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It is shown how two representations of the Glauber-Sudarshan quasiprobability in
the Fock-state basis which are different in the form are related to each other and
to the Sudarshan representation by the relations between the two-dimensional and
the central-symmetric one-dimensional delta function and their derivatives. The
regularized representation of the Glauber-Sudarshan quasiprobability by Pefina
and Mista is reconsidered in new light and is represented by introduction of the La-
guerre 2D-functions. A new representation of the Glauber-Sudarshan quasiprob-
ability by Hermite polynomials with a differentiation operator in the argument
acting onto a one-dimensional delta function is found. The connections to repre-
sentations of more generally ordered quasiprobabilities are established. It is shown
that the convolution of the Glauber-Sudarshan quasiprobabilities for Fock states
does not lead to a new Glauber-Sudarshan quasiprobability for a ” physical” state
corresponding to positively definite density operators. The Appendices present
the derivation of identities including generalized functions which are relevant for
many calculations in quantum optics.

1. Introduction

The Glauber-Sudarshan quasiprobability [1 3] is the most singular quasiprobabil-
ity among the quasiprobabilities used in quantum optics. In particular, the Glauber-
Sudarshan quasiprobability of the Fock states is given by derivatives of the two-dimensio-
nal delta function. An expansion of states in Fock states leads therefore to an expansion
in delta functions and their derivatives which is a series which convergence has to be
considered in the sense of weak convergence of generalized functions that means as con-
tinuous linear functionals over a space of ”sufficiently well-behaved” functions. In this
sense, the Glauber-Sudarshan quasiprobability exists for arbitrary normalizable states
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and discussions about the nonexistence of the Glauber-Sudarshan quasiprobability for
certain classes of states in the early time after its introduction can be considered as
widely clarified [4-6].

We consider in this paper two different representations of the Glauber-Sudarshan
quasiprobability which distinguish themselves by the presence or absence of a Gaussian
function in front of the derivatives of the delta functions. We clarify the connection
between these two possible representations in Sections 2 and 3 and present this as a
limiting case of the more general s ordered quasiprobabilities [7,8] embedded into the
complete Gaussian class of quasiprobabilities [9]. The representation given by Sudar-
shan [1] is a representation, where the two-dimensional delta function is substituted
by a one-dimensional central-symmetric delta function combined with angle functions
but there remains the Gaussian factor in front of the derivatives of this delta function.
The ”disentanglement” of this product of Gaussian factor with derivatives of the delta
function leads to a new representation derived in Section 4. We introduce in Section
5, in analogy to the one-dimensional set of Hermite functions, a two-dimensional or-
thonormalized and complete set of functions which we call Laguerre 2D-functions and
discuss some of its properties. This set is appropriate for the Fock-state representation
of quasiprobabilities and for the inversion of the Fock-state matrix elements from the
quasiprobabilities. In Section 6, we reconsider the Perina-Mista representation [10 12]
and [5,6] of the Glauber-Sudarshan quasiprobability which is a regularized representa-
tion in comparison to the other considered representations. In Section 7, we consider
the convolution of two Glauber-Sudarshan quasiprobabilities for two states as a new
Glauber-Sudarshan quasiprobability of a new state and show that the density operator
of this new state is, in general, not positively definite. Therefore, this convolution [2,3]
cannot be generalized to a principle for arbitrary states. We show explicitly the vio-
lation of the positive definiteness of the resulting density operator for the combination
of Fock states in the mentioned sense. In the Appendices, we derive some formulas to
generalized functions which are important for many calculations in quantum optics and,
in particular, in the present paper but which can be rarely found in this ready form in
monographs about generalized functions.

2. Quasiprobabilities in Fock-state representation

We begin with the Fock-state representation of the Glauber-Sudarshan quasiproba-
bility P(«, a*) expressed by an expansion in the two-dimensional delta function §(«, @*)
and its derivatives which we prefer in comparison to the representation by the central-
symmetric one-dimensional delta function and its derivatives given by Sudarshan [1].
Furthermore, we consider the relations to other quasiprobabilities.

The Glauber-Sudarshan quasiprobability P(a,a*) is associated with normal order-
ing of the transition operator from the density operator p to the quasiprobability and
can be defined in the following way [1-8,13]

P(a,a®) = <gN{exp(a%a*ai*)}>6<a,a*>
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_ <gexp (—aT ai*) exp <_aa%> > 5, a*)

k+l ak+l

- kzz k'l' <" 9““>W5(a a’), (2.1)

where N {...} is the symbol for normal ordering of the content in braces and (A) =
Trace(A) the very convenient notation for the trace of an operator A. The reconstruc-
tion of the density operator g from the Glauber-Sudarshan quasiprobability P(a, a*) is
obtained by

0= /%da/\da*P(a,a*ﬂa)(aL (2.2)

which is often taken as the starting point for the definition of P(«, «*). Herein as usual,
|a) denotes the normalized coherent states. The equivalence is evident from the relation

(B|exp <—af 6*> exp <—a3> 18) 6(cr,a®) = 6(a — B, — B%). (2.3)

Oda Oda

The relation (2.1) is very convenient to obtain the Fock-state representation of the
Glauber-Sudarshan quasiprobability by means of the expansion

0= [m)(mloln)(nl. (2.4)

By inserting this expansion into (2.1) and by calculating the arising matrix elements of
the transition operator, one finds [13] (Eq.(8.19))

1)m+n {m,n} mn! om+n—2j

Pla,a®) = iim = S o i o)
i i (m|o|n) \/;< ;ﬂ)m nLg*" (‘aaaa:*> 8o, ), (2.5)

where LY (u) denotes the Laguerre polynomials in the convention of Bateman and
Erdelyi [14] (see remark in Appendix A of [15]). For Fock states ¢ = |n)(n|, one
obtains (L, (u) = L%(u))

82

o=n)nl, & Pla,a*)=L, <_W

) 5(a, a”). (2.6)

The representation of the quasiprobability P(a,a*) by generalized functions given by
Sudarshan [1] is different from the representation given in (2.5). We come back to this
point in the next two Sections. Now, we will show how (2.5) can be generalized to
the complete Gaussian class of quasiprobabilities considered in [9]. For this purpose we
mention that the quasiprobabilities F{,, ,, ,,)(a,a*) of this class can be obtained from
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the Wigner quasiprobability W («a, a*) by the convolution (notation x for the operation
of forming the convolution; furthermore, note W (a, a*) = Fig 9,0) (v, @*))

F(’I‘],’I‘27T3)(a7 a*) = g(T],’I‘Q,’I‘g)(a7 a*) * W(O@ a*)7 (27)

where g, r, ry) (@, @*) denotes the following normalized centered two-dimensional Gaus-
sian function

. 2 (r1 +irg)a® — (ry —ire)a*? + 2r3aa’
g(T],’I‘Qﬂ‘g)(“:“ ) = 71'—\/1‘_2 exp - 7'2 3

r2 =1l 413 4012, (2.8)

The Glauber-Sudarshan quasiprobability P(«, a*) is related to the Wigner quasiprob-
ability W (a,a*) by (note P(a, o) = Fig,—1)(, a*))

P(a7 CM*) = 9(070’71)(04, Oé*) * W(CM7 a*) W(Oé, Oé*) = 9(0,0,1) (a7 CM*) * P(CM7 a*)' (29)

Since the introduced vector parameter r = (rqy,72,r3) is additive with regard to con-
volutions [9] meaning gr (o, a*) * gs(a, a*) = gpis(@, a*), one obtains from (2.7) and
(2.9)

F(T11T27T3) (Oé, Oé*) = 9(r1,r2,14r3) (Oé, Oé*) * P(Oé, Oé*)7 (2'10)
This means that the Fock-state representation of the quasiprobability Fi,, ,, ,.)(a, a*)
can be obtained from (2.5) in the following form

F(Tl,rz,rg) (Oé, Oé*)

= D (mleln)

m=0n=0

(—1)mn T min! -2

il 2= 7= ) = 7)1 Bamigar = rre e (407)
j:

00 oo ol 9 m-—n . 52 .
= Z Z(m|g|n) V ﬁ (%) Ln <m> g(r17r2,1+r3)(aaa ):

m=0n=0
(2.11)

The only difference on the right-hand side to (2.5) is that the two-dimensional delta
function d(a, a*) is substituted by the normalized Gaussian function g(,, r, 14ry) (@, a*).
This means for Fock states

62
0= |’ﬂ,><’ﬂ,‘, = F(T1,T27T3)(a7a*) = Ln <W> g(T17T27]+T3)(a’a*)' (212)

It is clear that it is not easy to calculate the necessary derivatives of g(,, ry 14,) (Q, @)
in the general case and we will explicitly consider this only for the (0,0,r) ordered class
of quasiprobabilities (usually called s ordered class with = —s; we have some reason
to change the sign [9] but this is not a deep problem).



oome remarks about the (slauber-oudarshan quasiprobabllity Bled)

For the (0,0, r) ordered class of quasiprobabilities, one easily finds the specialization
9(0,0,14+r) (@, @*) from (2.8) and by inserting this into (2.11), one obtains

F(07O,r) (aa a*)

= 5 S (mloln)

m=0n=0
y (=1t ot m!n! gmtn=2i 2 . 2aa*
<p [ —
minl 2 jim — )in— ) a0 T (i) O\ T+r
o Z Z m| |n 0 men m—n 82 2 ex _20éa*
B == ¢ Vm! A " ~ dada* ) w(1+7) P\Tt+r )
(2.13)

in particular, for Fock states

. 0? 2 2aa*
o=1n)(n|, & Foonla,a”)=1L, < Sado > T exp <_1+r> . (2.14)

By inserting the result of the differentiations of the Gaussian function as derived in
Appendix A with o = (1 +7)/2, one obtains (derived in [7] in another way)

F(070,r)(04 o)

e () § S

m=0n=0
L < 2 )"“”{“i‘} min! < 1-7«2)-" emj
—_— | — - - a a
Vminl \1+7 = JMm =i —j)! 4
2 2cx*
e (355) & Smen

n! 1—-r\" [/ 22 \™ " daa*
— | —— L —— 2.15
m!( 1+r> <1—|—r> " (1—r2>’ ( )

in particular, for Fock states

2 2 1—r\" daa*
= , F af) = —— — ——— ) Lyl —— |-
0 ‘n><n|; 4 (O,U,T)(a;a ) 7T(1 +T) exp < 1 + T> ( 1+T> (1 — T2>

(2.16)
The coherent-state quasiprobability Q(«, @*) is obtained as the special case r = 1. In
this case, we can use the limiting procedure n!lim, o L% (u)/(—u)" = 1 and find from

(2.15)
Qa,a™) = lexp —aa” Z Z m|o|n)

m=0n=0

Tl

(2.17)

T
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in particular, for Fock states

(aa®)"

n!

o= I, & Qaa’)= ~exp(-an’) (2.18)

The Wigner quasiprobability W («, @*) is obtained as the special case r = 0 and one
finds from (2.15)

* 2 *
W(aa®) = Zexp(-2007) 3 3 {mleln)
m=0 n=0
% - Q*m—I g
m!n! 3t m — ) (n — j)! 4

= Zewp(-2009) Y Z<m|g|n><—1>”\/g (20")" " L' " (4aa”)

m=0n=0
(2.19)
in particular, for Fock states [2,3]
* 2 * n *
o=|n)(n|, & W(a,a")==exp(—2aa”)(—1)"L,(4daa"). (2.20)
T
In case of the Glauber-Sudarshan quasiprobability corresponding to r = —1, the argu-

ment of the Laguerre polynomials goes to infinity and there are no factors in front of
the Laguerre polynomials which compensate these divergencies. Therefore, the explicit
representation (2.15) is not applicable in this case and one has to go back to the rep-
resentation (2.5) involving derivatives of the delta function which formed the starting
point of our considerations.

We mention here that for displaced Fock states |3, n) defined by |8,n) = D(8, 5*)|n)
with D(8, 8*) as the unitary displacement operator (see, e.g. [16,13]) holds the following
basic relation to density operators of coherent states [13]

)l gmen 0?
Byl =\ 2 (g ) 190 2.21)

It can be obtained from the coherent-state quasiprobability for the Fock-state operators
|m)(n| according to (2.13) for r = 1 in the following way

(o~ Blm)inla ~ 5)
- (L) (- ) He- 800 -8

_ \/g (%)m"wn ( = ﬂ*) L{alB)igln),  (222)

~{a]B,m) (8, nle)

N |~
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which proves (2.21) since both sides are quasiprobabilities from which the operator
|3, m)(B,n| is uniquely determined. Due to the displacement structure of quasiproba-
bilities, an analogous proof could be made with arbitrary other quasiprobabilities. The
relation (2.21) was proved in [13] by recursion relations for the displaced Fock-state
operators.

3. Alternative form of the Fock-state representation of the
Glauber-Sudarshan quasiprobability

We now consider an alternative form of the Glauber-Sudarshan quasiprobability in
Fock-state representation which is near to the representation given by Sudarshan [1].

Starting point of the considerations of this Section is relation (2.2) from which we
form the Fock-state matrix elements

ama*n

Vminl

On the right-hand side, we have the moments of the function P(a, a*) exp(—aa*). From
the reconstruction formula of a function from its moments (see Appendix B), we find
the following expansion of P(a, a*)

(m|o|n) :/%da/\da*P(a,a*)exp(—aa*) (3.1)

1)m+n am+n

P(a,a”) = exp (aa™) Z Z<m|9|"> -

m=0 n=0

m!n! 8amaa*n6(a7a )- (3.2)

If we compare this with (2.5), we find the following identity

{m,n} o
L, omtn . m!n! gmtn=2i .
exp(aa )Wfs(a,a ) = = j!(mfj)!(nfj)!6ozm7j6a*n7j5(a7a )
6m7n 82
— /! m—n _ / ’* . .
n aam*"L" ( 8a8a*> d(a, ™) (3.3)

The difference between the expansions (2.5) and (3.2) of the Glauber-Sudarshan quasi-
probability P(a,a*) is that in (3.2) we have the function exp(aa*) in front of the
derivatives of the delta function. As a rule, it is a complicated operation to have a
function of a variable in front of derivatives of a delta function of the same variable as
can be seen from the example (3.3) and one can give a general resolution in form of
linear combinations of lower derivatives of the delta function with number coefficients
in front of these derivatives (” disentanglement” of such products; see Appendix C).
The form (3.2) of the Glauber-Sudarshan quasiprobability is favourable in calcula-
tions where the factor exp (aa™*) on the right-hand side is absorbed and there remain the
"pure” derivatives of the delta functions. In the other cases, one has mostly to prefer
the form (2.5) for the Glauber-Sudarshan quasiprobability in Fock-state representation.
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4. Sudarshan representation of the Glauber-Sudarshan quasiprobability

The Sudarshan representation of the Glauber-Sudarshan quasiprobability P(a, a*)
in the Fock-state basis uses the one-dimensional delta function and its derivatives com-
bined with simple angle functions instead of the more basic two-dimensional delta func-
tion §(a, @*) for the phase space of one mode. We represent the transition from the
two-dimensional delta function and its derivative as used in the preceding Sections to a
one-dimensional central-symmetric delta function in Appendix D. One has to observe
one moment of this representation. The integration over the two-dimensional phase
space in polar coordinates (|a|, ¢) includes the integration over || from 0 to +oc. This
integration is not uniquely determined if one has the one-dimensional central-symmetric
delta function §(|a|) in the integrand because the singularity is at one border of the
integrations. It seems to us that this can be taken into account in the best way by a
limiting procedure which one has to make at the end of calculating functionals over the
generalized functions and we represent this in such a way. In all other moments we get
results in accordance with [1].

If we insert the identity (D.6) of Appendix D into the formula (3.2), we obtain the
following representation of the Glauber-Sudarshan quasprobability

[SSHNe'S) _1\ym+n m“n.ei(nfm)w m+n
Plaa®) = exp (Jaf?) 3 3 tmlel)’ 1<) e i 5

li
m+n)! 9mla] <20 Dla|mFn

d(|al — ).

m=0n=0

(4.1)

Apart from the limiting procedure, this is in agreement with the representation given

by Sudarshan [1] (comp. [2,3]), who probably solved some problems of the transition

from the two-dimensional representation of the delta function to the one-dimensional

representation which we present in Appendix D and which can be rarely found in

monographs about generalized functions (some results can be ”guessed” by considering

simple "test” functions as, for example, power functions). An alternative representation
can be derived by inserting (D.6) of Appendix D into formula (2.5) that leads to

ai —1)mtny/mip! giln—m)e
Plaa’) = 33 (mlgny =Y !

= (m +n)! 27|
1‘ [m2+n] (m+77)' 6m+n72j (s 19
< Z jl(m + n — 2§)! O|a|m+n—2i (lal = &), (42)

and can be represented by Hermite polynomials Hy(z) as follows

. 2 — imtny/minl eitn—me i 0
Plaa’) = Y S tmloln) S i (55 ) al < 2). (43)

m=0n=0

The direct connection between the two representations (4.1) and (4.3) can be established
by using the identity (C.6) in Appendix C with ¢ = i.

One can consider (4.3) as the disentangled version of the Sudarshan representation
of the quasiprobability P(«a,a*). It seems to be favourable to use it in calculations
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when there is no Gaussian factor exp (f|a|2) which compensates the opposite Gaussian
factor in the Sudarshan representation (4.1) but one has to decide this in every concrete
case. Both representations, the Sudarshan representation and the representation (4.2)
or (4.3) are favourable to use if one has problems which are appropriate to solve in
polar coordinates. In the other cases, however, we prefer to use the representations by
two-dimensional delta functions considered in (2.5) and (3.2).

5. Introduction of Laguerre 2D-functions

We introduce the following set of functions of two variables in complex representation

1 * !
tonle2”) = e (<55 ) (O B o)

- % exp <_%> (_1)m\/§z*"mm;m (), (1)

and call it Laguerre 2D-functions (two-dimensional Laguerre functions contrary to usual
one-dimensional Laguerre functions) in analogy to the orthonormalized Hermite func-
tions h,(x) playing a similar role as a basis for functions of one variable. The more
explicit representation of the Laguerre 2D-functions is

zz* 1 {m.n} mln! . . .
) S (=1)/zmIz*n77 (5.2)

1
l z,2%) = exp (—— - - -
mon(2:77) NG 2 ) Vmlnl = jim = 5)ln —j)!
One immediately finds the symmetry properties

Lnn(2,2%) = (Lnm (2, 2%))" = lym (2%, 2), lnn(—2,—2%) = (=1)" "Ly 0 (2, 2%).
(5.3)
The set of Laguerre 2D-functions is orthonormalized in the following way

/ ;_‘dz Adz* (ki(2,2) lnn(2, 2°) = Ok mOin, (5.4)

and obeys the following completeness relation

Z Z Lnn(2,2%) (lmn(w,w*))" = 6(z — w, 2* — w*). (5.5)

m=0n=0

The orthonormality relations can be proved in modified polar coordinates (u = |z|?, )
(action-angle coordinates), where the first integration over ¢ leads to a known special
integral over products of two Laguerre polynomials combined with exponential and
power functions (proof, e.g., in [17]). In a similar way, in polar coordinates for both
complex variables z and w, the completeness relation (5.5) can be proved. One can first
separate a sum which contains only the moduli |z| and |w| and which can be evaluated
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by a limiting procedure from a known sum (Eq.(20) chap.10.12 in [14], known as Hille-
Hardy or Myller-Lebedeff formula) and then the remaining sum with the angles as
parameters can be easily evaluated providing the delta function of the difference of the
angles. If the function system I, ,(z,2*) is complete that is intuitively clear, then the
form (5.5) of the completeness relation follows automatically from the orthonormality
relations (5.4).

By direct calculation, one proves that the Fourier transforms of the Laguerre 2D-

functions are again Laguerre 2D-functions according to

Ly (0, w™) = / %dz/\dz*lm7n(z7z*)exp (—% (w*z —|—wz*)> =27(—i)" "y (w, w*),

(5.6)
analogously to the Hermite functions. The Radon transform of the Laguerre 2D-
functions is essentially the product of Hermite functions combined with angle functions

v

) 1
Imn(w,w;e) = / %dz ANdz"ly n(z,2") 0 <c 3 (w*z + wz*))

Ve () () ()
ww* w* " 2ww* " 2uw* )’

B () ﬂ%exp (-?) \/%Hn(x). (5.7)

A further relation is given in Appendix A. One of the differential equations to which
the Laguerre 2D-functions are solutions is the eigenvalue equation of a two-dimensional
degenerate harmonic oscillator.

By using the Laguerre 2D-functions, the quasiprobabilities Fig o ) (e, @*) which are
explicitly given in (2.15) can be represented by

I ( ) 2 2r aa®
N = ——exp|—
00, Va4 P\T -2
oo 0o m+n
1—r 2« 2a*
X mjon PR ln m ’ i
> 5 pmlan ( 1+r> o (g s
(5.8)
in particular, the Wigner quasiprobability as the special case r = 0
* 2 - - *
Wioa®) = == 32 3 tmloln) (20 20). (59)

m=0 n=0

The normalization of the quasiprobabilities in this form can be proved from the relation

] 2 1 "
/%dz/\dz* exp (%zz*)lm,n(z,z*) = v ( +T> Om - (5.10)

1—r\1-r
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The inversion of (5.8) yields for the Fock-state matrix elements

m—+n
2\/m 1+r i . .
(m|gln) = T ( 1r> /Eda/\da Flo,0,m (o, ")

o < 2r aa > ] ( 2cv 2a* ) (5.11)
X T E——— “m,n ) 3 .
PUT= )\ i Vi,

in particular, the inversion from the Wigner quasiprobability
(m|o|n) = 2v/7 / %da Ada* W(a,a®) by (20, 2a") . (5.12)

By means of the well-known generating function of the Laguerre polynomials, one proves

i Gt:)n’nn (2,27) = 12\—/_7« exp (rzz ) (5.13)

n=0

that guarantees the normalization (g) = Y.~ (n|o|n) = 1.

The above considerations show that the Laguerre 2D-functions are very appropriate
for the representation of the quasiprobabilities in the Fock-state basis and for their
inversion but we think that they are useful also for many other purposes.

6. Pefina-Mista representation of the Glauber-Sudarshan quasiprobability

Pefina and Mista [10,11] (see also [5,6] and [12]) introduced a "regularized” repre-
sentation of the Glauber-Sudarshan quasiprobability P(«, @*) by Laguerre polynomials
to which is rarely paid attention up to now. We illuminate this representation here from
a modified point of view and hope to contribute in this way to a better understand-
ing and to its further application. For this purpose, we use the introduced Laguerre
2D-functions.

By setting r = —/1 —4e,— & = (1 —r?)/4 in (5.8), one can represent the Glauber-
Sudarshan quasiprobability by the following limiting procedure

) S L A (2 7)

P(a,a®) = exp(aa™) lim {\/_z—: exp (

e—0
m=0n=0
1 (m|o|n)
= e o) 1 —
(—‘-XP(O/O/) IH%J{WE ("‘Xp< > z:oz:o /mn] em+n
m n

fmnd (—e)i wm—j n—j 6.1
X;jw -t } "

If we want to obtain a similar structure with the same Gaussian factors in front, however,
without a limiting procedure, then we bring these factors to the left-hand side and by
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inserting (3.2), we find

1 k+l1 6k+l

) Z; k|g|l aakaa*l(s(a,a*).

- (6.2)
We now make an expansion of this expression in the set of functions l,, ,,, (@//€, a* /1/€).
According to the completeness relation (5.5), we have to calculate the following integral
of the right-hand side of (6.2)

1 i . ﬂ ﬂ* ﬂﬂ* oo 0O 1)k+l 6k+l i
8'/2dﬂ/\dﬁ lm,n(\f f) ( >;§ Hloll) i aprag0 80
B 1 oo ak+l * /3*

=2 2 2 (el s ez (o0 (5) e (2 )

! ! : . min! (—¢)/
= Jre ey 2 mdldn =i e (©:3)

gN

For the calculation of the derivatives at 8 = 8* = 0 it was very favourable that the
Gaussian factors in front of the Laguerre 2D-functions and inside of the Laguerre 2D-
functions compensate each other and the expressions became easily calculable. This
explains the choice of the Gaussian factors in (6.2) which is the best. Instead of (6.1),
we now find the following regularized representation (¢ > 0)

P(a,a”)

m n=0
00 {m,n}
_ 1 . aa’ @m,n(s) m!n!(—¢)’ *m—j n—j
T owe exp( o € > z_: Z vmlnlegmtn z% J'(m_j)'(n_])'a “

(6.4)

with the following definition of the new matrix elements g, ,(¢) together with their
inversion (found by Pefina and coworkers [5,6])

k|n):

_ {"g} Vminl (—¢)* e
k!

Qmﬂl(s) = ~ (m — k)'(n — k)!gmfkm k

{m.n} vmlin! €l
omal0) = 3 S @)y ema(0) = Gmlel). (69

=/ m =D

n (6.4) and (6.5), ¢ is a free parameter larger than zero. For ¢ = 0, one obtains
the singular representation (3.2). Note that in the representation which was obtained
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by Pefina and coworkers, there is used an older and now rarely used definition of the
Laguerre polynomials [18] and that the representation is less symmetric by separation
of the sum terms with m > n and m < n with introduction of y = +(m —n), where the
terms with m = n are joined with one of these sum terms. The representation given
here was mainly obtained in this form by introduction of the Laguerre 2D-functions
Immn(z,2*) and due to their symmetries.

7. Convolution of Glauber-Sudarshan quasiprobabilities

A combination principle for two states to a new state of the following kind was
put forward in [2,3]. The convolution of two quasiprobabilities P (a, a*) and Pa(«, )
belonging to density operators g1 and gs provides a new such quasiprobability P(«, «*)
corresponding to a new state which could be considered as a kind of superposition of
the two states that means

P'(a,a*) = Pi(a,a*) * Py(a,0*), & o = Conv(p,02), (7.1)
and its normalization is immediately to see. For example, the superposition of two
coherent states g1 = |(1)(f1] and g2 = |B2)(B2| in this sense provides a new coherent
state o' = |81 + B2)(B1 + B2| according to

Plasa’) = dla—pua*— 8«60 — faa* — B3)
= da—p1—Pa.a” =7 = B3). (7.2)

We will show that, in general, this combination principle does not provide a positively
definite Hermitean density operator ¢'. This means that there cannot be an apparatus
with two inputs for the states with the density operators p; and go and, at least, one
output for the state with the density operator ¢ determined by a Glauber-Sudarshan
quasiprobability P’'(a, a*) according to (7.1). Although there are considerations to
this failure in [4] (chap.8.4) which show that this combination principle cannot be
claimed as a general principle, this is little known. The argumentation in [4] uses the
Fourier transforms of the Glauber-Sudarshan quasiprobabilities which are to multiply
if the quasiprobabilities themselves underly a convolution. We will give here an explicit
example which shows that, in this way, we obtain resulting states corresponding to
indefinite Hermitean ” density” operators.

We consider two Fock states g1 = |m)(m| and g» = |n)(n|. The convolution of the
corresponding Glauber-Sudarshan quasiprobabilities provides

i * 62 * 62 *
62 i * * * 62 *
= Ly <m> '/Edﬂ/\dﬁ d(a— B,a" = %)Ly <W> 8(8,8%)

0? 0?
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The problem of determination of the Fock-state representation to this function consid-
ered as a Glauber-Sudarshan quasiprobability is the problem of the decomposition of the
product of two Laguerre polynomials L, (u) L, (u) into a sum over Laguerre polynomials

m+n

Ly (u)Ly(u) = Z cmonaLi(u). (7.4)

l=|m—n]|

The restriction of the sum over Laguerre polynomials by an upper [ = m + n can be
easily seen from the highest power of u in the product L,,(u)L,(u) and to a lower
I = |m —n| by the symmetry properties exposed below. Due to LY (0) = (n+v)!/(nlV!),
one finds from (7.4) by setting u =0

m+n m—+n

> tmni= Y. Cmnili(0) = Ln(0)Ln(0) = 1. (7.5)

I=|m—n]| I=|m—n]|

This means that we have checked the normalization which is true, more generally, for
arbitrary P'(a,a*) in (7.1). Due to the well-known orthonormality of the Laguerre
polynomials with a weight function e~ *, one has

+oo
Cm,n,l = / due™™ Lm(U)Ln(U)Ll(’U,) Cm,n,l = Cnym,l = Clm,n- (76)
0

We do not know a practicable complete solution of this integration problem. However,
we can successively determine the terms of the decomposition (7.4) beginning with the
highest term corresponding to I = m +n and then the term with [ = m +n — 1 from the
remaining expression and so on. In this way, we obtained the following initial terms of
the expansion in the order of decrease of the indices

Ln()aw) = P - %me(u)
2mn—(m+n)+1)(m+n—2)!
(m—1)!(n _1)! metn—2(1)

~2(2mn 3(Ezl-|-_n2))'-|(-n2)_(;ﬂ)'+ n — 3)! Lpsn_s(u)+.... (7.7)

The lowest term corresponding to I = 0 is also clear from the integral in (7.6) which
gives the Kronecker tensor d,, , for [ = 0. With these initial terms, one can completely
analyse simple cases with not too high m and (or) n and we found, for example

Conv(|0)(0], [n)(n]) = [|n)(n],
Conv(|1){1], |n){(n|) m+1)n+){n+ 1] —2n|n)(n| +nin — 1){n —1|,
(n+2)(n+1)

Conv(|2)(2], |n)(n|) = f\n+2)(n+2|—2(n—|—1)n\n—|—1)(n—|—1\

+(38n — 1)n|n)(n| —2nn — 1) |n — 1)(n — 1

+@|n72>(n72\, (7.8)



oome remarks about the (slauber-oudarshan quasiprobabllity 299

in particular
Conv([1){1| 2(2)(2| = 2[1)(1] + 10){0},
Conv(|1)(1,[2)(2]) = 3[3)(3] —4[2)(2[ + 2|1)(1],
Conv(]2)(2 = 6]4)(4] —12|3)(3| + 10|2)(2| — 4 |1)(1| + |0){0]. (7.9)

-
=
=
=
=
Il

N
~
—

DN
P

The right-hand sides in the last three examples show that the obtained density operators
do not, correspond to a positively definite Hermitean operator and that the ” probabili-
ties” in front of the projection operators are not restricted to be less than 1 in modulus
in significant contradiction to the necessary requirements. Therefore, in case that one
obtains a new possible Glauber-Sudarshan quasiprobability of a ”physical” state by
convolution of two such quasiprobabilities, there should be another, as a rule, more
special mechanism which provides these results that we now illustrate.

We consider the combination of a coherent state o; = |3)(0| with an arbitrary state
02 = g in the sense of (7.1) and obtain by convolution of its quasiprobabilities

P'(a,a*) = §(a — B,a* — %) * P(a,a*) = Pla — B,a* — 3%). (7.10)

The new quasiprobability P'(«, a*) is therefore simply the old quasiprobability P(a, a*)
displaced in the complex phase plane. Due to the ”displacement structure” of the
quasiprobabilities themselves [9], this is not only true for the Glauber-Sudarshan quasi-
probability P(a,a*) but for all quasiprobabilities, for example, for F,, ,, r,)(a, a*)
with arbitrary r = (r1,r2,73). The corresponding state can be constructed in this case
by

o' =D(B,8)e(D(B,B*)".  D(B,7) = exp (Ba’ —a), (7.11)

where D(8,3*) denotes the unitary displacement operator. This means that in the
considered special case the combination according to (7.1) is equivalent to the unitary
transformation of the density operator ¢ according to (7.11) which is a legal state
transformation in quantum theory. For example, the combination of a coherent state
and of a thermal state in the considered sense leads to a new state which does not
violate any fundamental assumptions of quantum theory and which plays a role in
laser theory [5]. As discussed in [2,3], the inversion of the convolution theorem is
sometimes useful to separate the state into components with simpler properties. The
main example is again that we transform a state with a given quasiprobability P’(«, o*)
and expectation value @ = (¢'a) in such a way that the new separated state ¢ with the
displaced quasiprobability P(«, a*) has the expectation value @ = (pa) = 0 and we have
separated then a coherent component from a remaining component with vanishing (pa)
by an inverse transformation of the kind (7.11).

Transformations of quasiprobabilities leading to quasiprobabilities of new ” physical”
states are of interest. Recently was shown [19] that the transformation of the coherent-
state (Husimi) quasiprobability Q(a,a*) = Q'(a,a*) = |u|?*Q(|u|a, |u|la*) with |u| < 1
leads to a new possible coherent-state quasiprobability @'(a,a*). The restriction to
real |u| can be released and one can write more generally Q(«,a*) —» Q'(a,a*) =
|2 Q(per, p*a*) with |u| < 1including in this way rotations. The physical process which
makes this transformation is the well-known phase-insensitive amplification [20,21]. In



A. Wwunsche

an analogous way, the transformation P(a,a*) — P'(a,a*) = |v|*P(va,v*a*) with
|v| > 1 leads to a new Glauber-Sudarshan quasiprobability P'(a,a*). The physical
process is here absorption of the system in a reservoir with absolute temperature T' =
0 [20,21]. For finite temperatures T correponding to a mean value N > 0 of the
harmonical oscillator, there is the quasiprobability Fg o (a,a*) with r = —(1 + 2N)
which transforms under condition of absorption in a similar way. It is an ”exotic”
quasiprobability outside the sphere of quasiprobabilities Fy(a,a*) restricted by the
radius 72 < 1 as usually used in quantum optics and "more singular” as P(a, a*) but,
nevertheless, it is a quasiprobability in full rights [9].

8. Conclusion

We have derived relations between different representations of the Glauber-Sudarshan
quasiprobability in the Fock-state basis, in particular, the connection to the represen-
tation by the one-dimensional delta function given by Sudarshan. A modified rep-
resentation of this kind involving Hermite polynomials was derived (Eq.(4.3)). The
Pefina-Mista representation as a regularized representation of the Glauber-Sudarshan
quasiprobability was represented in a symmetric way by introduction of the Laguerre
2D-functions. It was shown by explicit examples that the convolution of Glauber-
Sudarshan quasiprobabilities does not lead, in general, to new Glauber-Sudarshan
quasiprobabilities of ”physical” states because it violates the positive definiteness of
the corresponding density operator. Therefore, this convolution cannot be considered
as a general combination principle. In the Appendices, we collect some formulas in-
cluding derivations, in particular, for generalized functions of two variables in real and
complex representation which are often useful in quantum optics.

Appendix A: Laguerre derivatives of Gaussian functions

We calculate in this Appendix polynomial derivatives of two-dimensional Gaussian
functions which are important for the explicit calculation of (2.13) but play a role in
many other problems.

By using Leibniz’s rule for differentiation of products and by an obvious substitution
of one summation index in the arising double sum and after reordering the double sum,
one can calculate the inner sum and obtains the following chain of identities

{m.n} min! gmtn—2j z2*
p 22

2 Jim — ) — )l 9zm=igzrnT

zz* {m.n} mln!
o )E

o ) = lm—ln )
{m—jn—i} - : K
x i j (m — j)!(n — j)! LN ek
El(m — 45— k)/(n—j — k)! g

k=0



oome remarks about the (slauber-oudarshan quasiprobabllity 4U1l

- <%> (%) o {”il} i(m n;)'?(; —i( o= 7))'et et

1=0
(A1)
Expressed by means of the Laguerre 2D-functions, this takes on the form
frond m!n! gmtn=2i zz*
2:: Um — )i(n — )l 0zm-a9z7m-1 P (‘ o )
* m+n *
= /mexp (M> vVm!n! | — 1o ln,m i , z .
20(1 - o) o Vo(l—0) Jo(l1-o0)
(A.2)

We mention here the following identities

. B 62 em o (7 )m+ne 2o* am+n . 722*
A\ 8025 ) 7 ¢ T ’ P\ ) Gamazen P T

font mln! iowmeonj
D SN o L
2. Giim— i~

*

A3

which can be verified by direct calculation and lead to modified definitions of the La-
guerre 2D-functions.

Appendix B: Moment series expansions

We derive in this Appendix the moment series expansion of functions and begin
with functions of one real variable (see also Luks [12]).

If we write a function f(z) of the real variable z in form of a convolution with the
delta function §(z) according to

+oo
f(2) = b(x) * f(z) = / dyf(4)5(z — ), (B.1)

and if we make a Taylor series expansion of the delta function §(z — y) in powers of y,
we obtain

n! J_

X 1\n +o00 n oo
fay =3 EY ( [ dyf(.u).u”) Dosw =Y @, (B2)

n=0
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where f, denotes the moments of the function f(z) and (") (z) the n-th derivative of
the delta function as follows

J— n +m "
fn:( - / def(z)z™, 6" (z) i 8(z). (B-3)

n! J_ - Oxn
Expansions of the form (B.2) with the moments f, of the function f(z) in front we
call moment series expansions (in analogy to Taylor series expansions). The recon-
struction of the function f(x) from this series has to be understood in the sense of
weak convergence of generalized functions. Practically, one has to determine a space
of basis functions ¢(z) in such a way that the partial sums of the linear functionals
(3200 ) f26™) (), (x)) converge to the linear functional (f(z),¢(z)). It is inconve-
nient to discuss the necessary spaces in a physics paper and we make only some short
remarks. One can suppose that in every case where all moments f,, exist, there can be
found a space of basic functions ¢(z) in such a way that the moment series converges
in the sense of weak convergence. For the existence of all moments of the function f(x)
it is necessary that this function rapidly decreases in infinity but it can be a general-
ized function with no restriction to the smoothness in arbitrary finite points. This is
not one of the standard spaces S’ of moderately increasing generalized functions (tem-
pered distributions) or D’ of arbitrarily increasing generalized functions. It is rather
the subspace of rapidly decreasing generalized functions of the space S’ of moderately
increasing functions which we called the space 7' in [22] (see also considerations in [5]).
It can be determined as the space of continuous linear functionals over the space T
of moderately increasing smooth (infinitely continuously differentiable) basis functions.
We do not have here the usual inclusion relations of spaces of basis and of generalized
functions as for the standard spaces D C S ¢ 8’ € D’. For the existence of moment
series expansions, the space of possible functions 7' can be extended to a correspond-
ing space A’ of analytic linear functionals [22]. The space A’ is a subspace of the
space of analytic functionals Z’ which is the space of Fourier transforms of generalized
functions of the most common space of generalized functions D’ [23 25] that means
A" C Z2' =F(D') [5] (scheme of inclusion relations in [22]).

After Fourier transformation according to

~ +OO . +OO ~ .
o= [ dsfwe, gw) = o [ dufue, (B.4)

J - 2 |

the moment series (B.3) takes on the form of a Taylor series of the Fourier transform

F(u) of f(x)

fw) = faliw),  fa (0). (B.5)

The reconstruction of a moment series can be also made via the reconstruction from
the Taylor series of its Fourier transform and subsequent inversion of the Fourier trans-
formation.
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As an example, the moment series expansion of a normalized Gaussian function

possesses the following form

exp ( T2> = exp <C2 > > o(z) = i % (g)zm 5™ (z). (B.6)

2 4 9z
m=0

Ve

Due to the normalization of the function, one has fo = 1 and due to the symmetry of
the considered function, the moments f,, with odd n are vanishing. For a normalized

displaced Gaussian function, one obtains

1 (# — 0)? B o o
exp <7> = exp <’I‘0£ + el o(x)

NG c?
_ Z: % (Zg)an (zw—{?) 5 (2), (B.7)

where the expansion of the Hermite polynomials leads finally to real moments. Argu-

ment displacements can be similarly treated also in other cases.
It is not difficult to generalize the moment series to functions of several variables.

For a function f(z,y) of two Cartesian variables (x,y), one obtains
oo oo

© %0 m+n _
flz,y) = Z menaimiaynrs(ﬂ(s(y), flu,v) = Z Z fmn ™ u™y" (B.8)
m=0 n=0

m=0n=0
with the Fourier transform and the moments defined by (we omit the integration regions

which are the whole Euclidian spaces R? or dual Euclidian spaces R?)
. . 1 ~ .
flu,v) = /dm A dyf(m,y)eﬂ(“m“’y), fz,y) = W /du A dvf(u,v)el(w+"y),

. ™)
—q m+n 6m+n s
(=9) ! 0,0). (B.9)

(1)m+n/d ANdyf(z,y)z™y" =
TANayy(r,y)ry = mln!  Oumovm "’

fm7n = 1
m!n!
The complex representation of two-dimensional functions f(z,2*) can be obtained by
the relations (for the tranmsition f(z,y) — f(z,2*), we do not invent a new function
symbol different from f)
0 0] 0 ; < 0 0 >

PEEAW 2 EEIW e T e e oy \a: o
o 9 0 3—2'(6 a)
) 3

w=u+iw, w'=u—iv, —=—+— — -
’ Ou Ow  Ow* O ow  Ow*

u% + 1)8%/ = w% + w*g, de Ndy = %dz ANdz*, duNdv= %dw A dw*,
(B.10)
(B.11)

and by the identification
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and takes on the following form (note that fy, » in the next formulas is different from
fmn in (B.8) and (B.9))

* S 6m+n * r3 * - i men *Mm, N
f(z,2%) = Z me,nm(s(z,z ), flw,w*)= Z men <§> w* ",
m=0n=0 m=0n=0

(B.12)
with the Fourier transform and the moments defined by

flw,w*) —/%dz/\dz*f(z,z*)exp{—%(w*z—l—wz*)},

* 1 i * p * i * *
f(z,2") = W / 5dw A dw” f(w, w") exp {E(w z+wz )} ,
_1 m+n - _'2 m—+n am+n 3
fram = =y /idz ANdz* f(z,2")2"2"" = (Zi2) ! (0,0).
’ m!n! 2 mln!  Qw*™ow"

(B.13)

As an example, one obtains for a Gaussian function the following moment series

1 zz* 0? . o 9 .
— exp ( - ) = exp (Uazaz*> 0(z,2%) = nz:: mm(s(zz ), (B.14)

This expansion is true, at least, for real non-negative ¢ where the normalized Gaussian
function is rapidly vanishing in infinity.

Appendix C: Products of derivatives of delta functions with smooth
functions

The multiplication of generalized functions with classes of well-behaved functions is
defined in every monograph about generalized functions [23 25]. However, the special-
ization to the multiplication of derivatives of the delta function with smooth funtions
(smooth, at least, at the singularities of the delta function) is rarely considered in
general explicit form (in the monographs which we more or less studied [23 25]). We
consider this here and derive the corresponding formulas.

We begin with the one-dimensional case. With multiplicator functions g(z) and
arbitrary basis functions p(z), one can make the following transformation of a linear
functional

(9@) 0" @), 0(0) = (0 (@)g(@)p(a))

= (1" (8a). g () )
= )Y gy (B @ @)
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[ee]

= (0T e 040

" (=1)in!
_ ’Z%gm(m (50 @), (@) - 1)

Since @(z) is an arbitrary basis function, this implies the identity

TPRNR o S Gol) LR P
OEDY in —1? (0) 6V (). (C.2)
=0 V7

This derivation can be easily generalized to functions of several variables with the
following result in the two-dimensional case

am+n k+’m'n 8k+l
) 0,0
-"(T’”)aa;may ;”2; El(m — k)(n — 1)! 92k 0y 7(0,0)
am+nfk7l
XW&(M@). (C.3)
The corresponding identity in complex representation takes on the form
6m+n k+’m'n' 6k+l
N~ 5(z. 0,0
g(z,2 )62’”62*“ ) ;”2; k'm k lllnfl)'azkaz*’( )
6m+n7kfl
d(z,2"). (C4)

x aszkaz* n—I

As a first example for the one-dimensional case, we consider g(z) = 2! and find from

(C.2)
26 (z) = ——6"D(z) = ﬂxl*k(s(n*k)(x), k=0,1,....1. (C.5)

As a second example, we consider Gaussian functions g(z) = exp(—z?/c?) and obtain
from (C.2)

72
exp <c_2> 6 () =

with H,(z) as the Hermite polynomials. As a first example for the two-dimensional

case in complex representation, we consider g(z,z*) = z¥2*! and obtain from (C.4)

(5]

.(fl)jn.! G)” §(n=20) () = cian <%%) 5(x), (C.6)

= Jtn—=2j)!

am+n (_1)k+lm!n! am+n7k7l

k1 *\
= 82m82*”6(z7 Z) (m — k)!/(n —1)! 9z *kdz*n—!

0(z,2%). (C.7)
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As a second example for the two-dimensional case, we consider the function g(z,2*) =
exp(—zz* /o). By direct calculation, one finds from (C.4)

* m—+n
exp (—%) 6676(27 z")

Zmaz*n
{m,n} m|n| 1 J am+n,2j .
- X7 )! Si\ 7o) Hommigenmi0(&: %)
=0 g m = j)i(n — j)! o) 0zm—iQz*xn—J
1\" gm—n 52
= I —— m—-n *
n! ( 0) 8zm*nL” <05262*> 0(z,2%). (C.8)

One can look to the formulas of this Appendix as to the ”disentanglement” of products
of functions with delta functions and their derivatives.

Appendix D: Representation of two-dimensional delta function by
central-symmetric one-dimensional delta functions

The N dimensional delta function §"V(r) over an N dimensional Euclidian space
can be obtained by applying the Laplacean V? to a central-symmetric function as
follows [23,24]

N
2

. 1 27
r) = v (- ). Nro sv=f ava- 2
Sn(N = 2)[r[V-2 N S (%)

log |7| T

. . 1 1

2 =v? | = = lim — _— = = —

0°(r)=V < S, ) ,  log|r]| gl_r)%g <1 rE> , So=2m, mn= =k
(D.1)

where Sy is the (hyper-) area of the N—dimensional unit hypersphere. This relation
shows that the N—dimensional delta function can be considered as a central-symmetric
generalized function which depends only on |r| but not on the coordinates on the unit
sphere. We can substitute (D.1) by the following equation in the sense of a limiting
procedure

[ O(r| —¢)
) = LV <SN<N—2>|T|N2>
— lim 0? N-10\(  O(r-e
= <(51"|)2 * 7| a|7‘> < Sn(N — 2)I?‘IN2>
_ i 271 —2) (D.2)

50 Sylr|N -1

where §(z) denotes the one-dimensional delta function and ©(z) the Heaviside step
function (@) (z) = §(z)). We used here the relation |r|6™) (jr| — ) = M (|r| —¢) —
d(]r| — €) which can be obtained from the multiplication of delta functions and their
derivatives with smooth functions (see Appendix C). The N dimensional delta function
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is in (D.2) substituted by a one-dimensional delta function combined with the factor

l7|V~1 in the denominator which is absorbed in N-dimensional integrations and by a

limiting procedure. This is in the sense

oo o(jr| —¢e) 1
[ e =ty [ ar ¥ R L el = p(0)

(D.3)

It seems to be not consequent if one substitutes the limiting procedure by adding a

factor 1/2 in front of the one-dimensional delta function. We see from (D.3) that it is

allowed to have a factor 1/|7[~ " in front of the ”one-dimensional” delta function (|r|)

or 0(|r| —e) if it is used in N-dimensional volume integrations because then this factor

is absorbed by the volume element in spherical coordinates.

We now consider the two-dimensional case. It is clear that the result in (D.2) is also
true for the two-dimensional case which, in principle, has to be treated separately. In
the two-dimensional case, one can write in real and complex representation

> . O(r[—e) . d(z]—¢) .
0 (T)—‘EIIE)I%)TM—;E)I}]TM—(S-(Z,Z ). (D.4)
We now derive the representation of the derivatives of the two-dimensional delta func-
tion by the one-dimensional central-symmetric delta function and use the complex rep-
resentation. In this representation we set

i N s 0 e % (0 i 0 0 e (0 i 0
z=|ze"%, 2*=|z2le, —m—=— |z 7|, =—=—|=—+—7— -
0z 2 \O|z| |z|0¢ 0z* 2 \0|z| |z| 0¢
(D.5)
The derivatives of the two-dimensional delta function can be substituted in the following
way by using the one-dimensional central-symmetric delta function
omin mipl elln—me o gmin

Y s(sa*) =
0zmPz* " (2,27) (m+n)! 27|z sl—r>rg)6|z|m+”

0(|z] —¢). (D.6)

This can be proved by complete induction m — m + 1 and n — n + 1 by using (D.5)
and by using the multiplication of the one-dimensional delta function §(|z| — €) with
powers of |z| (see Appendix C). For example

gm+1+n
fzmtigzn ()
= S (gt =1 - i) e S g0 -
_ (mm_:_n;)' ez‘(n47:|12|1)80 213(1] {5(m+1+n)(|z| e - %ﬂ_n(g(mﬂz)(‘z‘ _ s)}
_ _(m+1)n! pi(n—m—1)¢ lim §(mH14+7) (|2] — g), (D7)

(m+1+n)! 27z -0
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where is used
280 (|2] — &) = £8P (2] — ) — (m 4+ 1) 0 (2] —e),  (D.8)

which can be divided by |z| for € # 0, and analogously the proof for n — n + 1.
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