
acta physica slovaca vol. 48 No. 3, 379 { 384 June 1998VALIDITY OF THE CUMULANT METHOD FOR A PULSENONLINEAR KERR OSCILLATOR 1K. Grygiel2, W. Leo�nski3, P. Szlachetka4Institute of Physics, A. Mickiewicz University,ul. Umultowska 85, 61-614 Pozna�n, PolandReceived 14 May 1998, accepted 26 May 1998We study the dynamics of an anharmonic oscillator driven by a train of pulses. Thecumulant expansion and quantum evolution operator approaches are presented andcompared. 1. IntroductionThe modi�cations introduced by quantum mechanics into the dynamics of classicalsystems which manifest chaos are a problem of great importance [1]. It is known thatquantization modi�es the dynamics of classical chaotic systems [2,3,4].The time evolution of a quantum optical system is usually studied by means ofthe equation for the Wigner function derived from the quantum Liouville equation. InWigner's formulation of quantum mechanics we treat a quantum system in a "classicalway" including all their quantum features. And what is more, we can contrast thequantum and classical dynamics within the framework of one formalism [3-6].The problem is, that the equations for the Wigner functions are mathematically cum-bersome and their analytic solutions for most nonlinear systems are unknown. However,instead of the equation for the Wigner function we can use the set of equations for statis-tical moments generated by our equation for the Wigner function. It is obvious that inthis approach a quantum system is governed by an in�nite set of equations. Therefore,for numerical reasons the set of equations for statistical moments has to be truncatedat a �nite number, which means approximating it. It is known that the �rst cumulantapproximation represents the classical dynamics. The second cumulant approximationadds the �rst quantum corrections to the classical dynamics.In this paper we compare some aspects of the cumulant method and the methodused by Leo�nski and Tana�s to study an anharmonic oscillator driven by a train of pulses.The Kerr oscillator model is the same as that is discussed in an earlier paper [3] albeitwithout the damping mechanism.1Special Issue on Quantum Optics and Quantum Information2E-mail address: grygielk@main.amu.edu.pl3E-mail address: wleonski@main.amu.edu.pl4E-mail address: przems@main.amu.edu.pl0323-0465/96 c Institute of Physics, SAS, Bratislava, Slovakia 379



380 K. Grygiel et al.2. The ModelWe consider the Hamiltonian for the coupled external �eld - anharmonic oscillatorin the form Ĥ = Ĥ1 + Ĥ2, wherêH1 = �2 ây2â2 ; (1)Ĥ2 = F (t) �ây + â� : (2)The anharmonic oscillator model (describing the optical Kerr e�ect) is described by thesingle mode Hamiltonian (1), where � is the anharmonicity parameter. The quantitiesâ and ây are the boson annihilation and creation operators, respectively. We use units�h = 1. The interaction between the classical external driving �eld F (t) and the single-mode �eld is governed by the Hamiltonian (2). For the sake of simplicity the dampingmechanism is not considered in the presented model.The dynamics of our system (1)-(2) is studied in the standard Louisell approach[7]. At �rst, we obtain a master equation for the density operator. Then the masterequation is transformed to a c-number partial di�erential equation for the Wigner qua-sidistribution function de�ned in the complex space (� = p+ iq; �� = p� iq) instead ofthe traditional (p,q) space. Our equation for the Wigner function W has the form of ageneralized Fokker-Planck equation [3]:@W@� = Kclass +Kquant ; (3)where Kclass = � @@� ��iF(t) + i� j � j2� + @@�� �iF(t)� i�� j � j2��W ; (4)Kquant = �i � @@��� @@���� � 14 @3@�@��2�� + 14 @3@��@�2��W : (5)We used a rede�ned time � = �t, and the external force F(t) = F (t)=�. The dynamicsof the system described by Eqs.(5) is studied for the case when F(t) is a train of rect-angular pulses. The length of the pulse is denoted by T1, whereas T2 is the distancebetween pulses, and F0 is their height. In the classical limit Eq.(3) does not contain thetermKquant andW is a classical distribution function. In other words, the Kquant{termconveys the quantum (operator) correction to the classical description [3].



Validity of the cumulant method ... 3813. The cumulant methodThe equation for the Wigner quasiprobability (3) generates an in�nite hierarchicset of equations for the statistical moments and the other way round. This one to onerelation is statistically strict as long as the set of equations for the statistical momentsis in�nite. However, for numerical reasons, the set of equations has to be truncated at a�nite number, which means it is approximated. Integration per partes of Eq.(3) allows usto write the appropriate equations for the cumulants. This method, extensively studiedearlier [3], leads to the following results. The �rst truncation (total factorization of thestatistical moments < an >=< a >n ) leads to classical equations of motion which, inthe autonomized version, have the formd�d� = �iF(w)� i�2�� ;dwd� = 1 ; w(0) = 0 ; (6)where � =< â >. As seen, the time � in the amplitude F(t) has been deliberatelychanged into w to avoid the explicit dependence on the independent variable � . Thequantum term Kquant in (3) contributes nothing to the above set of equations. The setconsists of three equations of motion in real variables Re�, Im� and w, which meansthat if F(w) = const the system is two-dimensional and consequently, nonchaotic. Ifwe restrict ourselves to the second truncation (Gaussian approximation) we arrive atthe following set of equations:d�d� = �iF(w)� i[2B� + C�� + �2��] ;dwd� = 1 ; w(0) = 0 ;dCd� = �i [�2(1 + 2B) + C(1 + 4 j � j2)]� 6iBC ;dBd� = i [C��2 � C��2] ; (7)where B =< âyâ > � < ây >< â > and C =< â2 > � < â >2. The above set (7)consists of six equations in the real variables Re�, Im�, ReC, ImC, B and w. The initialconditions have the form �(0) = �0 and B(0) = C(0) = 0. The physical meaning of thesecond truncation is clear if we note (details in [3]) that the quantum term Kquant in (3)now adds nonzero corrections to the �rst truncation, that is, to the classical equations(6). The higher order truncations lead to an increasing number of equations and inconsequence to more and more rigorous quantum corrections but they are relativelysmall. For example the correction caused by the third truncation is only of the rank0.2% of the correction caused by the second truncation [3] .



382 K. Grygiel et al.4. Pure quantum descriptionContrary to the previous section, where the classical model with quantum correctionshas been discussed, this part of the paper is devoted to the pure quantum descriptionof our model. Our method is based on the procedure discussed in [8,9]. We neglectdamping processes and therefore, we describe the system using the standard wave-function approach. Moreover, since the external excitation is assumed to be rectangular,we shall divide the whole evolution into two stages. The �rst concerns the time betweentwo subsequent pulses, when our system evolves as the usual nonlinear oscillator. Inconsequence, its behavior is governed by the HamiltonianĤn = �2 ây2â2 : (8)As the external �eld starts acting on the system, the Hamiltonian becomesĤk = �2 ây2â2 + Fo(ây + â) : (9)Now, we are in a position to introduce unitary evolution operators. These operatorsare based on the Hamiltonians Ĥn and Ĥk and can be expressed as:Ûn = e�i�n̂(n̂�1)T1=2 ; (10)and Ûk = e�i(�n̂(n̂�1)=2+Fo(ây+â))T2 ; (11)where n̂ = âyâ is the photon number operator and the parameters T1 and T2 are thetime between two subsequent pulses and the pulse duration time, respectively. In thispaper we are interested in the stroboscopic map of the evolution of our system for themoments corresponding to the times just after pulses. Therefore, we de�ne the evolutionoperator transforming the wave-function describing our system for the time just afterk-th pulse to that corresponding to the time after (k + 1)-th pulse.Û = ÛkÛn : (12)Thus, assuming that the system was initially in the state j	(t = 0) >, we are ableto determine the state of the system for all of the times after the an arbitrary pulse.The wave-functions corresponding to those times are de�ned by:j	ki = Ûk j	(t = 0)i : (13)Although, this function enables us to determine various quantum properties of thesystem, we shall concentrate in this paper on the time-evolution of the mean numberof photons n =< n̂ >. It can be easily calculated and is given by:< n̂ >= h	kj âyâ j	ki : (14)We can perform the above calculations numerically and compare the results obtainedusing this method with those corresponding to the cumulant expansion technique, dis-cussed in the previous section. To get the compact numerical results for both methodswe have put � = 1. Therefore � = w = t, Fo = Fo.
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Fig. 1. The mean number of photons < âyâ >versus the number of pulses for the cumulantmethod (a) and quantum mapping (b) for theparameters of pulse: Fo = 2:0; T1 = 1:0; T2 =1:0 and the initial conditions: �o = 1+1i andB(0) = C(0) = 0.
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Fig. 2. The same as in Fig. 1, but forFo = 0:1.
5. Numerical resultsWe observe a di�erence in the dynamics of our model studied with the help of thecumulant approximation and the pure quantum mapping. To solve the set of equationsfor the cumulants (7) we employed the standard fourth-order Runge-Kutta procedure.The pure quantum calculations is based on a discrete mapping of the quantum states.Both computer programs (for F (t) = 0) can be tested by printing the energy as aconstant of motion.In Fig. 1 we observe the average number of photons n̂ = âyâ versus the time t inthe cumulant approximation (a) and the quantum mapping (b). Both oscillations arechaotic albeit a slight di�erent in nature.This is caused by the fact that the system is pumped without damping and in con-sequence it is strongly unstable (mostly chaotic). Moreover, the cumulant correctioncaused by the third and higher truncations are neglected as well as the evolution op-erator in the quantum description is calculated with numerical approximation method.However, as seen from Fig. 1 both methods give quantitatively similar results. The sit-uation in Fig. 1 changes for weaker external �eld F (t). It is seen in Fig. 2 for F0 = 0:1.



384 K. Grygiel et al.The pure quantum procedure (Fig. 2b) gives rapid oscillations which modulate a slowlyvarying sine-like function whereas in the cumulant method the slowly varying functionhas a very small amplitude (Fig. 2a). The di�erences in Fig. 2 suggests that if theexternal �eld F (t) is small relative to the initial number of photons the semiclassicalcumulant approach is not so e�ective.Both presented methods have their advantages and disadvantages. In our pulse casethe cumulant method in the contradistinction to the pure quantum method can beused also when a damping mechanism is taken into account. On the other hand, thecumulant method is a kind of semiclassical approach and can be applied carefully ifquantum evolution is dominant (Fig. 2). The di�culties in comparing the two methodsare also due to the fact that the quantum mapping in the pulse case has no classicalcounterpart.Acknowledgements This work was supported by the KBN Research Grant 2 PO3B73 13. The numerical computation involved in this paper was made in Pozna�n Super-computing and Networking Center. References[1] M.C. Gutzwiller: Chaos in Classical and QuantumMechanics (Springer-Verlag, New York,1990)[2] G. Casati, B. Chirkov, J. Ford, F.M. Izrailev: Stochastic Behavior in Classical andQuantum Hamiltonian Systems, Lecture Notes in Physics 93, eds. G. Casati, J. Ford(Springer-Verlag, Berlin, 1979)[3] P. Szlachetka, K. Grygiel, J. Bajer: Phys.Rev. E 48 (1993) 101[4] K. Grygiel, P. Szlachetka: Phys.Rev. E 51 (1995) 36[5] R. Schack, A. Schenzle: Phys.Rev. A 41 (1990) 3847[6] B. Sundaram, P.W. Milonni: Phys.Rev. E 51 (1995) 1971[7] W.H. Louisell: Quantum Statistical Properties of Radiation (Wiley, New York, 1979)[8] W. Leo�nski: Phys. Rev. A 55 (1997) 3874[9] W. Leo�nski, S. Dyrting, R. Tana�s: J. Mod. Opt. 44 (1997) 2105; and references quotedtherein


