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386 A. W�unscheand discussions about the nonexistence of the Glauber-Sudarshan quasiprobability forcertain classes of states in the early time after its introduction can be considered aswidely clari�ed [4{6].We consider in this paper two di�erent representations of the Glauber-Sudarshanquasiprobability which distinguish themselves by the presence or absence of a Gaussianfunction in front of the derivatives of the delta functions. We clarify the connectionbetween these two possible representations in Sections 2 and 3 and present this as alimiting case of the more general s{ordered quasiprobabilities [7,8] embedded into thecomplete Gaussian class of quasiprobabilities [9]. The representation given by Sudar-shan [1] is a representation, where the two-dimensional delta function is substitutedby a one-dimensional central-symmetric delta function combined with angle functionsbut there remains the Gaussian factor in front of the derivatives of this delta function.The "disentanglement" of this product of Gaussian factor with derivatives of the deltafunction leads to a new representation derived in Section 4. We introduce in Section5, in analogy to the one-dimensional set of Hermite functions, a two-dimensional or-thonormalized and complete set of functions which we call Laguerre 2D-functions anddiscuss some of its properties. This set is appropriate for the Fock-state representationof quasiprobabilities and for the inversion of the Fock-state matrix elements from thequasiprobabilities. In Section 6, we reconsider the Pe�rina-Mi�sta representation [10{12]and [5,6] of the Glauber-Sudarshan quasiprobability which is a regularized representa-tion in comparison to the other considered representations. In Section 7, we considerthe convolution of two Glauber-Sudarshan quasiprobabilities for two states as a newGlauber-Sudarshan quasiprobability of a new state and show that the density operatorof this new state is, in general, not positively de�nite. Therefore, this convolution [2,3]cannot be generalized to a principle for arbitrary states. We show explicitly the vio-lation of the positive de�niteness of the resulting density operator for the combinationof Fock states in the mentioned sense. In the Appendices, we derive some formulas togeneralized functions which are important for many calculations in quantum optics and,in particular, in the present paper but which can be rarely found in this ready form inmonographs about generalized functions.2. Quasiprobabilities in Fock-state representationWe begin with the Fock-state representation of the Glauber-Sudarshan quasiproba-bility P (�; ��) expressed by an expansion in the two-dimensional delta function �(�; ��)and its derivatives which we prefer in comparison to the representation by the central-symmetric one-dimensional delta function and its derivatives given by Sudarshan [1].Furthermore, we consider the relations to other quasiprobabilities.The Glauber-Sudarshan quasiprobability P (�; ��) is associated with normal order-ing of the transition operator from the density operator % to the quasiprobability andcan be de�ned in the following way [1{8,13]P (�; ��) = �%N�exp��a @@� � ay @@����� �(�; ��)



Some remarks about the Glauber-Sudarshan quasiprobability 387= �% exp��ay @@��� exp��a @@��� �(�; ��)= 1Xk=0 1Xl=0 (�1)k+lk!l! Dak% ay lE @k+l@�k@�� l �(�; ��); (2.1)where N f: : :g is the symbol for normal ordering of the content in braces and hAi �Trace(A) the very convenient notation for the trace of an operator A. The reconstruc-tion of the density operator % from the Glauber-Sudarshan quasiprobability P (�; ��) isobtained by % = Z i2d� ^ d��P (�; ��)j�ih�j; (2.2)which is often taken as the starting point for the de�nition of P (�; ��). Herein as usual,j�i denotes the normalized coherent states. The equivalence is evident from the relation
��� exp��ay @@��� exp��a @@�� ���� �(�; ��) = �(�� �; �� � ��): (2.3)The relation (2.1) is very convenient to obtain the Fock-state representation of theGlauber-Sudarshan quasiprobability by means of the expansion% = 1Xm=0 1Xn=0 jmihmj%jnihnj: (2.4)By inserting this expansion into (2.1) and by calculating the arising matrix elements ofthe transition operator, one �nds [13] (Eq.(8.19))P (�; ��) = 1Xm=0 1Xn=0hmj%jni (�1)m+npm!n! fm;ngXj=0 m!n!j!(m� j)!(n� j)! @m+n�2j@�m�j@��n�j �(�; ��)= 1Xm=0 1Xn=0hmj%jnir n!m! �� @@��m�n Lm�nn �� @2@�@��� �(�; ��); (2.5)where L�n(u) denotes the Laguerre polynomials in the convention of Bateman andErdel�yi [14] (see remark in Appendix A of [15]). For Fock states % = jnihnj, oneobtains (Ln(u) � L0n(u))% = jnihnj; , P (�; ��) = Ln�� @2@�@��� �(�; ��): (2.6)The representation of the quasiprobability P (�; ��) by generalized functions given bySudarshan [1] is di�erent from the representation given in (2.5). We come back to thispoint in the next two Sections. Now, we will show how (2.5) can be generalized tothe complete Gaussian class of quasiprobabilities considered in [9]. For this purpose wemention that the quasiprobabilities F(r1;r2;r3)(�; ��) of this class can be obtained from



388 A. W�unschethe Wigner quasiprobability W (�; ��) by the convolution (notation � for the operationof forming the convolution; furthermore, note W (�; ��) � F(0;0;0)(�; ��))F(r1;r2;r3)(�; ��) = g(r1;r2;r3)(�; ��) �W (�; ��); (2.7)where g(r1;r2;r3)(�; ��) denotes the following normalized centered two-dimensional Gaus-sian functiong(r1;r2;r3)(�; ��) = 2�pr2 exp�� (r1 + ir2)�2 � (r1 � ir2)�� 2 + 2r3���r2 � ;r2 = r21 + r22 + r23 : (2.8)The Glauber-Sudarshan quasiprobability P (�; ��) is related to the Wigner quasiprob-ability W (�; ��) by (note P (�; ��) � F(0;0;�1)(�; ��))P (�; ��) = g(0;0;�1)(�; ��)�W (�; ��); W (�; ��) = g(0;0;1)(�; ��)�P (�; ��): (2.9)Since the introduced vector parameter r � (r1; r2; r3) is additive with regard to con-volutions [9] meaning gr(�; ��) � gs(�; ��) = gr+s(�; ��), one obtains from (2.7) and(2.9) F(r1;r2;r3)(�; ��) = g(r1;r2;1+r3)(�; ��) � P (�; ��); (2.10)This means that the Fock-state representation of the quasiprobability F(r1;r2;r3)(�; ��)can be obtained from (2.5) in the following formF(r1;r2;r3)(�; ��)= 1Xm=0 1Xn=0hmj%jni� (�1)m+npm!n! fm;ngXj=0 m!n!j!(m� j)!(n� j)! @m+n�2j@�m�j@��n�j g(r1;r2;1+r3)(�; ��)= 1Xm=0 1Xn=0hmj%jnir n!m! �� @@��m�n Lm�nn �� @2@�@��� g(r1;r2;1+r3)(�; ��);(2.11)The only di�erence on the right-hand side to (2.5) is that the two-dimensional deltafunction �(�; ��) is substituted by the normalized Gaussian function g(r1;r2;1+r3)(�; ��).This means for Fock states% = jnihnj; , F(r1;r2;r3)(�; ��) = Ln�� @2@�@��� g(r1;r2;1+r3)(�; ��): (2.12)It is clear that it is not easy to calculate the necessary derivatives of g(r1;r2;1+r3)(�; ��)in the general case and we will explicitly consider this only for the (0; 0; r){ordered classof quasiprobabilities (usually called s{ordered class with r = �s; we have some reasonto change the sign [9] but this is not a deep problem).



Some remarks about the Glauber-Sudarshan quasiprobability 389For the (0; 0; r){ordered class of quasiprobabilities, one easily �nds the specializationg(0;0;1+r)(�; ��) from (2.8) and by inserting this into (2.11), one obtainsF(0;0;r)(�; ��)= 1Xm=0 1Xn=0hmj%jni� (�1)m+npm!n! fm;ngXj=0 m!n!j!(m� j)!(n� j)! @m+n�2j@�m�j@��n�j 2�(1 + r) exp��2���1 + r�= 1Xm=0 1Xn=0hmj%jnir n!m! �� @@��m�n Lm�nn �� @2@�@��� 2�(1 + r) exp��2���1 + r� ;(2.13)in particular, for Fock states% = jnihnj; , F(0;0;r)(�; ��) = Ln�� @2@�@��� 2�(1 + r) exp��2���1 + r� : (2.14)By inserting the result of the di�erentiations of the Gaussian function as derived inAppendix A with � = (1 + r)=2, one obtains (derived in [7] in another way)F(0;0;r)(�; ��)= 2�(1 + r) exp��2���1 + r� 1Xm=0 1Xn=0hmj%jni� 1pm!n! � 21 + r�m+n fm;ngXj=0 m!n!j!(m� j)!(n� j)! ��1� r24 �j ��m�j�n�j= 2�(1 + r) exp��2���1 + r� 1Xm=0 1Xn=0hmj%jni�r n!m! ��1� r1 + r�n� 2��1 + r�m�nLm�nn � 4���1� r2� ; (2.15)in particular, for Fock states% = jnihnj; , F(0;0;r)(�; ��) = 2�(1 + r) exp��2���1 + r���1� r1 + r�n Ln� 4���1� r2� :(2.16)The coherent-state quasiprobability Q(�; ��) is obtained as the special case r = 1. Inthis case, we can use the limiting procedure n! limu!0 L�n(u)=(�u)n = 1 and �nd from(2.15) Q(�; ��) = 1� exp (����) 1Xm=0 1Xn=0hmj%jni��m�npm!n! ; (2.17)



390 A. W�unschein particular, for Fock states% = jnihnj; , Q(�; ��) = 1� exp (����) (���)nn! : (2.18)The Wigner quasiprobability W (�; ��) is obtained as the special case r = 0 and one�nds from (2.15)W (�; ��) = 2� exp (�2���) 1Xm=0 1Xn=0hmj%jni� 2m+npm!n! fm;ngXj=0 m!n!j!(m� j)!(n� j)! ��14�j ��m�j�n�j= 2� exp (�2���) 1Xm=0 1Xn=0hmj%jni(�1)nr n!m! (2��)m�n Lm�nn (4���) ;(2.19)in particular, for Fock states [2,3]% = jnihnj; , W (�; ��) = 2� exp (�2���) (�1)nLn(4���): (2.20)In case of the Glauber-Sudarshan quasiprobability corresponding to r = �1, the argu-ment of the Laguerre polynomials goes to in�nity and there are no factors in front ofthe Laguerre polynomials which compensate these divergencies. Therefore, the explicitrepresentation (2.15) is not applicable in this case and one has to go back to the rep-resentation (2.5) involving derivatives of the delta function which formed the startingpoint of our considerations.We mention here that for displaced Fock states j�; ni de�ned by j�; ni = D(�; ��)jniwithD(�; ��) as the unitary displacement operator (see, e.g. [16,13]) holds the followingbasic relation to density operators of coherent states [13]j�;mih�; nj =r n!m! @m�n@�m�nLm�nn �� @2@�@��� j�ih�j (2.21)It can be obtained from the coherent-state quasiprobability for the Fock-state operatorsjmihnj according to (2.13) for r = 1 in the following way1� h�j�;mih�; nj�i = 1� h�� �jmihnj� � �i= r n!m! �� @@��m�n Lm�nn �� @2@�@��� 1� h�� �j0ih0j�� �i= r n!m! � @@��m�nLm�nn �� @2@�@��� 1� h�j�ih�j�i; (2.22)



Some remarks about the Glauber-Sudarshan quasiprobability 391which proves (2.21) since both sides are quasiprobabilities from which the operatorj�;mih�; nj is uniquely determined. Due to the displacement structure of quasiproba-bilities, an analogous proof could be made with arbitrary other quasiprobabilities. Therelation (2.21) was proved in [13] by recursion relations for the displaced Fock-stateoperators.3. Alternative form of the Fock-state representation of theGlauber-Sudarshan quasiprobabilityWe now consider an alternative form of the Glauber-Sudarshan quasiprobability inFock-state representation which is near to the representation given by Sudarshan [1].Starting point of the considerations of this Section is relation (2.2) from which weform the Fock-state matrix elementshmj%jni = Z i2d� ^ d��P (�; ��) exp (����) �m��npm!n! : (3.1)On the right-hand side, we have the moments of the function P (�; ��) exp(����). Fromthe reconstruction formula of a function from its moments (see Appendix B), we �ndthe following expansion of P (�; ��)P (�; ��) = exp (���) 1Xm=0 1Xn=0hmj%jni (�1)m+npm!n! @m+n@�m@��n �(�; ��): (3.2)If we compare this with (2.5), we �nd the following identityexp(���) @m+n@�m@��n �(�; ��) = fm;ngXj=0 m!n!j!(m� j)!(n� j)! @m+n�2j@�m�j@��n�j �(�; ��)= n! @m�n@�m�nLm�nn �� @2@�@��� �(�; ��): (3.3)The di�erence between the expansions (2.5) and (3.2) of the Glauber-Sudarshan quasi-probability P (�; ��) is that in (3.2) we have the function exp(���) in front of thederivatives of the delta function. As a rule, it is a complicated operation to have afunction of a variable in front of derivatives of a delta function of the same variable ascan be seen from the example (3.3) and one can give a general resolution in form oflinear combinations of lower derivatives of the delta function with number coe�cientsin front of these derivatives ("disentanglement" of such products; see Appendix C).The form (3.2) of the Glauber-Sudarshan quasiprobability is favourable in calcula-tions where the factor exp (���) on the right-hand side is absorbed and there remain the"pure" derivatives of the delta functions. In the other cases, one has mostly to preferthe form (2.5) for the Glauber-Sudarshan quasiprobability in Fock-state representation.



392 A. W�unsche4. Sudarshan representation of the Glauber-Sudarshan quasiprobabilityThe Sudarshan representation of the Glauber-Sudarshan quasiprobability P (�; ��)in the Fock-state basis uses the one-dimensional delta function and its derivatives com-bined with simple angle functions instead of the more basic two-dimensional delta func-tion �(�; ��) for the phase space of one mode. We represent the transition from thetwo-dimensional delta function and its derivative as used in the preceding Sections to aone-dimensional central-symmetric delta function in Appendix D. One has to observeone moment of this representation. The integration over the two-dimensional phasespace in polar coordinates (j�j; ') includes the integration over j�j from 0 to +1. Thisintegration is not uniquely determined if one has the one-dimensional central-symmetricdelta function �(j�j) in the integrand because the singularity is at one border of theintegrations. It seems to us that this can be taken into account in the best way by alimiting procedure which one has to make at the end of calculating functionals over thegeneralized functions and we represent this in such a way. In all other moments we getresults in accordance with [1].If we insert the identity (D.6) of Appendix D into the formula (3.2), we obtain thefollowing representation of the Glauber-Sudarshan quasprobabilityP (�; ��) = exp �j�j2� 1Xm=0 1Xn=0hmj%jni (�1)m+npm!n!(m+ n)! ei(n�m)'2�j�j lim"!0 @m+n@j�jm+n �(j�j � "):(4.1)Apart from the limiting procedure, this is in agreement with the representation givenby Sudarshan [1] (comp. [2,3]), who probably solved some problems of the transitionfrom the two-dimensional representation of the delta function to the one-dimensionalrepresentation which we present in Appendix D and which can be rarely found inmonographs about generalized functions (some results can be "guessed" by consideringsimple "test" functions as, for example, power functions). An alternative representationcan be derived by inserting (D.6) of Appendix D into formula (2.5) that leads toP (�; ��) = 1Xm=0 1Xn=0hmj%jni (�1)m+npm!n!(m+ n)! ei(n�m)'2�j�j� lim"!0 [m+n2 ]Xj=0 (m+ n)!j!(m+ n� 2j)! @m+n�2j@j�jm+n�2j �(j�j � "); (4.2)and can be represented by Hermite polynomials Hk(x) as followsP (�; ��) = 1Xm=0 1Xn=0hmj%jni im+npm!n!(m+ n)! ei(n�m)'2�j�j lim"!0Hm+n� i2 @@j�j� �(j�j � "): (4.3)The direct connection between the two representations (4.1) and (4.3) can be establishedby using the identity (C.6) in Appendix C with c = i.One can consider (4.3) as the disentangled version of the Sudarshan representationof the quasiprobability P (�; ��). It seems to be favourable to use it in calculations



Some remarks about the Glauber-Sudarshan quasiprobability 393when there is no Gaussian factor exp ��j�j2� which compensates the opposite Gaussianfactor in the Sudarshan representation (4.1) but one has to decide this in every concretecase. Both representations, the Sudarshan representation and the representation (4.2)or (4.3) are favourable to use if one has problems which are appropriate to solve inpolar coordinates. In the other cases, however, we prefer to use the representations bytwo-dimensional delta functions considered in (2.5) and (3.2).5. Introduction of Laguerre 2D-functionsWe introduce the following set of functions of two variables in complex representationlm;n(z; z�) = 1p� exp��zz�2 � (�1)nr n!m!zm�nLm�nn (zz�)= 1p� exp��zz�2 � (�1)mrm!n! z�n�mLn�mm (zz�) ; (5.1)and call it Laguerre 2D-functions (two-dimensional Laguerre functions contrary to usualone-dimensional Laguerre functions) in analogy to the orthonormalized Hermite func-tions hn(x) playing a similar role as a basis for functions of one variable. The moreexplicit representation of the Laguerre 2D-functions islm;n(z; z�) = 1p� exp��zz�2 � 1pm!n! fm;ngXj=0 m!n!j!(m� j)!(n� j)! (�1)jzm�jz�n�j : (5.2)One immediately �nds the symmetry propertieslm;n(z; z�) = (ln;m(z; z�))� = ln;m(z�; z); lm;n(�z;�z�) = (�1)m+nlm;n(z; z�):(5.3)The set of Laguerre 2D-functions is orthonormalized in the following wayZ i2dz ^ dz� (lk;l(z; z�))� lm;n(z; z�) = �k;m�l;n; (5.4)and obeys the following completeness relation1Xm=0 1Xn=0 lm;n(z; z�) (lm;n(w;w�))� = �(z � w; z� � w�): (5.5)The orthonormality relations can be proved in modi�ed polar coordinates (u = jzj2; ')(action-angle coordinates), where the �rst integration over ' leads to a known specialintegral over products of two Laguerre polynomials combined with exponential andpower functions (proof, e.g., in [17]). In a similar way, in polar coordinates for bothcomplex variables z and w, the completeness relation (5.5) can be proved. One can �rstseparate a sum which contains only the moduli jzj and jwj and which can be evaluated



394 A. W�unscheby a limiting procedure from a known sum (Eq.(20) chap.10.12 in [14], known as Hille-Hardy or Myller-Lebede� formula) and then the remaining sum with the angles asparameters can be easily evaluated providing the delta function of the di�erence of theangles. If the function system lm;n(z; z�) is complete that is intuitively clear, then theform (5.5) of the completeness relation follows automatically from the orthonormalityrelations (5.4).By direct calculation, one proves that the Fourier transforms of the Laguerre 2D-functions are again Laguerre 2D-functions according to~lm;n(w;w�) � Z i2dz^dz�lm;n(z; z�) exp�� i2 (w�z + wz�)� = 2�(�i)m+nlm;n(w;w�);(5.6)analogously to the Hermite functions. The Radon transform of the Laguerre 2D-functions is essentially the product of Hermite functions combined with angle functions�lm;n(w;w�; c) � Z i2dz ^ dz�lm;n(z; z�) ��c� 12 (w�z + wz�)�= r 2�ww� �r ww� �m�n hm� cp2ww��hn� cp2ww�� ;hn(x) = 1� 14 exp��x22 � 1p2nn!Hn(x): (5.7)A further relation is given in Appendix A. One of the di�erential equations to whichthe Laguerre 2D-functions are solutions is the eigenvalue equation of a two-dimensionaldegenerate harmonic oscillator.By using the Laguerre 2D-functions, the quasiprobabilities F(0;0;r)(�; ��) which areexplicitly given in (2.15) can be represented byF(0;0;r)(�; ��) = 2p�(1 + r) exp�2r ���1� r2 �� 1Xm=0 1Xn=0hmj%jni r1� r1 + r !m+n ln;m� 2�p1� r2 ; 2��p1� r2� ;(5.8)in particular, the Wigner quasiprobability as the special case r = 0W (�; ��) = 2p� 1Xm=0 1Xn=0hmj%jni ln;m(2�; 2��): (5.9)The normalization of the quasiprobabilities in this form can be proved from the relationZ i2dz ^ dz� exp�r2zz�� lm;n(z; z�) = 2p�1� r �1 + r1� r �n �m;n: (5.10)



Some remarks about the Glauber-Sudarshan quasiprobability 395The inversion of (5.8) yields for the Fock-state matrix elementshmj%jni = 2p�1� r  r1 + r1� r !m+n Z i2d� ^ d�� F(0;0;r)(�; ��)� exp��2r ���1� r2 � lm;n� 2�p1� r2 ; 2��p1� r2� ; (5.11)in particular, the inversion from the Wigner quasiprobabilityhmj%jni = 2p� Z i2d� ^ d��W (�; ��) lm;n (2�; 2��) : (5.12)By means of the well-known generating function of the Laguerre polynomials, one proves1Xn=0�1 + r1� r�n ln;n (z; z�) = 1� r2p� exp�r2zz�� ; (5.13)that guarantees the normalization h%i =P1n=0hnj%jni = 1.The above considerations show that the Laguerre 2D-functions are very appropriatefor the representation of the quasiprobabilities in the Fock-state basis and for theirinversion but we think that they are useful also for many other purposes.6. Pe�rina-Mi�sta representation of the Glauber-Sudarshan quasiprobabilityPe�rina and Mi�sta [10,11] (see also [5,6] and [12]) introduced a "regularized" repre-sentation of the Glauber-Sudarshan quasiprobability P (�; ��) by Laguerre polynomialsto which is rarely paid attention up to now. We illuminate this representation here froma modi�ed point of view and hope to contribute in this way to a better understand-ing and to its further application. For this purpose, we use the introduced Laguerre2D-functions.By setting r = �p1� 4";! " = (1� r2)=4 in (5.8), one can represent the Glauber-Sudarshan quasiprobability by the following limiting procedureP (�; ��) = exp (���) lim"!0( 1p�" exp�����2" � 1Xm=0 1Xn=0 hmj%jni(p" )m+n ln;m� �p"; ��p"�)= exp (���) lim"!0( 1�" exp�����" � 1Xm=0 1Xn=0 hmj%jnipm!n! "m+n� fm;ngXj=0 m!n! (�")jj!(m� j)!(n� j)!��m�j�n�j): (6.1)If we want to obtain a similar structure with the same Gaussian factors in front, however,without a limiting procedure, then we bring these factors to the left-hand side and by



396 A. W�unscheinserting (3.2), we �ndexp����2" � exp(����)P (�; ��) = exp����2" � 1Xk=0 1Xl=0hkj%jli (�1)k+lpk!l! @k+l@�k@�� l �(�; ��):(6.2)We now make an expansion of this expression in the set of functions ln;m (�=p"; ��=p").According to the completeness relation (5.5), we have to calculate the following integralof the right-hand side of (6.2)1" Z i2d� ^ d��lm;n� �p"; ��p"� exp����2" � 1Xk=0 1Xl=0hkj%jli (�1)k+lpk!l! @k+l@�k@�� l �(�; ��)= 1" 1Xk=0 1Xl=0hkj%jli 1pk!l! � @k+l@�k@�� l �exp����2" � lm;n� �p" ; ��p"����=��=0= 1p� " 1(p" )m+n fm;ngXj=0 hm� jj%jn� ji pm!n! (�")jj!p(m� j)!(n� j)! : (6.3)For the calculation of the derivatives at � = �� = 0 it was very favourable that theGaussian factors in front of the Laguerre 2D-functions and inside of the Laguerre 2D-functions compensate each other and the expressions became easily calculable. Thisexplains the choice of the Gaussian factors in (6.2) which is the best. Instead of (6.1),we now �nd the following regularized representation (" � 0)P (�; ��)= 1p� " exp���� � ���2" � 1Xm=0 1Xn=0 %m;n(")(p" )m+n ln;m� �p"; ��p"�= 1�" exp���� � ���" � 1Xm=0 1Xn=0 %m;n(")pm!n! "m+n fm;ngXj=0 m!n! (�")jj!(m� j)!(n� j)!��m�j�n�j ;(6.4)with the following de�nition of the new matrix elements %m;n(") together with theirinversion (found by Pe�rina and coworkers [5,6])%m;n(") � fm;ngXk=0 pm!n! (�")kk!p(m� k)!(n� k)!%m�k;n�k(0) = fm;ngXk=0 (�")kk! hmjay k% akjni;%m;n(0) = fm;ngXl=0 pm!n! "ll!p(m� l)!(n� l)!%m�l;n�l("); %m;n(0) = hmj%jni: (6.5)In (6.4) and (6.5), " is a free parameter larger than zero. For " = 0, one obtainsthe singular representation (3.2). Note that in the representation which was obtained



Some remarks about the Glauber-Sudarshan quasiprobability 397by Pe�rina and coworkers, there is used an older and now rarely used de�nition of theLaguerre polynomials [18] and that the representation is less symmetric by separationof the sum terms with m > n and m < n with introduction of � � �(m�n), where theterms with m = n are joined with one of these sum terms. The representation givenhere was mainly obtained in this form by introduction of the Laguerre 2D-functionslm;n(z; z�) and due to their symmetries.7. Convolution of Glauber-Sudarshan quasiprobabilitiesA combination principle for two states to a new state of the following kind wasput forward in [2,3]. The convolution of two quasiprobabilities P1(�; ��) and P2(�; ��)belonging to density operators %1 and %2 provides a new such quasiprobability P (�; ��)corresponding to a new state which could be considered as a kind of superposition ofthe two states that meansP 0(�; ��) = P1(�; ��) � P2(�; ��); , %0 = Conv(%1; %2); (7.1)and its normalization is immediately to see. For example, the superposition of twocoherent states %1 = j�1ih�1j and %2 = j�2ih�2j in this sense provides a new coherentstate %0 = j�1 + �2ih�1 + �2j according toP 0(�; ��) = �(�� �1; �� � ��1 ) � �(�� �2; �� � ��2)= �(�� �1 � �2; �� � ��1 � ��2): (7.2)We will show that, in general, this combination principle does not provide a positivelyde�nite Hermitean density operator %0. This means that there cannot be an apparatuswith two inputs for the states with the density operators %1 and %2 and, at least, oneoutput for the state with the density operator %0 determined by a Glauber-Sudarshanquasiprobability P 0(�; ��) according to (7.1). Although there are considerations tothis failure in [4] (chap.8.4) which show that this combination principle cannot beclaimed as a general principle, this is little known. The argumentation in [4] uses theFourier transforms of the Glauber-Sudarshan quasiprobabilities which are to multiplyif the quasiprobabilities themselves underly a convolution. We will give here an explicitexample which shows that, in this way, we obtain resulting states corresponding toinde�nite Hermitean "density" operators.We consider two Fock states %1 = jmihmj and %2 = jnihnj. The convolution of thecorresponding Glauber-Sudarshan quasiprobabilities providesP 0(�; ��) = �Lm�� @2@�@��� �(�; ��)� ��Ln�� @2@�@��� �(�; ��)�= Lm�� @2@�@���Z i2d� ^ d���(�� �; �� � ��)Ln�� @2@�@��� �(�; ��)= Lm�� @2@�@���Ln�� @2@�@��� �(�; ��): (7.3)



398 A. W�unscheThe problem of determination of the Fock-state representation to this function consid-ered as a Glauber-Sudarshan quasiprobability is the problem of the decomposition of theproduct of two Laguerre polynomials Lm(u)Ln(u) into a sum over Laguerre polynomialsLm(u)Ln(u) = m+nXl=jm�nj cm;n;lLl(u): (7.4)The restriction of the sum over Laguerre polynomials by an upper l = m + n can beeasily seen from the highest power of u in the product Lm(u)Ln(u) and to a lowerl = jm�nj by the symmetry properties exposed below. Due to L�n(0) = (n+�)!=(n!�!),one �nds from (7.4) by setting u = 0m+nXl=jm�nj cm;n;l = m+nXl=jm�nj cm;n;lLl(0) = Lm(0)Ln(0) = 1: (7.5)This means that we have checked the normalization which is true, more generally, forarbitrary P 0(�; ��) in (7.1). Due to the well-known orthonormality of the Laguerrepolynomials with a weight function e�u, one hascm;n;l = Z +10 du e�u Lm(u)Ln(u)Ll(u); cm;n;l = cn;m;l = cl;m;n: (7.6)We do not know a practicable complete solution of this integration problem. However,we can successively determine the terms of the decomposition (7.4) beginning with thehighest term corresponding to l = m+n and then the term with l = m+n�1 from theremaining expression and so on. In this way, we obtained the following initial terms ofthe expansion in the order of decrease of the indicesLm(u)Ln(u) = (m+ n)!m!n! Lm+n(u)� 2 (m+ n� 1)!(m� 1)!(n� 1)!Lm+n�1(u)+(2mn� (m+ n) + 1) (m+ n� 2)!(m� 1)!(n� 1)! Lm+n�2(u)�2 (2mn� (m+ n) + 2) (m+ n� 3)!3 (m� 2)!(n� 2)! Lm+n�3(u) + : : : : (7.7)The lowest term corresponding to l = 0 is also clear from the integral in (7.6) whichgives the Kronecker tensor �m;n for l = 0. With these initial terms, one can completelyanalyse simple cases with not too high m and (or) n and we found, for exampleConv(j0ih0j; jnihnj) = jnihnj;Conv(j1ih1j; jnihnj) = (n+ 1) jn+ 1ihn+ 1j � 2n jnihnj+ n jn� 1ihn� 1j;Conv(j2ih2j; jnihnj) = (n+ 2)(n+ 1)2 jn+ 2ihn+ 2j � 2(n+ 1)n jn+ 1ihn+ 1j+(3n� 1)n jnihnj � 2n(n� 1) jn� 1ihn� 1j+n(n� 1)2 jn� 2ihn� 2j; (7.8)



Some remarks about the Glauber-Sudarshan quasiprobability 399in particularConv(j1ih1j; j1ih1j) = 2 j2ih2j � 2 j1ih1j+ j0ih0j;Conv(j1ih1j; j2ih2j) = 3 j3ih3j � 4 j2ih2j+ 2 j1ih1j;Conv(j2ih2j; j2ih2j) = 6 j4ih4j � 12 j3ih3j+ 10 j2ih2j � 4 j1ih1j+ j0ih0j: (7.9)The right-hand sides in the last three examples show that the obtained density operatorsdo not correspond to a positively de�nite Hermitean operator and that the "probabili-ties" in front of the projection operators are not restricted to be less than 1 in modulusin signi�cant contradiction to the necessary requirements. Therefore, in case that oneobtains a new possible Glauber-Sudarshan quasiprobability of a "physical" state byconvolution of two such quasiprobabilities, there should be another, as a rule, morespecial mechanism which provides these results that we now illustrate.We consider the combination of a coherent state %1 = j�ih�j with an arbitrary state%2 = % in the sense of (7.1) and obtain by convolution of its quasiprobabilitiesP 0(�; ��) = �(�� �; �� � ��) � P (�; ��) = P (�� �; �� � ��): (7.10)The new quasiprobability P 0(�; ��) is therefore simply the old quasiprobability P (�; ��)displaced in the complex phase plane. Due to the "displacement structure" of thequasiprobabilities themselves [9], this is not only true for the Glauber-Sudarshan quasi-probability P (�; ��) but for all quasiprobabilities, for example, for F(r1;r2;r3)(�; ��)with arbitrary r = (r1; r2; r3). The corresponding state can be constructed in this caseby %0 = D(�; ��)% (D(�; ��))y ; D(�; 
) � exp ��ay � 
a� ; (7.11)where D(�; ��) denotes the unitary displacement operator. This means that in theconsidered special case the combination according to (7.1) is equivalent to the unitarytransformation of the density operator % according to (7.11) which is a legal statetransformation in quantum theory. For example, the combination of a coherent stateand of a thermal state in the considered sense leads to a new state which does notviolate any fundamental assumptions of quantum theory and which plays a role inlaser theory [5]. As discussed in [2,3], the inversion of the convolution theorem issometimes useful to separate the state into components with simpler properties. Themain example is again that we transform a state with a given quasiprobability P 0(�; ��)and expectation value a = h%0ai in such a way that the new separated state % with thedisplaced quasiprobability P (�; ��) has the expectation value a = h%ai = 0 and we haveseparated then a coherent component from a remaining component with vanishing h%aiby an inverse transformation of the kind (7.11).Transformations of quasiprobabilities leading to quasiprobabilities of new "physical"states are of interest. Recently was shown [19] that the transformation of the coherent-state (Husimi) quasiprobability Q(�; ��)! Q0(�; ��) = j�j2Q(j�j�; j�j��) with j�j < 1leads to a new possible coherent-state quasiprobability Q0(�; ��). The restriction toreal j�j can be released and one can write more generally Q(�; ��) ! Q0(�; ��) =j�j2Q(��; ����) with j�j � 1 including in this way rotations. The physical process whichmakes this transformation is the well-known phase-insensitive ampli�cation [20,21]. In



400 A. W�unschean analogous way, the transformation P (�; ��) ! P 0(�; ��) = j�j2P (��; ����) withj�j � 1 leads to a new Glauber-Sudarshan quasiprobability P 0(�; ��). The physicalprocess is here absorption of the system in a reservoir with absolute temperature T =0 [20,21]. For �nite temperatures T correponding to a mean value N > 0 of theharmonical oscillator, there is the quasiprobability F(0;0;r)(�; ��) with r = �(1 + 2N)which transforms under condition of absorption in a similar way. It is an "exotic"quasiprobability outside the sphere of quasiprobabilities Fr(�; ��) restricted by theradius r2 � 1 as usually used in quantum optics and "more singular" as P (�; ��) but,nevertheless, it is a quasiprobability in full rights [9].8. ConclusionWe have derived relations between di�erent representations of the Glauber-Sudarshanquasiprobability in the Fock-state basis, in particular, the connection to the represen-tation by the one-dimensional delta function given by Sudarshan. A modi�ed rep-resentation of this kind involving Hermite polynomials was derived (Eq.(4.3)). ThePe�rina-Mi�sta representation as a regularized representation of the Glauber-Sudarshanquasiprobability was represented in a symmetric way by introduction of the Laguerre2D-functions. It was shown by explicit examples that the convolution of Glauber-Sudarshan quasiprobabilities does not lead, in general, to new Glauber-Sudarshanquasiprobabilities of "physical" states because it violates the positive de�niteness ofthe corresponding density operator. Therefore, this convolution cannot be consideredas a general combination principle. In the Appendices, we collect some formulas in-cluding derivations, in particular, for generalized functions of two variables in real andcomplex representation which are often useful in quantum optics.Appendix A: Laguerre derivatives of Gaussian functionsWe calculate in this Appendix polynomial derivatives of two-dimensional Gaussianfunctions which are important for the explicit calculation of (2.13) but play a role inmany other problems.By using Leibniz's rule for di�erentiation of products and by an obvious substitutionof one summation index in the arising double sum and after reordering the double sum,one can calculate the inner sum and obtains the following chain of identitiesfm;ngXj=0 m!n!j!(m� j)!(n� j)! @m+n�2j@zm�j@z�n�j exp��zz�� �= exp��zz�� � fm;ngXj=0 m!n!j!(m� j)!(n� j)!� fm�j;n�jgXk=0 (m� j)!(n� j)!k!(m� j � k)!(n� j � k)! �� 1��m+n�2j�k z�m�j�kzn�j�k



Some remarks about the Glauber-Sudarshan quasiprobability 401= exp��zz�� ��� 1��m+n fm;ngXl=0 m!n!l!(m� l)!(n� l)!�� �(1� �)�lz�m�lzn�l:(A.1)Expressed by means of the Laguerre 2D-functions, this takes on the formfm;ngXj=0 m!n!j!(m� j)!(n� j)! @m+n�2j@zm�j@z�n�j exp��zz�� �= p� exp� (2� � 1)zz�2�(1� �) �pm!n! �r1� �� !m+nln;m zp�(1� �) ; z�p�(1� �)! :(A.2)We mention here the following identitiesexp��� @2@z@z�� z�mzn = (��)m+n exp�zz�� � @m+n@zm@z�n exp��zz�� �= fm;ngXj=0 m!n!j!(m� j)!(n� j)! (��)jz�m�jzn�j= p� exp�zz�2� �pm!n! �p� �m+n ln;m� zp� ; z�p� � ;(A.3)which can be veri�ed by direct calculation and lead to modi�ed de�nitions of the La-guerre 2D-functions.Appendix B: Moment series expansionsWe derive in this Appendix the moment series expansion of functions and beginwith functions of one real variable (see also Luk�s [12]).If we write a function f(x) of the real variable x in form of a convolution with thedelta function �(x) according tof(x) = �(x) � f(x) = Z +1�1 dyf(y)�(x� y); (B.1)and if we make a Taylor series expansion of the delta function �(x� y) in powers of y,we obtain f(x) = 1Xn=0 (�1)nn! �Z +1�1 dyf(y)yn� @n@xn �(x) � 1Xn=0 fn�(n)(x); (B.2)



402 A. W�unschewhere fn denotes the moments of the function f(x) and �(n)(x) the n-th derivative ofthe delta function as followsfn = (�1)nn! Z +1�1 dxf(x)xn; �(n)(x) � @n@xn �(x): (B.3)Expansions of the form (B.2) with the moments fn of the function f(x) in front wecall moment series expansions (in analogy to Taylor series expansions). The recon-struction of the function f(x) from this series has to be understood in the sense ofweak convergence of generalized functions. Practically, one has to determine a spaceof basis functions '(x) in such a way that the partial sums of the linear functionals�P1n=0 fn�(n)(x); '(x)� converge to the linear functional (f(x); '(x)). It is inconve-nient to discuss the necessary spaces in a physics paper and we make only some shortremarks. One can suppose that in every case where all moments fn exist, there can befound a space of basic functions '(x) in such a way that the moment series convergesin the sense of weak convergence. For the existence of all moments of the function f(x)it is necessary that this function rapidly decreases in in�nity but it can be a general-ized function with no restriction to the smoothness in arbitrary �nite points. This isnot one of the standard spaces S 0 of moderately increasing generalized functions (tem-pered distributions) or D0 of arbitrarily increasing generalized functions. It is ratherthe subspace of rapidly decreasing generalized functions of the space S 0 of moderatelyincreasing functions which we called the space T 0 in [22] (see also considerations in [5]).It can be determined as the space of continuous linear functionals over the space Tof moderately increasing smooth (in�nitely continuously di�erentiable) basis functions.We do not have here the usual inclusion relations of spaces of basis and of generalizedfunctions as for the standard spaces D � S � S 0 � D0. For the existence of momentseries expansions, the space of possible functions T 0 can be extended to a correspond-ing space A0 of analytic linear functionals [22]. The space A0 is a subspace of thespace of analytic functionals Z 0 which is the space of Fourier transforms of generalizedfunctions of the most common space of generalized functions D0 [23{25] that meansA0 � Z 0 � F(D0) [5] (scheme of inclusion relations in [22]).After Fourier transformation according to~f(u) = Z +1�1 dxf(x)e�iux; f(x) = 12� Z +1�1 du ~f(u)eiux; (B.4)the moment series (B.3) takes on the form of a Taylor series of the Fourier transform~f(u) of f(x) ~f(u) = 1Xn=0 fn(iu)n; fn = (�i)nn! @n ~f@un (0): (B.5)The reconstruction of a moment series can be also made via the reconstruction fromthe Taylor series of its Fourier transform and subsequent inversion of the Fourier trans-formation.



Some remarks about the Glauber-Sudarshan quasiprobability 403As an example, the moment series expansion of a normalized Gaussian functionpossesses the following form1p�c exp��x2c2 � = exp�c24 @2@x2� �(x) = 1Xm=0 1m! � c2�2m �(2m)(x): (B.6)Due to the normalization of the function, one has f0 = 1 and due to the symmetry ofthe considered function, the moments fn with odd n are vanishing. For a normalizeddisplaced Gaussian function, one obtains1p�c exp�� (x� x0)2c2 � = exp��x0 @@x + c24 @2@x2� �(x)= 1Xn=0 1n! �i c2�nHn �ix0c � �(n)(x); (B.7)where the expansion of the Hermite polynomials leads �nally to real moments. Argu-ment displacements can be similarly treated also in other cases.It is not di�cult to generalize the moment series to functions of several variables.For a function f(x; y) of two Cartesian variables (x; y), one obtainsf(x; y) = 1Xm=0 1Xn=0 fm;n @m+n@xm@yn �(x)�(y); ~f(u; v) = 1Xm=0 1Xn=0 fm;n im+numvn; (B.8)with the Fourier transform and the moments de�ned by (we omit the integration regionswhich are the whole Euclidian spaces R2 or dual Euclidian spaces ~R2)~f(u; v) = Z dx ^ dyf(x; y)e�i(ux+vy); f(x; y) = 1(2�)2 Z du ^ dv ~f(u; v)ei(ux+vy);fm;n = (�1)m+nm!n! Z dx ^ dyf(x; y)xmyn = (�i)m+nm!n! @m+n ~f@um@vn (0; 0): (B.9)The complex representation of two-dimensional functions f(z; z�) can be obtained bythe relations (for the transition f(x; y) ! f(z; z�), we do not invent a new functionsymbol di�erent from f)z = x+ iy; z� = x� iy; @@x = @@z + @@z� ; @@y = i� @@z � @@z�� ;w = u+ iv; w� = u� iv; @@u = @@w + @@w� ; @@v = i� @@w � @@w�� ;u @@x + v @@y = w @@z + w� @@z� ; dx ^ dy = i2dz ^ dz�; du ^ dv = i2dw ^ dw�;(B.10)and by the identi�cation �(z; z�) � �(x) �(y); (B.11)



404 A. W�unscheand takes on the following form (note that fm;n in the next formulas is di�erent fromfm;n in (B.8) and (B.9))f(z; z�) = 1Xm=0 1Xn=0 fm;n @m+n@zm@z�n �(z; z�); ~f(w;w�) = 1Xm=0 1Xn=0 fm;n� i2�m+n w�mwn;(B.12)with the Fourier transform and the moments de�ned by~f(w;w�) = Z i2dz ^ dz�f(z; z�) exp�� i2(w�z + wz�)� ;f(z; z�) = 1(2�)2 Z i2dw ^ dw� ~f(w;w�) exp� i2(w�z + wz�)� ;fm;n = (�1)m+nm!n! Z i2dz ^ dz�f(z; z�)zmz�n = (�i2)m+nm!n! @m+n ~f@w�m@wn (0; 0):(B.13)As an example, one obtains for a Gaussian function the following moment series1�� exp��zz�� � = exp�� @2@z@z�� �(z; z�) = 1Xn=0 �nn! @2n@zn@z�n �(z; z�); (B.14)This expansion is true, at least, for real non-negative � where the normalized Gaussianfunction is rapidly vanishing in in�nity.Appendix C: Products of derivatives of delta functions with smoothfunctionsThe multiplication of generalized functions with classes of well-behaved functions isde�ned in every monograph about generalized functions [23{25]. However, the special-ization to the multiplication of derivatives of the delta function with smooth funtions(smooth, at least, at the singularities of the delta function) is rarely considered ingeneral explicit form (in the monographs which we more or less studied [23{25]). Weconsider this here and derive the corresponding formulas.We begin with the one-dimensional case. With multiplicator functions g(x) andarbitrary basis functions '(x), one can make the following transformation of a linearfunctional�g(x) �(n)(x); '(x)� = ��(n)(x)g(x)'(x)�= (�1)n��(x); @n@xn (g(x)'(x))�= (�1)n nXl=0 n!l!(n� l)! ��(x); g(l)(x)'(n�l)(x)�



Some remarks about the Glauber-Sudarshan quasiprobability 405= (�1)n 1Xl=0 n!l!(n� l)!g(l)(0)'(n�l)(0)= nXl=0 (�1)ln!l!(n� l)!g(l)(0)��(n�l)(x); '(x)� : (C.1)Since '(x) is an arbitrary basis function, this implies the identityg(x) �(n)(x) = nXl=0 (�1)ln!l!(n� l)!g(l)(0) �(n�l)(x): (C.2)This derivation can be easily generalized to functions of several variables with thefollowing result in the two-dimensional caseg(x; y) @m+n@xm@yn �(x)�(y) = mXk=0 nXl=0 (�1)k+lm!n!k!(m� k)!l!(n� l)! @k+lg@xk@yl (0; 0)� @m+n�k�l@xm�k@yn�l �(x)�(y): (C.3)The corresponding identity in complex representation takes on the formg(z; z�) @m+n@zm@z�n �(z; z�) = mXk=0 nXl=0 (�1)k+lm!n!k!(m� k)!l!(n� l)! @k+lg@zk@z� l (0; 0)� @m+n�k�l@zm�k@z�n�l �(z; z�): (C.4)As a �rst example for the one-dimensional case, we consider g(x) = xl and �nd from(C.2)xl�(n)(x) = (�1)ln!(n� l)! �(n�l)(x) = (�1)kn!(n� k)!xl�k�(n�k)(x); k = 0; 1; : : : ; l: (C.5)As a second example, we consider Gaussian functions g(x) = exp(�x2=c2) and obtainfrom (C.2)exp��x2c2 � �(n)(x) = [n2 ]Xj=0 (�1)jn!j!(n� 2j)! �1c�2j �(n�2j)(x) = 1cnHn� c2 @@x� �(x); (C.6)with Hn(z) as the Hermite polynomials. As a �rst example for the two-dimensionalcase in complex representation, we consider g(z; z�) = zkz� l and obtain from (C.4)zkz� l @m+n@zm@z�n �(z; z�) = (�1)k+lm!n!(m� k)!(n� l)! @m+n�k�l@zm�k@z�n�l �(z; z�): (C.7)



406 A. W�unscheAs a second example for the two-dimensional case, we consider the function g(z; z�) =exp(�zz�=�). By direct calculation, one �nds from (C.4)exp��zz�� � @m+n@zm@z�n �(z; z�)= fm;ngXj=0 m!n!j!(m� j)!(n� j)! �� 1��j @m+n�2j@zm�j@z�n�j �(z; z�)= n!�� 1��n @m�n@zm�nLm�nn �� @2@z@z�� �(z; z�): (C.8)One can look to the formulas of this Appendix as to the "disentanglement" of productsof functions with delta functions and their derivatives.Appendix D: Representation of two-dimensional delta function bycentral-symmetric one-dimensional delta functionsThe N{dimensional delta function �N (r) over an N{dimensional Euclidian spacecan be obtained by applying the Laplacean r2 to a central-symmetric function asfollows [23,24]�N (r) =r2�� 1SN (N � 2)jrjN�2� ; N 6= 2; SN = Ijrj=1 dN�1n = 2�N2� �N2 � ;�2(r) =r2� log jrjS2 � ; log jrj = lim"!0 1" �1� 1jrj"� ; S2 = 2�; n � rjrj ;(D.1)where SN is the (hyper-) area of the N{dimensional unit hypersphere. This relationshows that the N{dimensional delta function can be considered as a central-symmetricgeneralized function which depends only on jrj but not on the coordinates on the unitsphere. We can substitute (D.1) by the following equation in the sense of a limitingprocedure �N (r) = lim"!0r2�� �(jrj � ")SN (N � 2)jrjN�2�= lim"!0� @2(@jrj)2 + N � 1jrj @@jrj��� �(jrj � ")SN (N � 2)jrjN�2�= lim"!0 �(jrj � ")SN jrjN�1 ; (D.2)where �(x) denotes the one-dimensional delta function and �(x) the Heaviside stepfunction (�(1)(x) = �(x)). We used here the relation jrj�(1)(jrj � ") = " �(1)(jrj � ")��(jrj � ") which can be obtained from the multiplication of delta functions and theirderivatives with smooth functions (see Appendix C). The N{dimensional delta function



Some remarks about the Glauber-Sudarshan quasiprobability 407is in (D.2) substituted by a one-dimensional delta function combined with the factorjrjN�1 in the denominator which is absorbed in N{dimensional integrations and by alimiting procedure. This is in the senseZ dNr �N (r)'(r) = lim"!0 Z +10 djrj jrjN�1 �(jrj � ")jrjN�1 1SN I dN�1n'(jrjn) = '(0):(D.3)It seems to be not consequent if one substitutes the limiting procedure by adding afactor 1=2 in front of the one-dimensional delta function. We see from (D.3) that it isallowed to have a factor 1=jrjN�1 in front of the "one-dimensional" delta function �(jrj)or �(jrj � ") if it is used in N -dimensional volume integrations because then this factoris absorbed by the volume element in spherical coordinates.We now consider the two-dimensional case. It is clear that the result in (D.2) is alsotrue for the two-dimensional case which, in principle, has to be treated separately. Inthe two-dimensional case, one can write in real and complex representation�2(r) = lim"!0 �(jrj � ")2�jrj = lim"!0 �(jzj � ")2�jzj = �(z; z�): (D.4)We now derive the representation of the derivatives of the two-dimensional delta func-tion by the one-dimensional central-symmetric delta function and use the complex rep-resentation. In this representation we setz = jzjei'; z� = jzje�i'; @@z = e�i'2 � @@jzj � ijzj @@'� ; @@z� = ei'2 � @@jzj + ijzj @@'� :(D.5)The derivatives of the two-dimensional delta function can be substituted in the followingway by using the one-dimensional central-symmetric delta function@m+n@zm@z�n �(z; z�) = m!n!(m+ n)! ei(n�m)'2�jzj lim"!0 @m+n@jzjm+n �(jzj � "): (D.6)This can be proved by complete induction m ! m + 1 and n ! n + 1 by using (D.5)and by using the multiplication of the one-dimensional delta function �(jzj � ") withpowers of jzj (see Appendix C). For example@m+1+n@zm+1@z�n �(z; z�)= e�i'2jzj � @@jzj jzj � 1� i @@'� m!n!(m+ n)! ei(n�m)'2�jzj lim"!0 �(m+n)(jzj � ")= m!n!(m+ n)! ei(n�m�1)'4�jzj lim"!0��(m+1+n)(jzj � ")� m+ 1� njzj �(m+n)(jzj � ")�= m!n!(m+ n)! ei(n�m�1)'4�jzj lim"!0��1 + m+ 1� nm+ 1 + n� �(m+1+n)(jzj � ")�= (m+ 1)!n!(m+ 1 + n)! ei(n�m�1)'2�jzj lim"!0 �(m+1+n)(jzj � "); (D.7)
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