respect to all the algebraic operations applied to its
elements is @*—subalgebra of. If B(#£ 2) is, moreover, invariant with respect to the multi-
plication by all elements ¢4, it is a closed (two—sided) idealclearly, such aC*-subalgebras
does not contain the unit elementf An element of a C*-algebra is: selfadjoint iff 2* = x;
normal iff z*x = xx*; projection iff x = 2* = 22; partial isometry iff zz* is a projection;
unitary (in a unital algebra) iffxa* = x*x = e.

(v) If, for a C*-algebra®l, as a B-space, there is another B-space (denotedbyguch thatl

is (isomorphic to) its topological dual(2(,)* = 2, the C*-algebra®l is called aWW*-algebra,
and the Banach spac, is its predual. AnyC*-algebra has at most one predual, up to iso-
morphisms. ThéV*-algebras (originally: their specific operator realizations) are called also
von Neumann algebras AnyW *-algebra is a unitalC*-algebra. Anyi*-algebra is generated
by its projections (viar (2, 2., )—closure of their linear combinations). [A gener@l*-algebra
needn’t have any nontrivial projection.]

(vi) Let 2 be aC*-algebra, and le®d** := (*)* be its second topological dual. Th&*-
algebra2l is canonically embedded int** as ao(A**,A*)—weakly dense linear subspace,
cf. Definition A.1.4 and, in this topology, all the algebraic operations (i.e. the linear combination,
addition, multiplication — with one of the multiplicands fixed, and the involution) are continuous.
Hence, the algebraic structure @f can be unambiguously extended to the wib1g, endowing

this by a (canonicall"*-algebraic structure. The obtaindd *-algebra?l** is denoted als@!’’,

and it is calledthe universal envelopingW *—algebra of theC*—algebra2.”®

(vii) Thecentre Z(2A) of aC*-algebra®l is the commutativ€'*-subalgebra oRl consisting of
all elements off commuting with any element®f Z() :={z € A : z.x —z-z = 0,Vx € A}.
A von Neumann algebr® with trivial centre: Z(8) = {\-e : A € C}, is called afactor. ¢

B.2.2.Note (QuotientC*-algebra). The factor—space (resp. the quotient sp&£PB of a C*-

algebrall over its closed idedB is canonically endowed with the structure of'4-algebra. Let
the canonical projection bg : 2 — A/B,z — [, :={y € A :y =2 —z2 € B}, and
Bz By = Py, By = P+, ||B:|| := inf{||x — z|| : z € B}. Then all the C*—properties” for
A/B := {B, : « € A} are valid, cf. [77, 1.8.2]

Let us give a list of examples @f*-algebras:

B.2.3.Examples(SomeC™*-algebras and¥ *-algebras).

(i) Since the dual of the trace class operator—sfaee?* = L(H), the algebra of all bounded
operators ori is a von Neumann algebra.

98The notatiorR(’’ originated in the realization of this von Neumann algebra as the ultrastrong (hence weak) closure of
a specific faithful representation, [91, 196], calledtinéversal representation,, (1) of 2(, hence as the bicommutant
mu ()", cf. Example B.2.3(ii).
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(i) L(H), and all its closed symmetric subalgebras @realgebras. Any sucl*-subalgebra

B, that is also closed in operator weak (resp. ultraweak, resp. strong, resp. ultrastrong) topology
is also alv*-algebra; the closure of any*-subalgebrad of L(H) (if I;; € A) in any of these
mentioned topologies equals to its double commutéht [187, 227, 254], what is a form of

the well knownvon Neumann bicommutant theorem In separable Hilbert space, the only
nontrivial C*-subalgebra ofZ () which is also an ideal of (H) is the algebra of all compact
operator<.

(iii) Let M be a compact Hausdorff space, andd&t\/) be the set of all complex valued con-
tinuous functions on\/. Let pointwise linear combinations, multiplication, and conjugation be
defined onC (M) by:

fihe C(M),AeC: (f+ Ah)(m):= f(m)+ Ah(m),
(f-h)(m) = f(m)h(m), f*(m):= f(m), Vme M,

and let the norm be the supremum noffiff] := sup{|f(m)| : m € M}. ThenC (M), endowed
with these structures, is a commutatig&-algebra. Each unital commutativé*-algebra is
isomorphic to one of this form (théefand—Najmark theorem).

(iv) The factoralgebraC(H)/€ of the algebra of all bounded operators by thié-subalgebra
of its compact operator$ is a unitalC*-algebra, called (according to [196, 6.1.2]) f@alkin
algebra. It belongs to the class antiliminary C*-algebras playing an importantdie in
descriptions of infinite quantum systeris.

An important characterization of elements af'a-algebral is (as it was inZ(7) for oper-
ators) theirspectrum. Since the definitions and properties are identical in this general case with
those in the case of bounded operator£ i), we shall proceed briefly:

B.2.4. Definition (Spectrum). Letz € 2 := a unital C*-algebra. The sep(z) := {A € C:
(Ae — z) € A~} C Cis theresolvent set ofz. Its complement(z) = sp(z) := C\ p(z) is
thespectrum of z. The spectrum of any element is close@inThe numbefiz||, := sup{|}| :
A € o(x)} is called thespectral radius of . Always is||z|, < |lz|, and||z|, = ||z|| if = is
normal. <

An important property of spectrum of ardy*-algebraic element is its independence on a
choice of unitalC*-subalgebra$® C 2[ containingz, with respect to which ig(z) calculated
(instead of2(). Hence, the spectrum af can be calculated with respect to the miningai-
subalgebra&l, C 2l containingz, i.e. with respect to the subalgebra generated by the elements
xz,x*,e. For a normal element, the C*-algebra®(, is commutative, and it is isomorphic to
C(o(z)). The algebraic elements # corresponding (according to this isomorphism) to some
f € C(o(x)) are denoted by (x). The associatiorf (€ C(o(x))) — f(z) is the inverse of
the Gefand transform. It is a *—isomorphism ofC*-algebras, cf. Definition B.2.5, hence for,
e.g.,f(A\) = A" one hasf(z) = 2",n € Z,,2° := e. This mapping ol x C(C) (restricted
to normal elements dl) into 2l is calledcontinuous funtional calculuson . If 2 is aWW*-
algebra, then also complex valued bounded Borel functfoas,(C) have their homomorphic
imagesf (z) in 2, for normal elements € 2. The*~homomorphism determined by an arbitrary
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normalelementz of a W*-algebra:
f(€ By(C)) = f(x) 2

is a unique continuous (i.8.f(z)|| < ||fIl = ||fll-) extension of the continuous functional
calculus. These extended mappings are calle@trel functional calculus on al¥*-algebra.

For arbitrary elements (i.e. not necessarily normadf [, we have thenalytic functional
calculus If f is holomorphic (i.e. analytic) function on an open domairCirtontaining the
spectrum ofr, andc is a “Jordan” curve (i.e. continuous, closed, nonselfintersecting, of finite
length, being a homeomorphic image of a cir6lg lying in this domain and “surrounding” the
spectrunv(x), then we can define a Banach space valued integral

I (G (B.2.1)
2mi J. de—z

fz) =

what can be defined by a norm—convergent sequence of Riemann sé@msRestrictions of
above mentioned “functional calculi” to analytic functions give the values expressed by (B.2.1).

If we definepositive elementse of a C*-algebra?l as such selfadjoint elements gfthat
can be expressed as= y*y for somey € 2, we can see that these, and only these elements
correspond to positive functions in the mentioned functional calculi. The positive elements form
a cone, in 2, i.e. any linear combination of elements2. with nonnegative coefficients
also belongs t@ . The isomorphism of commutativ@*-algebras with spaces of continuous
functions mentioned in Example B.2.3(iii) exactly corresponds to the mentioned functional cal-
culi, but extended also to such commutative-algebras, that need—not be generated by a single
normal element. The compagf, corresponding to a unital commutatig& -algebra2l which
is *—isomorphic toC (M), is called thespectrum of the abelianC*-algebra 2l. If a function
fz € C(M) represents the elementvia the Gefand transform, the spectrurr) is identical
with the range off;: o(x) = {f.(m) : m € M}, cf. also Examples B.3.5.

Elements of algebras usually appear in physical theories represented in forms of linear op-
erators acting on Hilbert spaces. This is naturally connected, as we shall also see in the Sub-
section B.3, with the physical interpretation of elements of Hilbert spaces as physical states in
which the “observables” represented by the elements of algebra are measured (resp. calculated).
We shall now turn to an introduction to the representation theory.

B.2.5. Definitions (Representations).

(i) A mappingr : 2 — B between twa’*-algebras?(, and‘B, is a*—morphism, iff it satisfies
the properties:

() mislinear: m(z + \y) = w(z) + An(y),

) 7(z-y) = m(x)-7(y),

iy 7(z*) = w(x)*,
forall z,y € A, A € C. The sefKer(7) consisting of such elementsof 2, that7(xz) = 0,
is called thekernel of =. If Ker(w) = 0 for all morphismsr of 2, then®l is called asimple
C*-algebra.

(i) If Ker(mw) = {0} thenr is a bijection. IfKer(7) = {0}, and alsor () = 9B, the morphism
is called a*—isomorphism (briefly: an isomorphism) d¥l onto3, and these tw@’'*-algebras



B.2  Elementary properties of C*-algebras and W*-algebras 173

are mutuallyisomorphic. Any morphism of’*-algebras is continuous:
()} < =[],

and any isomorphism is isometric:
Ker(m) = 0 = |[x(2)[| = [lz].-

Ker(7) is always a closed (twosided) ideal in the&-algebraZl.

(iii) Let = be a*—morphism of &*-algebral into L(H), for some Hilbert spac@(. It is called
arepresentation of2(in 7. It will be denoted alsdr; H). If there is a nontrivial (i.e# 0, and
# I;¢) projection P in the commutank (1)’ € £(H), then the mapping

wp A — L(PH), z — Pr(z),

is a subrepresentation ofwr. We shall assume, that any considered representatiomiisle-
generate i.e. that it hasno zero subrepresentationsi.e. that there is no nonzero projection
P € L(H) such, thatPx(A) = {0}. If a representation of a&*-algebra have no nontrivial
subrepresentations, it is called &meducible representation.

(iv) Let us assume that, in the Hilbert spakig of a representationr (), there is a vector, say
Y. € H, such, that the set

(W) = {7 () 1 x € A}

is dense in the Hilbert spacH.,.. Then the representation is called acyclic representation

of 2(, and the vector), is a cyclic vector of the representationw. Each representation of a
C*-algebra can be decomposed into an orthogonal sum of cyclic subrepresentations, i.e. there
is a system of mutually orthogonal projectioRs € 7 ()", j € J, suchthay _, ; P; = I,

(strong convergence), and each subrepresentatior» P;w(z) € L(P;H) is cyclic. In an
irreducible representation spadé,, any nonzero vectap € H, is cyclic, andr ()Y = H,.

(v) Let(m; H1), (m2; Ho) be two representations of@*-algebrall. If there is a linear (unitary)
isometryU : H; — Hs such thatry(z) = Uy (z)U 1, the representations; and my are
unitarily (or spatially) equivalent . We shall denote this fact by ~ m5.

As it was mentioned above, arfiyrepresentation of @*-algebra is continuous in the norm
topology. On eachiV*-algebra®, moreover, another natural topology, namely #{&3, 28..)—
topology, or briefly thew*—topology is given. The same is true for tHé*-algebral () for
any representation. Hence the question on the*—continuity ofr arises. As we shall show,
this property is also relevant for any representation 6f*aalgebra2(l canonically extended to
A", cf. Proposition B.2.7.

B.2.6. Definition (W *—representations). If a representationt of a W*-algebra 8 in the
Hilbert space H, is o(B,B.) — o(L(Hx),%(H.)) continuous, it is called alW*—
representation

The imager(B) C L(H,) of any W*-representation such thate) = I, (nondegen-
eracy) is again &/ *-subalgebra of(H,). Let us mention also that an isomorphism of two
W*-algebras is always*—continuous, [227].



174 B On Bounded Operators and C*-algebras

B.2.7. Proposition. Let2( be aC*-algebra, and(r; H, ) its arbitrary nondegenerate represen-
tation. Let us consided C 2", in the canonical way. Then there is unique extension tf a
W*—representatiorin”’; H. ) of the univeral enveloping algeb®4’, [227, Proposition 2.21.13].
The image of this extension equals to the bicommuté&t)”, if 2 is unital. &

It follows from this assertion that to any representatioof a C*-algebral( there is a central
projectionz(w) € Z(A") such, that its orthogonal complemerit— z(w) (with ¢” the unit of
") supports the kernel of” : Ker(7”) = (" — z(w))2"”, called alternatively theentral sup-
port, [227, 1.21.14], respcentral cover of , [196, 3.8.1]. The representations, w2 with the
same central projectiof(m;) = z(m2) are calledquasi—) equivalent denoting this byr; ~ 7.
Unitary equivalence implies equivalence, but equivalent representations are just, roughly speak-
ing, decomposable into various multiples of the same unitary equivalent subrepresentations, [77,
5.3.1]. If the central supports are orthogonglr; )-z(m2) = 0, the two representations are called
disjoint, we shall denote this by, Urmy.%°

B.2.8.Interpretation (Macro—distinguishability). Disjoint representations are interpreted in
physics agnacroscopically (or classically) distinguishable representationsSince the “phys-

ically most relevant” seems the*—topology, it also seems natural to consider also (some of)
elements of the enveloping algel®d of “the C*-algebra of observable¥” which do not be-

long to %A, as representing some observable quantities of the system. The macroscopic (resp.
classical) quantities of the considered quantum system are then found in theZ€lttre Any

two mutually orthogonal projections of the centre then can represent macroscopically distin-
guishable values of some observable quantity. Hemdém, can be interpreted as macroscopic
distinguishability. It would be, perhaps, more intuitive after a discussion of disjointness of s-
tates, [131, 28, 238], cf. also Interpretation B.37.

In general theory ofC*-algebras, and also in physical applications, cyclic representations
arise from given “states”.

B.3 States and representations

We shall introduce here the mathematical definition of states @h-algebra, as well as some
connetions with representations, and we shall give some hints to their physical interpretations.

B.3.1. Definition (States).

(i) Let2( be aC*-algebra, and* its topological dual. A continuous linear functionak 20* is

symmetric (or real) if o(z*) = o(x). Itis, moreoverpositive, if o(z*z) > 0,Vz € 2. The set
2} consists of all positive elements®f. The elements & (A) := A%, = {0 € AL : [Jo| =

1} are positive normalized functionalson2(. They are calledtates on theC*-algebra®(. The
setS(A) C A*is convex, i.eg; € S(A) (1 =1,2), 0 <A <1 = Ao + (1 —N)o2 € S(A).

(i) An element ofv € S() is called apure state on%, if it is not an internal point of any
line segment lying ir5(2), i.e. if for some states;, j = 1,2, one hasv = J(w; + w2), then
necessarilyw; = wo = w. Such elements of a convex sef are calledextremal points of
S. The set of all pure states @ will be denoted by S(2(). In the state spac = S(2), the
nonextremal elements are calletxed states, or mixtures

99The standard symbol for disjoitness, [77, 42], was not found amondTg¥ &ymbols.
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(iii) Let 2 be aW*-algebra. Then it is canonicallft,. C 2*. The subsef. () := 2, N S(A)
of states consists of allormal states on2l. <

The convex se§ := S(2) is contained in the closed unit ball @, what is compact in
the o (20*, 2A)—topology, according to the Banach—Alaoglu theorem [218js also compact iff
2 is unital. In other cases, it is usually considered [196]dbesi—state space? defined by
Q = {o € A% : |0 < 1}. The quasi-state spacis the convex hull of the state spaSe
and the zero functional. It is always compact in the-topology. We shall use the following
theorem, [187, 41]:

B.3.2. Theorem (Krein—Miman). Every compact convex sétin a Hausdorff I.c.s. is closure
of the set of all finite convex combinations of the extremal poinfs &

We see that there is enough pure states onanglgebra so that finite convex combinations
of them can approximate any state in the-topology.

B.3.3.Interpretation (States in physics). If the selfadjoint elements of@*-algebraRl are con-
sidered asbservables of a physical systenpthen the states d are interpreted as follows: The
statew € S(2) represents physical situation (whatever it means, we do not go to analyze
its meaning here) of the described system and, for any given «* € 2, the real number
w(x) equals to the expectation value (i.e. the arithmetical average — in “finite approximations”)
of results of repeated measurements of the observaini¢he (repeatedly prepared) “situation”
described by .

Hence, the above mentioned possibility of approximation of any state by convex combina-
tions of pure ones means an approximation by convex combinations of (potential) measurement
results; this shows in what sense the-topology on the state spa2g := (the set of symmetric
elements oR(*) is “more physical”, than the topology of norm, cf. [118%.

The following proposition can be proved by the well known Gefand—Najmark—Segal (GNS)
construction of a canonical representatipncorresponding to any given state, with a use of
algebraic concepts, [187, 77, 227, 91, 42]:

B.3.4. Proposition. A cyclic representatiorir,,; H,,; ¥.,) in H, with the cyclic vectorp,, €
He T (), = Ho, |1 Y] = 1, such that

w(x) = (Yo, mw(x) Y,), Va e,

corresponds to any state € S(2() on aC*-algebra2(. Such a representation is unique, up
to unitary equivalence. Any cyclic representatiorRio€an be obtained in this way. The cyclic
representationr,, is irreducible iffw is a pure state. In that case,, (), = H, (without
taking the closure irt{,). &

The canonical representations satisfying the conditions of Proposition B.3.4 are also called
the GNS representations Two statesw;,ws € S(2() are mutually disjoint, cf. page 172,
w10wy, Iff m,, Un,,; such a two states can be considered as macroscopically differen-
t, [91, 131, 42, 238], and any two macroscopically different states are mutually disjoint, cf.
Interpretations B.2.8, and B.3.7.



176 B On Bounded Operators and C*-algebras

B.3.5.Examples(AbelianC*-algebras and/ *-algebras).

(i) Any unital abelianC*-algebreal( is isomorphic to the space of all continuous complex valued
functionsC'(M) on a Hausdorff compact/. The setM can be constructed as the set of all
irreducible representations, (which are all one—dimensional), and their kernelsrasximal

ideals of 2. The corresponding pure statgse S(2) arecharacters on%, i.e. they satisfy

also: x(z-y) = x(x)x(y). Since the three sets: the set of irreducible representations, the set of
maximal ideals, and the set of pure states are in bijective correspondence, they can be endowed,
together with the'spectrum space” M, with the induced topology from the*—topology of

2*. Let us denote by, the pure state of'(M) corresponding to the maximal ideal € M,

i.e. to the irreducible representation with the kernel Let f € C(M) be any element of the
commutativeC*-algebra. Then

Xm(f) :f(m)7 Vm € M,

hence the pure statgs, correspond to the Dirac measurgs on M. Arbitrary statesv are
then realized as probability “regular Borel measures’on M, symbolically

w(f) = [ f(m)p,(dm).
M

The correspondence between statesCgd/) and probability measures ol is a bijection,
according to Riesz-Markov theorem, [218, Theorems 1V.14, and 1V.18]. Hence, a decomposition
of an arbitrary state on an abeliéff-algebra into a convex combination (here: integral) of pure
states, so called extremal decomposition, is unique.

(i) Let us assume, that the abeliar-algebraC' (M) is a W*-algebra. We know, that it is
generated by its projections. But a projection(ifi)/) is just a characteristic functiogp of

a subset3 C M, which is also continuous: Hence the #t= x ;' ({1}) should be a clopen
subset inM. It can be shown, [101, 254], that the topologyMdfis now generated by its clopen
sets. The chracteristic functions of one—point sets correspondimgrioal pure states,, can
be considered also as elements of Wé-algebra:d,, ., =: fi(m'), fm € C(M), because
thesem’s are just the isolated points af. ¢

Letw € S(2A) be a mixed state on a unitél*-algebra?l. Then it can bedecomposed
into a (generally “continuous”) convex combination of other states. Looking for such convex
decompositions of a givem € S(21), we are interested in such probability measurgn the
compactS := S(2), that for all affine continuous functionse C(S) : f(Aw1 + (1 — Mwy) =
Af(w1) + (1 = A) f(w2), we have

fw) = /S F ) d).

The statev is abarycentre of the measureu,,,. Specific examples of the affine functions are
given by arbitrary elements € 2 : #(w) := w(x),Vw € S. The measureg,, can be “concen-
trated” on various subsets 8f We have seen that if one assumes thais concentrated on pure
states€S, theny,, is uniquely determined in the commutative case. For gergtadlgebras,
this uniqueness is absent (it is in a sense equivalent to commutativity 6ftladgebra). Hence,
we have to choose some of the measures with the barycenti@ obtain some (barycentric)
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decomposition. These decompositions might be chosen in different ways. We cannot give here
details; let us see at least some of techniques for construction of such decompositions.
If w=73"; \jw; is a (discrete, convex) decomposition of a statéo statesv;, A; # 0, then
the statesv; aremajorized byw . Important might be the following lemma stating conditions
for f € A% to bemajorized by w, i.e. stating conditions when there is a numbdor which
(Aw — f) eAr.

B.3.6. Lemma. Let, with the introduced notation; € S, and(7,; Hy; ¥, ) is the correspond-
ing cyclic representation. Then there is a bijection between the set ¢f@alRl’; majorized by
w , and the set of all positive element8: > 0, B € =, (2()’, of the commutant af,, (). The
correspondencg — By € m,,(A)' N L(H,,)+ is by the relation

f(@) = (Yo, mw(z) Brihy), Veed
determined uniquelyk

Most simple and useful decompositions are such that are derived from some ab€han
subalgebra$3 of the von Neumann algebra,(2()’. Let us mention here just a very simple
example when the algebf& is generated by a (“discrete”) projection meashigdefined on
Zy:Eq:j(€ Zy) v Eq(j) € mo(A), 3772 Ea(j) = L. Then we define the stateg € S,
for those values of the indicgsfor which (¢, Eq(j)¥.) =: A; # 0, by the relation

wi() 1= A7 (o ma(2) EalG)i0) (Ve € 90).

It is trivially clear that now we can write a (“orthogonal”) decomposition of¢hdy:
w(x) = Z)\jwj ().
J

If the W*-algebra® is contained in the centt& (7, (2A)’) := 7, ()" N 7, (A)’, the decompo-
sition is called gsub-) central decomposition

B.3.7.Interpretation. By the extended representatiorf, : A” — L(H,), cf. Proposi-

tion B.2.7, the centreZ(2") is mapped onto the cent& (7, (2)”). Hence, the subcentral
decompositions might be interpreted physically as decompositions according to values of macro-
scopic observables¢

General theories of decompositions can be found in [227, 42, 196].

B.4 Symmetries and automorphisms

Symmetries appear in quantum theory (QT) either in a form of transformations of “states” (the
Schibdinger pictur, or as transformations of “observables” (tHeisenberg picture Although,

in the “standard” QM, these two forms of symmetry transformations are usually considered as
equivalent, for more general formulations of QT it needn’t be so. Some relations between these
two descriptions of symmetry operations in QT are described in [42, Chap. 3.2]. We shall restrict
here our attention mainly to the formulation in the “Heisenberg form”, what is the most usual
form of the description of time evolution in quantum theories of large systems.
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Theory of symmetries, resp. automorphism group&'tfalgebras is a rather extensive field,
cf. [224, 227, 42, 196, 228]. There are known many related and mutually connected fields like
the ergodic theory, decomposition theory, various kinds of “spectra” connected with analysis of
structure of algebras and of their automorphism grawgsetc. which we shall not consider
in this paper. We shall present here just some notes for a first orientation in approaches to
formulations and investigation of several problems concerning symmetries of physical systems
described byC*-algebraic theories, and such which are connected with techniques used in this
work.

Let2l be aC*-algebra. The-automorphisms dl (i.e. the*—isomorphisms ofl onto itself)
form a groupAwut(2() with respect to composition as the group multiplication. Each Aut(2()
is a continuous linear transformation of the B—spaicdenceAut(2) € L(2l) (=the space of
bounded linear mappings &f into itself), where£(2l) is again, canonically, a B—space. With
the induced topologyAut(2() is a topological group; it is also a closed subsell¢®(), [227,
Proposition 4.1.13]. There are also several other useful “natural” (weaker-than—norm) topologies
introduced omut(2(), namely thestrong topology given by the seminorms

pe(a) = lla(z)|], VYoae Aut(A), =z,

in which Aut(2() is also a topological group, [228], and also some of i ut(2A), F*)—
weak topologies whereF* is a “conveniently chosen” subset of linear functionals on the B—
spaceL(2), to makeAut() a Hausdorff space, cf. also Definition A.1.4(v). The sulsSéts
often given by the requirement of continuity of the mappings

ale Aut()) — w(a(z)), Ve, weF,

where we have different useful possibilities, [42, Definition 2.5.17], for a choice of thE’'set
2A*. If A is aWW*-algebra, then its automorphisms are continuous mappingsoito itself not
only in the norm—topology, but also in the2l,2(,)—-topology determined by its normal states,
cf. Definition B.3.1. These states are “often” chosen in file of the setF” above, in the case of
aW=*-algebragl. The automorphism: of 2 is calledinner if there is a unitary element, € 2
such thatx(z) = uqzul,. For := L(H) is each automorphism inner , [227, Corollary 2.9.32].

Any a € Aut(2) determines a unique affine isometry : S(A) — S(2) of the state space
of 2 by the transposing:

o (w)(x) =w(a(z)), weSHA), ze
If 2 is aWW*-algebra, the transposed map leaves its normal states invariant:
o Se(R) — S (). (B.4.1)

This is the transition to the “Scbdinger picture”. The converse needn't be so immediate:

If it is given an affine mappinge* : S(2) — S(2), its transposex™* determines a linear
map of the double dual** into itself, that leaves its (in a canonical way defined) suBset
invariant only in specific cases: some “sufficient continuity” conditions should be satisfied, cf.
[42, Theorem 3.2.11]; only then one can consider the restrictioha** to the subspac@ of
20** and ask, whether is € Aut(2(), hence, whether there exists the corresponding “Heisenberg
picture”. In the case of &/*-algebral, if the condition (B.4.1) is fulfilled, there is a unique
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Jordan®® automorphisnmx of 21 obtained by the above mentioned “transposingaofand by
the subsequent restriction.

A physical meaning is usually given to an automorphismccording to its belonging to
some subgroup aflut() which is a homomorphic image of a topological (usually Lie) group
G: a € ag, where

Qgrgy = Olgy"Qgy, Vg € G,j=12.

The homomorphismg(e G) — «y, i.e. representations of G represent groups of “physical
motions”, or transformations. If the groupd$ = R, we have a one parameter transformation-
S groupag; such groups describe also time evolutions of the physical systemsndih the
“algebra of observables”.

There are traditional reasons in QM (e.g. the spectra of generatdrg oépresent mea-
surable values) for interest in such representations, } of the C*-algebra?l with a given
symmetry a, in which the automorphisms,, g € G, are expressed by a unitary strongly
continuous representatid@fy, € U(H,) of G “in the usual way”, i.e.

T(og(z)) = Ugn(z)Ug-r, VgeQG. (B.4.2)

Such representationg2() are calledcovariant representations A simple important case of a
covariant representation is obtained (we omit here specification of necessary continuity condi-
tions imposed tavz), if there is anog,—invariant state w given, [237, 224]; the corresponding
cyclic representatiorir,,; H.; ¥.,) ensures existence of a unique (continuous) unitary repre-
sentationUg satisfying (B.4.2) (withr,, — =, U — U™), and such that the cyclic vector
corresponding to the state is Ug—invariant:

U;%;:ww, V96G~

In more general situations (e.g. of cyclic representations with noninvariant cyclic vectors), all
covariant representations ofignamical systemi?l, a } are in a bijective correspondence with
representations of anothét-algebral ®,. G constructed from functions on the groGpwith
values in2l with a help of the action ofv, and called therossed product of the dynamical
system{®A, ag }, cf. [196], or also [188].

Let us consider nowir := R, i.e. one—parameter automorphism groups. &er L(H), all
one parameter automorphism groups- «, are “covariant”, i.e. they are representable in the
form (B.4.2),i.e.a;:(x) = wpaxu; for a one—parameter group of unitary operatgrst € R. If the
groupag is “sufficiently continuous”, e.g. if the functiorts— T'r(oa:(x)), 0 € s,z € L(H)
are all continuous, theh — wu; is strongly continuous and, according to Stone’s theorem, cf.
Theorem C.3.2, there is a selfadjoint operataon (a dense domain ofy such, that

us = exp(itA). (B.4.3)

100 gordan automorphisms of a C*-algebra are a certain “combinations” of morphisms, cf. Definition B.2.5(i) (sat-
isfying: a(zy) = a(z)a(y)), andantimorphisms (satisfying: a(zy) = a(y)a(z), with other morphism properties
unchanged); hence, by definition, instead of satisfying the progBity a(zy) = a(x)a(y) of the Definition B.2.5 of
*—isomorphisms, Jordan automorphisms satisfy the following propettyy + yz) = a(z)a(y) + a(y)a(z).
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The operatorA is determined by the automorphism growp up to an additive real constant.
The operato is called a(selfadjoint) generator of ug. Thegenerator of ay is obtained as a
linear operatob,, (z) := i[A, z] on (a dense subset ofH)(> z). In a general case:

w(ba(z)) = — w(ay(z)) (B.4.4)

forall z € D(6,) C . The generatod,, is called the derivation of ag. Some details of a
theory of (unbounded) derivations can be found in [42, 228].

If the groupag is not “sufficiently continuous”, the generator needn't exist. Moreover, some
of the covariant representationsof the same{2(, ag} might be continuous with well defined
selfadjoint generatorsl,, and in other covariant representations the unitary greups U
might be discontinuous (i.e. there is no “Hamiltonian” there). For different continuous covari-
ant representations the “HamiltoniansA,.” are generally mutually different (e.g., their spectra
might be mutually “very different”). In the examples of states describing thermodynamic e-
quilibria for different temperatures the selfadjoint generators describing time evolution of local
perturbations are mutually different in known solvable examples, e.g. for simple versions of the
BCS model of superconductivity, cf. [119, 261, 32]. In this last mentioned example, the rep-
resentations of the (“quasilocal”) algebra of observables corresponding to different equilibrium
states are all faithful, they mutually differ, however, in representing “macroscopic quantities” of
the described infinite quantal system by different operators (resp. numbers). Also in more gen-
eral cases, mutually disjoint representations are distinguished by values of some “macroscopic
quantities”.

Thermodynamic equilibrium states (also of infinite systems, corresponding to the “thermo-
dynamic limit”, [224]) can be defined for any “sufficiently continuous” one—parameter automor-
phism groupng of a C*-algebra. This fact is interesting as such, from the point of view of tra-
ditional techniques for statistical-mechanical description of thermodynamic equilibria by Gibbs
statistical ensembles, because for time evolutions) — «.(x) of an infinite system there is no
global Hamiltonian operataF to be inserted into the expression of a “statistical sum”,'&.g.
into

Z(T,H) :=Trexp <—%H> .

The definition of the thermodynamic equilibrium states- ws for a temperatur@ =: (k3)~!
(k is here the Boltzmann constant) of infinite (and other) systems is expressed Kjihe
condition for statesv , [117, 42, 196]:°2

wlaa(y)r) = w(zarsis(y)), YA € C,z € Ay € A, (B.4.5)
wherel, C 2 is the set of analytic elements with respecit@i.e.z € 2, < A — ay(z)isan

entire—analyti®—valued function, cf. [218, Chap.VI]). Stateg satisfying the condition (B.4.5)
are the3—KMS states for o, with a given0 < 8 < +oc.

101Even in some “traditional” cases, when the Hamiltonfdris a well defined selfadjoint operator, the trace in the
following formula does not exist. Take, e.g. a hydrogen atom in a box.
102KMS is for Kubo, Martin, and Schwinger.
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It is an interesting result of thBomita—Takesaki theory of modular Hilbert algebras, [253,
196, 42], that for a class of statesof anyC*-algebrall one can find a canonical one—parameter
automorphism group (called thmodular group for {2A, w}) of the weak closurer,,(21)” of
the GNS-representation 2fsuch, that the chosen stateis a KMS—state of that automorphism
group atg = 1 (this finite nonzero value gf is chosen arbitrarily). The condition for the class
of statesv allowing this “creation of dynamics from states” is, thatis faithful for 7, ()", i.e.
that for any positive (nonzero) operatBr > 0 in this W*-algebra, its diagonal matrix element
with the cyclic vector),, is strictly positive: (¢, Bi.,,) # 0 (hence, thé¥*-algebram,, ()"
does not contain any “annihilation operators” with respect to the “vacuum vegtqr”

Let us mention also the phenomenon of “spontaneous symmetry breaking” in a stationary
statew with respect to “dynamical evolution groupk C Aut(2(). Assume that there is another
automorphism group commuting with the time evolution:

TLoag=agoT, VEER, ged.

This situation “corresponds”, e.g. to commutativity of the Hamiltonian as the selfadjoint genera-
tor of the unitary group implementing the time evolutienwith generators of the transformation
groupag for a Lie groupG.

The notion of states with “broken” symmetry comes from expectations that a certain states
will have larger symmetry than they really have, [69]. Let us assume that, e.g., in the usual
formulation of QM, the HamiltoniarH is invariant with respect to a unitary representafiGn
of a finite—dimensional Lie groufr in H: H = U,HU,. If there is an eigenvectap. € H
of H: Hy. = 1., then also all the vectorflU,. : g € G} are eigenvectors aff with the
same eigenvalue. Then a nondegenerate eigenveetorc H is proportional to all the vectors
Uae € {Me : X € C}, hence the state

T = (1/)5,961/)5) = (Ugwaang'(/)E)a HAES ‘C(H)

is also ‘G—invariant”. If the eigenvalue is of higher multiplicity, theG—invariance ofi). might

be “broken”. Similar considerations apply to equilibrium states at fixed temperature: If, in the
above situation, there is only one KMS—state for a gigethen it is invariant also with respect

to ag. The phenomenon gfhase transitionsis usually considered as equivalent to existence

of several KMS states for any temperature of “phase coexistence”, e.g. below the critical tem-
perature of a ferromagnet. In the last mentioned case, e.g., the Grauight be the Euclidean
group inRR? (or only its rotation subgroup(3)) with respect to which the Hamiltonian of the
ferromagnet is invariant. Different (extremal) KMS states correspond to different directions of
the magnetization of the ferromagnet, hence the rotation symmetris broken; translation
symmetry is broken in states of any crystal state of many—particle systems (with translation
invariant Hamiltonians). The stationaand G—invariant states always exist, but in the men-
tioned “degenerate” situations they are not “extremal”: they have nontrivial convex decompo-
sitions to states (e.g. equilibrium) with lower, hence “broken”, symmetry. These situations are
considered in the above mentioned decomposition theory, resp. in a part of the ergodic theo-
ry, [224, 42, 271, 153, 228, 68].

B.4.1.Note. Let us add several words on possible structures of physically reléVaatgebras,
resp.W*-algebras. It is useful to classify*-algebras according to the sets of projections con-
tained in (thel’*-algebras obtained by) the weak closures of their (e.g. GNS) representations.
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Let us concentrate on a von Neumann classificatioW/¢talgebras. Left be alv *-algebra.

Let us denote byi3(90t) the set of all projections ift. Two projections; € P(M),j = 1,2

areequivalent p; ~ po, if Ju € M : p; = wu*, p; = vw*u. This allows us to introduce an

ordering between projections it p < ¢ < {Ip' < qg&p~p'}. f{p~q¢<p=p=yq},

thenp isfinite. If 3¢ < p (¢ # p) & q ~ p, thenp isinfinite. If 0 £ ¢ < p = ¢ is infinite, then

p is purely infinite . A projectionp € B(9M) is abelian, if pMp := {p-z-p: z € M} C M

is an abelian algebray;is minimal, if p2Mitp ~ C. We call9 finite (resp.infinite, resp.purely

infinite), if its identity e := idgy, as a projection, is finite (resp. infinite, resp. purely infinite).

9 is continuous if Vp € P(M) there areg, ¢’ € PON) : p=q+¢, ¢-¢d =0, ¢ ~ ¢.

Now we can introduce the types Bf *-algebrast is of type | <  Vp € P(M) 3 abelian

qg<p < Misisomorphic to dV*-algebra with abelian commutart is of type Il iff it

is continuous and its centef(9) does not contain purely infinite projectiodit is of type IlI,

iff it is purely infinite (= 91 is continuous, and each nonzere 3(9M) is purely infinite). Any

9 can be written a®t; & My & My, with M, of typea € {1, 11,111}, cf. [68, 227, 254].
Letl;, € 9 C L(H). Then the type (I, Il, or Ill) of the commutaMt’ = the type of.

For 93t of type Ill, no pure state is normal (hence no vector—state given bByH is pure). Von

Neumann even doubted existence of type Il algebras, [190]. Now we know, that perhaps “most

of W*-algebras occuring in QT are of type lll: Many KMS states lead to type Il representations,

and also many algebras of observables “localized” in restricted domains of Minkowski space in

relativistic QFT are of type lll, cf. [43, 238, 140, 120]. Such a “wild” structure of the physical

C*-algebras is (also) a consequence of imposed symmetties.

C Notes on Unbounded Operators in Hilbert Space

Unbounded operators usually appear in QM as selfadjoint generatafrsne—parameter unitary
groupst — u; = exp(—itA) which are not continuous in norm topology 6t*), but they are
operator—weakly continuous. Such generators seem to be unavoidable in the present—day formal-
ism of QM, since their presence is a consequence of usage of “nontrivial” unitary representations
of noncompact Lie group&' “of motions”, such as Galileo, or Poin@groups. Hence, neces-
sary unboundedness of some operators in QM can be connected, e.g. with our common models
of noncompact space-times.

Unbounded linear operator$ are also characterized by their domains of definitiofA)
which are, as a rule, dense but not equal to the B-space, on which the opetatots This
is especially a property of unbounded symmetric operators on an infinite—dimensional Hilbert
spaceH, and these will be the object of our interest in this Section. The reason for a necessity of
dealing with unbounded symmetric operators in some details in framework of papers on physical
applications is that ignorance of several basic facts can lead to serious ambiguities in obtained
results. Several methods and results presented in the following subsections can be generalized to
other spaces and operators than Hilbert spaces and operators acting on them.

C.1 Unbounded operators, their domains and adjoints

Let H be an infinite—dimensional Hilbert space with scalar producy) = (y,z), z,y € H,
and letA be a linear mapping from a linear subgetA) C H into H. The linear setD(A) is
called thedomain of A, and the mappingl is alinear operator on (a domain D(A) in) H.
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We shall usually assume (if it will be possible) that A) is dense irf, i.e. the norm closure
D(A) = H. The operator is symmetric if

(z, Ay) = (Az,y), Vx,y € D(A), D(A)=mH. (C.1.1)

If D(A) = H for a symmetricA (now symmetry mean&e, Ay) = (Ax, y)), thenA is bounded
(Hellinger—Toeplitz). We shall introduce now a useful description of operatorg.obet us
consider the Hilbert spade © H consisting of ordered couplés; y), =,y € H, with pointwise
linear combinationgz1;y1) + AM(z2;y2) = (1 + Az2;y1 + Ay2), and with scalar product
((z1;91), (x2;92)) = (z1,22) + (y1,y2). For any operatorl : D(A) — H, let us define the
graph I'(A) of A as a subset dff & H:

I'(A) :={(z; Ax) : x € D(A)}. (C.1.2)

If T'(A) is closed in the norm of{ @ H, the operator is closed If the closure of the graph of
an operatord is again a graph of a (uniquely defined) operator, we denote this opetaiiis
called theclosure of A, and that operatad (with T(A) = I'(4)) is called aclosable operatot
The closure of an (closable) operator is a closed operator.

Let A be now a densely defined linear operatorr{such are, e.g. all bounded operators

A € L(H)). Let us define, for any € H, the linear functional
£ = (2, 4) s y(€ D(A)) = 1 y) = (2, Ay)(€ C)

on the dense domain df. If this linear functional is continuous (in the induced topology from the
norm—topology ofH), hence bounded, it can be uniquely extended by linearity and continuity to
the whole Hilbert space{. We shall denote these extensions by the unchanged symbols. In that
casef € H*. The dualH* of H is antilinearly isomorphic t@{ itself; hence, each its element

f € H* is uniquely represented by an elemgpte 7 by the identificationf (z) = (ys, x) (this

is theRiesz’ lemmag [218]). Let us denote, witkd fixed, byz € H the vector corresponding

by the Riesz lemma to (the continuous extensionfdf)c H*. Theadjoint A* of A is a linear
operator orf{ with the domain

D(A*) :={z e H: f € H*,i.e thereist € H, (i,y) = (z, Ay)}, (C.1.3)
and with the values

A*x =%, Vre D(A").

It is seen that the density @?(A) in H: D(A) = 'H, is essential for possibility of definition of
the adjoint operatod*.

For D(A) = H, this definition of adjointness is the “usual one”, valid also for the bounded
A’s. ltis easily seen thatl* is a linear operator (hend@(A*) is a linear subset df{), but it
needn’t be densely defined.

The reader can check that this definition4sfcan be expressed in terms of graphs as follows:
Let V be the unitary operator dH @ H defined byV : (z;y) — (—y; ). Then the graph oft*
is expressed as an orthogonal complement

[(A*) = [VT(A)]F, (C.1.9)
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hence it is closed. It follows that the adjoint operator is always closed.

For two operatorsd, B on H, we write A C B iff D(A) ¢ D(B), andAz = Bz,Vx €
D(A),i.e.A C B < T(A) C T'(B). Inthis caseB is an extension ofA, or A is a restriction
of B. Itis clear from this that a restriction of any closed operator is closable.

C.2 Symmetric operators and their (selfadjoint ?) extensions

A symmetric operatod is selfadjoint if A = A*, i.e. if for the above defined domain (C.1.3)
we haveD(A*)=D(A). If“ i- " is the multiplication by the imaginary unite C in H, and an
operatorA onH is selfadjoint, its multiple - A is calledantiselfadjoint. Only (anti-)selfadjoint
operators can determine one parameter weakly—continuous unitary groups uniquely. e.g. gener-
ators of time evolution (Hamiltonians) in QM should be selfadjoint, and not just symmetric.

It is seen from the definition (C.1.1) of a symmetric operatdhat the definition is equiva-
lent to the conditiomd C A*. TheHellinger—Toeplitz theoremstates, [218], that if a symmetric
operatorA is everywhere definedD(A)=H, then it is continuousA € L£(H). This shows, that
an unbounded symmetric operator cannot be defined on the whole Hilbert/gpatest of the
HamiltoniansH of particle systems in models of QM are unbounded symmetric operators, e.g.
formally defined second order differential operatpis:;x (q)0;0x+v(q) onH := L*(R",d"q),
where an “initial domain” can be chosen such tHais symmetric, e.gD(H) := C§°(R™), but
it is not there selfadjoint. The natural question arises, whether there is a selfadjoint extension
of such aH. The answer needn't be, in a general case, positive: Besides an “ideal possibili-
ty” of existence of a unique selfadjoint extension, one can have, for ddimenfinitely many
(physically distinct) possibilities, or also there could be no selfadjoint extension of &bme
The theory analyzing this situation was formulated by J. von Neumann, known sometimes as
deficiency indices theory Let us describe briefly its results.

Let A be symmetric, hence densely defined with densely defined adjéinThen there is
defined the second adjoirdt** of A, and from the graph formulation (C.1.4) of definition of the
adjoint operator one can see that

AC A™ C A7, (C.2.1)

and thatd = A**. If A* = A**, the operatot is calledessentially selfadjoint and this is the
only case, whem has a unique selfadjoint extension which is then equal’teA. Since any
symmetric operatod is closable, we can assume, that we have a clesed A** C A* from
the beginning. Our present problem is about classification of conditions for existence of possible
selfadjoint extensions of a (generally not essentially selfadjoint) closed symmetric opérator

Let us introduce, for a gived = A** C A* two linear subset&? := Ker(A* + ily) of
D(A*) C H.193 Their dimensions. (A) (finite, or not) are called theeficiency indices ofA.
A closed symmetric operatot is selfadjoint iff both of its deficiency indices are equal to zero:
n4(A) =n_(A) =0, i.e. if the adjoint operatad™ has no eigenvalues equalte. The domain
D(A*) can be endowed with the scalar product

(7,9)a = (2,y) + (A"2, A"y), Yo,y € D(A7), (C.2.2)

103Remember thaer(F) for a linear operatoF is the subset of its domain on which its values vanish.
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and it becomes a new Hilbert spaklg, = D(A*) in this way. The three linear subspadeéA),
ICQ are closed, mutually orthogonal subspaceg{af providing its orthogonal decomposition.
This “reorganization” of the dense subspdeeA*) of H allows us to find an elegant expression
for all closed symmetric extensions df this is done with a help of the antisymmetric bilinear
form o4 on’H 4 defined by:

O'A[Ivy] = (A*I7y) - (I,A*y), vxay € D(A*)

Closed symmetric extensiontsy of A are exactly all the restrictions of* onto arbitrary closed
linear subspaceBy, of H 4 that containD(A), and annihilate the forra 4:

oalz,y] =0, Vz,y € Dy. (C.2.3)

From these results, one is able to construct domaips of the symmetric extensiondy,
with a help of linear isometried/ (in the original Hilbert spac@{) from closed linear subspaces
Sw of K4 into K4, dim Sy < min{n_(A), n4(A)}. The domainDyy is

Dy ={y+z+Wz:ye€ D(A),x € Sw}, (C.2.9)
and the wanted symmetric closed extensign of A is:
Aw(ly+z+Wz):= Ay +ix — iWz, Vye D(A), z € Sw. (C.2.5)

The deficiency indices of thidy, aren. (Aw) = ni(A) — dim Sy, if dim Sy < co. We see
that selfadjoint extensions of exist iff itis n_(A) = ny(A). In that case, all the selfadjoint
extensions are in the easily definable bijective correspondence with all linear isorfiéigs 4
ontoK#. Hence, the selfadjoint extensiods; of a symmetric operatod with equal deficiency
indicesn+(A) =: n are in bijective correspondence with the elements of the Lie gttup of
all unitary operators of an—dimensional complex Hilbert space onto itself. The actiod gf's
on the corresponding domains is given by (C.2.5), witgre:= 4.

C.3 The spectral theorem. Stone’s theorem

The resolvent set and spectrum of a selfadjoint unbounded opetai®mefined essentially

in the same way as it was done for bounded operators in Subsection B.1: The resolvent set
p(A) == {A € C: (\L— A)~! € L(H)}, but the spectruna(A) := C\ p(A) C R is not
compact now. Also in this case, however, it is possible to associate unique projection measure
E 4 on the real line (supported by the spectra()) to any selfadjoint4, and to formulate the
corresponding spectral theorem expressed by the same formula, as it was done in the “bound-
ed case”, cf. Theorem B.1.3. This projection measure provides a transparent representation of
the functional calculus also for unboundedi, cf. Subsection B.1, and Subsection B.2. It is

now natural, however, to use also unbounded real Borel funcifomis R for construction of

other unbounded operatof§ A) from the given one, cf. Theorem B.1.3. In the case of un-
bounded functiong’ € F(R, E4) :=the set of measurabld; s—almost everywhere finite (i.e.
E4(f7*({o0})) = 0) real functions orR, the domain questions arise. One has (cf. [20])
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C.3.1. Proposition. Let A be a selfadjoint (generally unbounded) operator, andHet be its
canonical spectral (projection valued) measure. fet F(R, E4), and let®*

£ = [ FNEA@N.
R
The operatorf(A) is selfadjoint, with the (dense) domain
D) = € M [ 1/ Ba(dNa) < oo}

For any two functiong, h € F(R, E4), and for0 # A € R, one has
() D(f(A) + Ah(A)) = D(f(A)) N D(h(A)) C D((f + Ah)(A));

(i) D(f(A)h(A)) = D((f-h)(A)) N D(h(A)). All these operator§ f(A) : f € F(R,E4)}
mutually commute, i.e. their projection measures comndite.

Clearly, the special choicg(\) = X gives f(A) = A. Another (bounded, but complex)
choicef(\) = exp(it\) gives a one—parameter unitary grdlift):

t— U(t) :=exp(itAd) = / exp(itA)E4(dN).
R
This group is strongly continuous, and it is also norm—continuoud i bounded. Different
operatorsA give different group$/(¢).
The converse statement is the celebr&umhe’s theorem [220, 218]:

C.3.2. Theorem (Stone).Lett(e R) — U(t) be a weakly continuous one—parameter unitary
group on a Hilbert spacét, i.e.U(t1 + t2) = U(t1)U(t2) € U(H) (Vi1,t2 € R), and all the
complex—valued functions— (z,U(t)y),Vx,y € H are continuous. Then there is a unique
selfadjoint operatorA such, that

U(t) = exp(itA).
(Let us note, that strong and weak continuity of the unitaki¢s) are equivalent.)d

This theorem has a natural generalization to many—dimensional commutative locally compact
groups of continuous unitary transformations?éfknown as theSNAG theorem (by Stone—
Najmark—Ambrose—Godement), cf. [220, Chap. X.140], [103, Chap. 1V], [218, Theorem VIII.
12]. The SNAG theorem can be used naturally also for construction of “macroscopic (classical)
subalgebras” of large quantal systems determined by a group action, [31].

104\We skip here details on exact meaning of the integral in the spectral representafiof)of
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198 List of Symbols

List of Symbols
P(H) 5,42 go(t, F), Ry, 2 88
u(G) 7,72 Fe(v) :==F(v)(§), ne(B) 90
Ad*(G) 7,74 2, 0(G), 72 90
F(&) =< F;¢ > 25,159 a(g), ft(@, v) 90
PM=PVM, POV=POVM 31, 165 fw q,w w 96
3.9.9,¢,L(H) 41 Sas E 97
||a||,8*,8,11, Ql,u(H),’yu 42 v, ’?F; SD’Y 97
Ad(u), O,, v(y), o(b), E; 42 v, 70, V, 103
Up, My, Ny, Doy qp 44 Gwpyg 112, 80
ad”, ad,, B, T,O(U), || - ||, 44 x-v, W(x)vW(x)*, Ad*(W(x))v 116
F(B), {[. h}, hy(v) 49 QY, 00, % 117
D(hx), D(X), U™ 61 V,(q), 3(q) := 2(—q) 118

Do(X) := D*(X), Da(X), D(X) 63 po 123
D(9x), Dr(9x) :==D(0x)NFs NS 63 pry) 139

Dy (X), Dro(X), Dra(X) 63 o(L,M) 142

Dm(éx) = DT(5X)ODM(X) 63 Df,D,f 142

dohx € T;0,(4) 66 c:=(U;p; L) 145

Tr(v), v (v) 68 n = dim(M) 145

D,,D 69 F(M) 146

do(Drh), doh(ile, b]), DY, 69 T.M=T,(M), |, 147

vi(0), V, 70 T,f, TM 147

D*(G), Lie(G) = g, D (G) 72 TPM = TP(M) 148

Lze( )= g 74,159 [« =Tf, £4f(z) =v,(f) 149
D, (F) := D*(G) C D(F) 74 Low = [£y, L] 149

F: D(F) — Lie(G)* 73 dyf 150

o—F(o):=F, 73 wi; Awa, wAdf 151

fe: Lie(G)* —R73 B*w, B*f 153

Gr(o) 76 Lie(G) =g 159

(F*h, £} (v) 77 ad, Ad(g), Ad*(g) 159

fv — F* ¥ 78 FsQp 161

Ran(), &, &7 82 D(A), L(H), GL(H) 162

conw (B), conM B) 82 o(A) = sp(A), opp(A) 162

GG, ot ¢l 53, 83 A, G(A), A1 168

we ()t R x S, 1452, 83 (), H, b 170

ug(t, F) == ug(t,v'), 7f 83 W' 7, m ~me, z(m), mUme 171

s*(L(H), D(F)), b.(F) 84 ES() 172

o, (v € D(F)) 84 (Tw; Huw; Yw), GNS,w1Bwy 173

Cvs, CC, CS, CC 84 ws, A-KMS 178

CS :=1.C(&,C) cC5 84 PEN), P(L(H)) 179

Y(F), Ey gy, hi(o,v),CE 85 I'(4), D(A), D(A*), A" 181

MG, Sa, Sél L Wup € S(CG) 86 ny(A) :=dimKy, (z,y)4 182



