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PERIODIC BEHAVIOUR OF DISPLACED KERR STATES!
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We discuss quantum properties of displaced Kerr states, in particular the periodic
behaviour of the mean values of various quantum parameters describing our model.
Thus, we introduce an operator evolution approach that justifies our conclusions
concerning the periodic behaviour of the system.

1. Introduction

Quantum systems that involve nonlinear Kerr-like media were the subject of nu-
merous papers (see e.g. [1-16] and references quoted therein). Those systems were
discussed from various points of view. Thus, models involving Kerr media can, under
certain conditions, lead to the generation of various quantum states of the field. For
instance, such systems can lead to n-photon states [3,7,9,10] or to superpositions of
coherent states (Schrodinger cats) [3] generation. Moreover, systems with Kerr media
can exhibit strong squeezing properties [1,2,5,14]. Those models can also be used as
examples of systems exhibiting chaotic behaviour [5,11,15,16].

This paper is devoted to periodical properties of displaced Kerr states (DKS). Such
states were discussed by Wilson-Gordon et al. [5], who proposed a system based on a
Mach-Zender interferometer with a nonlinear medium in one of its arms. This system
was irradiated by a coherent field producing in one of the interferometer output beams
a state that has been referred to as displaced Kerr state. For such a state they derived
an analytical solution for the expansion of the wave-function in n-photon basis. Using
this result they investigated thoroughly various quantum properties of the DKS. For
instance, they discussed the evolution of the Mandel ) parameter [17], quasi probability
@ distribution, and squeezing of the field quadratures. Moreover, the phase properties
of the system were also discussed .
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2. Displaced Kerr states — analytical solutions

The displaced Kerr states can be generated from the usual coherent state | > by
application of two operators. One of them is the unitary operator U,

Un = ei%ﬁ(ﬁil) ) (1)

where the parameter y is a nonlinearity constant corresponding to the Kerr medium
third-order susceptibility and 7 is the photon number operator. The evolution operator
can be related to the Hamiltonian of the nonlinear oscillator H,, (in units of & = 1):
H, = x(a')%a*. (2)
The nonlinear constant x appearing in Eq.(1) can be treated as generalized time. In
consequence, the system can be investigated as one evolving in time with nonlinearity
constant equal to 1. By action of the operator U, on the coherent state |« > we get
the Kerr state |¥ ke, >. This can be expressed as in [5]:

“IIKerr) - Un|a>
- a” iXn(n—
= eXP(—1/2|a|2)ZW€ 2 n) (3)
n=0 "

It is easily seen that this state differs from the usual coherent state by the presence of
the phase factor exp(ixn(n —1)/2).

In the next step we transform the Kerr state to the DKS using the unitary evolution
operator Uk. This operator is the usual displacement operator and has the following
form:

Uy = ef—¢a (4)

and conforms to the coherent excitation of the physical system corresponding to our
model. In consequence, we obtain a state that is referred to as DKS

|‘PDK€T’I") = UkUn ‘O/) - (5)

It is possible to find an expansion of this state in n-photon basis. This has already
been done by Wilson-Gordon et al. [5]. The coefficients of that expansion have a rather
complicated form and our expansion can be expressed as:

“IIDKerr) = icn |n) s (6)
n=0
where
on = expl=(af +[¢P)/D) Y eitemedmm gy
m=0
min[m,n] n!1/2 '
~ (_1)77171? ei¢£(n7m)|€‘(n+m72k) ] (7)

Bm Rl k)



reriodic benaviour or displaced Kerr states BYES]

The complex parameters a and ¢ have been expressed as a = |a|exp(id,) and & =
|€| exp(ide), respectively (for simplicity, we shall assume that the parameters o and ¢
are real). This formula (7) enables us to find the mean values of various operators.
For instance, we can calculate the mean values of the annihilation operator < a >, the
squared annihilation operator < @? > or the mean number of photons < # >. They are
given by:

oo
<a> = Z\/n—l— 1cyentn ;
n=0
oo
<a’> = Y I+ D)n+2)chen
n=0

oo
A *
<n> = E ne, Cn -
n=0

(8)

However, due to the rather complicated form of the coefficient ¢, it is difficult to find
a compact form of the expressions describing mean values of the operators and hence,
we cannot easily draw conclusions concerning the periodic behaviour of the system.
Therefore, we propose an alternative method and instead of the transformations of the
wave function we evolve the annihilation operator a. This method has been applied
in a paper by Gerry and Grobe [18] where the squeezed Kerr states were discussed.
Assuming that during the evolution given by the unitary operator U, the mean number
of photons is preserved, the annihilation operator a is transformed to the following form:

&DKerr = e—ix'fz& +£ ) (9)

where the operator apge,. corresponds to the DKS.

Since we are interested in the quantum evolution of the parameters describing the
system rather than the operators, assuming that the field was initially in the coherent
state we find the mean value of the annihilation operator corresponding to the DKS.
After some straightforward algebra we can write the mean value as :

<‘IIDK67‘T‘&|\I}DKET7‘> - <a|dDKerr|a> = €exp [_|a|2(1_ei)()] Oé+€ . (10)

Similarly, we can perform analogous calculations for various combinations of the oper-
ators a and af.

3. Numerical results and discussion

We are now in a position to calculate the Mandel ) parameter for various values
of the nonlinear constant x (one should keep in mind that the parameter x can be
treated as generalized time and therefore, we treat our system as evolving in time).
The @Q-parameter is defined as :

<A > —<n>

Q = PERN : (11)
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Thus, Fig. 1 shows @ as a function of y. We assume that the initial state is a coherent
state |a) with a = 4 and the displacement parameter £ = 2. This plot is identical to
that shown in the paper [5]. We see that, similarly as in [5], the system exhibits sub-
Poissonian statistics for y < 0.13 and super-Poissonian for y > 0.13. However, when we
extend the time-scale (Fig. 2) the remaining parameters are the same as for the case
shown in Fig. 1 the situation observed changes considerably. It is seen that the value
of @ starts to oscillate and these oscillations are heavily damped. In consequence, )
reaches ~ 6.5 and remains constant. For xy ~ 2.8 new oscillations become visible. After
several oscillations they are damped and the Mandel ()-parameter becomes constant
again. Next, we observe oscillations starting for x ~ 5.5 that are symmetrical to those
for xe < 0,1 >. In consequence, the behaviour of the )-parameter resembles collapses
and revivals. However, the essential feature of this evolution resides in its periodicity.
The periodicity is visible as x reaches 27, when the Mandel parameter reaches the same
value as for x = 0. Then @ starts to evolve identically as for lower values of .
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Fig. 1. Mandel @Q-parameter for various values of x. The parameters a and £ are assumed to

bereal -a =4, ¢ =2

A similar character of the evolution can be observed for the parameters describing
squeezing. Thus, similarly as in [5], we can define quadrature operators X; and Xo:

%, - d+&T;

2
X, = i (12)
T Ty

and in consequence, squeezing parameters Sy o:

S1o =4 [((Ban2)") —1/4] . (13)
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Fig. 2. The same as for Fig. 1, albeit for ye < 0,8 >.

They can be expressed as:

S; = 2<n>42Re < a® > —4Re(< a >)?;
Sy = 2<n>-2Re<a®>—-4Im(<a>)" . (14)

Fig. 3 shows the above squeezing parameters as functions of the nonlinearity x. The
plots are prepared for the same values of a and £ as for Fig. 1. It is seen that the
evolution of S; 2 has a similar character as that for the Mandel ()-parameter. We
observe collapse and revival-like evolution and the periodic behaviour again. Moreover,
for x ~ 2nm, (n = 0,1,...) the parameter S; corresponding to the quadrature X,
shows that the state under consideration has squeezing properties. Since all parameters
discussed here are constructed using the mean values of the annihilation or creation
operators (and their combinations), the periodic character of @ and S; o will become
more evident and clearer as we examine the evolution for mean values of @ or a! and
for their combinations.

Thus, in Fig. 4 the real parts of the mean values of the operators are plotted. Fig. 3a
corresponds to Re < a >, Fig. 3b — Re < a? >, Fig. 3¢ — Re < 4®> > and Fig. 3d -
Re < a*. >. Moreover, we assume that a = 4 and ¢ = 0. This situation corresponds to
the Kerr state without displacement. It is seen that for < a > oscillations are visible only
for x ~ 2mn, (n =0, 1,2...). These oscillations exhibit collapse and revival-like character
again and are periodic with the period equal to 27. This fact becomes more evident as
we examine Fq.(10) describing the evolution of the mean value of the operator apxerr,
and not the wave-function |¥pgerr). The equation (10) contains periodic functions
with the period equal to 27. This fact leads to the discussed character of the evolution
shown in Fig. 4a.

For the cases of < a* >, (k = 2,3,4) shown in Figs.4b-d we observe additional
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Fig. 3. Squeezing parameters Si > as function of x. All parameters are the same as in Fig. 1.
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Fig. 4. Real parts of the mean values of the operators: a — Fig. 4a, a*> — Fig. 4b, a® - Fig. 4c
and a* Fig. 4d. The parameters o = 4 and & = 0.

"revivals” for x = 2jm/k, where j = 1,....k — 1. Moreover, the amplitudes of all the
oscillations are identical. In addition, for even powers of the operator a we observe



reriodic benaviour or displaced Kerr states ol

phase inversion of subsequent oscillations. Those behaviors can be explained as a result
of quantum interference. We calculate mean values of products of the operators, not
powers of mean values calculated for single operators.

The situation shown in Fig. 5 corresponds to the same parameters as for Fig. 4,
albeit we assume that £ = 2. In consequence, we deal here with DKS. All mean values
shown exhibit similar behaviour as those for £ = 0. However, we can observe some
influence of the displacement operator. The additional oscillations are less pronounced
as & becomes significantly greater than zero. Moreover, the amplitudes of satellite
oscillations around x = 2n7, (n = 0,1,...) are damped and the oscillations around this
region of x become dominant.
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Fig. 5. The same as in Fig. 4 albeit for £ = 2.

It is seen from the above considerations that quantum parameters describing Kerr
states and DKS can exhibit behaviour similar to that well known and referred to as
collapses and revivals. Nevertheless, one should keep in mind that they are not pure
collapses and revivals and this behaviour is typically periodic. We explain this phe-
nomenon as a result of quantum interference. Moreover, additional oscillations can
appear for mean values of the higher powers of the operators. For even powers of
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the operators considered, the subsequent oscillations inverse their phase. The periodic
properties of the system can be explained on the basis of the formulas for the evolution
of the annihilation operator and for its mean value, contrary to the wave-function for-
malism where the periodic behaviour was obscured by the rather complicated form of
the appropriate equations. Moreover, the expressions for the operator approach are of
closed form and contain no summation over n-photon states.
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