
acta physica slovaca vol. 48 No. 3, 371 { 378 June 1998PERIODIC BEHAVIOUR OF DISPLACED KERR STATES1W. Leo�nski2Nonlinear Optics Division, Institute of Physics, A. Mickiewicz University, ul.Umultowska 85, 61-614 Pozna�n, PolandReceived 15 May 1998, accepted 26 May 1998We discuss quantum properties of displaced Kerr states, in particular the periodicbehaviour of the mean values of various quantum parameters describing our model.Thus, we introduce an operator evolution approach that justi�es our conclusionsconcerning the periodic behaviour of the system.1. IntroductionQuantum systems that involve nonlinear Kerr-like media were the subject of nu-merous papers (see e.g. [1-16] and references quoted therein). Those systems werediscussed from various points of view. Thus, models involving Kerr media can, undercertain conditions, lead to the generation of various quantum states of the �eld. Forinstance, such systems can lead to n-photon states [3,7,9,10] or to superpositions ofcoherent states (Schr�odinger cats) [3] generation. Moreover, systems with Kerr mediacan exhibit strong squeezing properties [1,2,5,14]. Those models can also be used asexamples of systems exhibiting chaotic behaviour [5,11,15,16].This paper is devoted to periodical properties of displaced Kerr states (DKS). Suchstates were discussed by Wilson-Gordon et al. [5], who proposed a system based on aMach-Zender interferometer with a nonlinear medium in one of its arms. This systemwas irradiated by a coherent �eld producing in one of the interferometer output beamsa state that has been referred to as displaced Kerr state. For such a state they derivedan analytical solution for the expansion of the wave-function in n-photon basis. Usingthis result they investigated thoroughly various quantum properties of the DKS. Forinstance, they discussed the evolution of the Mandel Q parameter [17], quasi probabilityQ distribution, and squeezing of the �eld quadratures. Moreover, the phase propertiesof the system were also discussed .1Special Issue on Quantum Optics and Quantum Information2E-mail address: wleonski@main.amu.edu.pl0323-0465/96 c
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372 W. Leo�nski2. Displaced Kerr states { analytical solutionsThe displaced Kerr states can be generated from the usual coherent state j� > byapplication of two operators. One of them is the unitary operator ÛnÛn = ei�2 n̂(n̂�1) ; (1)where the parameter � is a nonlinearity constant corresponding to the Kerr mediumthird-order susceptibility and n̂ is the photon number operator. The evolution operatorcan be related to the Hamiltonian of the nonlinear oscillator Ĥn (in units of �h = 1):Ĥn = �(ây)2â2 : (2)The nonlinear constant � appearing in Eq.(1) can be treated as generalized time. Inconsequence, the system can be investigated as one evolving in time with nonlinearityconstant equal to 1. By action of the operator Ûn on the coherent state j� > we getthe Kerr state j	Kerr >. This can be expressed as in [5]:j	Kerri = Ûn j�i= exp(�1=2j�j2) 1Xn=0 �nn!1=2 ei �2 n(n�1) jni : (3)It is easily seen that this state di�ers from the usual coherent state by the presence ofthe phase factor exp(i�n(n� 1)=2).In the next step we transform the Kerr state to the DKS using the unitary evolutionoperator Ûk. This operator is the usual displacement operator and has the followingform: Ûk = e�ây���â (4)and conforms to the coherent excitation of the physical system corresponding to ourmodel. In consequence, we obtain a state that is referred to as DKSj	DKerri = ÛkÛn j�i : (5)It is possible to �nd an expansion of this state in n-photon basis. This has alreadybeen done by Wilson-Gordon et al. [5]. The coe�cients of that expansion have a rathercomplicated form and our expansion can be expressed as:j	DKerri = 1Xn=0 cn jni ; (6)where cn = exp(�(j�j2 + j�j2)=2) 1Xm=0 ei��me�2m(m�1)j�jm�min[m;n]Xk=0 (�1)m�k n!1=2k!(m� k)!(n� k)!ei��(n�m)j�j(n+m�2k) : (7)



Periodic behaviour of displaced Kerr states 373The complex parameters � and � have been expressed as � = j�j exp(i��) and � =j�j exp(i��), respectively (for simplicity, we shall assume that the parameters � and �are real). This formula (7) enables us to �nd the mean values of various operators.For instance, we can calculate the mean values of the annihilation operator < â >, thesquared annihilation operator < â2 > or the mean number of photons < n̂ >. They aregiven by: < â > = 1Xn=0pn+ 1c�ncn+1 ;< â2 > = 1Xn=0p(n+ 1)(n+ 2)c�ncn+2 ;< n̂ > = 1Xn=0nc�ncn : (8)However, due to the rather complicated form of the coe�cient cn, it is di�cult to �nda compact form of the expressions describing mean values of the operators and hence,we cannot easily draw conclusions concerning the periodic behaviour of the system.Therefore, we propose an alternative method and instead of the transformations of thewave function we evolve the annihilation operator â. This method has been appliedin a paper by Gerry and Grobe [18] where the squeezed Kerr states were discussed.Assuming that during the evolution given by the unitary operator Ûn the mean numberof photons is preserved, the annihilation operator â is transformed to the following form:âDKerr = e�i�n̂â+ � ; (9)where the operator âDKerr corresponds to the DKS.Since we are interested in the quantum evolution of the parameters describing thesystem rather than the operators, assuming that the �eld was initially in the coherentstate we �nd the mean value of the annihilation operator corresponding to the DKS.After some straightforward algebra we can write the mean value as :h	DKerrj â j	DKerri = h�j âDKerr j�i = exp ��j�j2(1� ei�)��+ � : (10)Similarly, we can perform analogous calculations for various combinations of the oper-ators â and ây. 3. Numerical results and discussionWe are now in a position to calculate the Mandel Q parameter for various valuesof the nonlinear constant � (one should keep in mind that the parameter � can betreated as generalized time and therefore, we treat our system as evolving in time).The Q-parameter is de�ned as :Q = < �n̂2 > � < n̂ >< n̂ > : (11)



374 W. Leo�nskiThus, Fig. 1 shows Q as a function of �. We assume that the initial state is a coherentstate j�i with � = 4 and the displacement parameter � = 2. This plot is identical tothat shown in the paper [5]. We see that, similarly as in [5], the system exhibits sub-Poissonian statistics for � < 0:13 and super-Poissonian for � > 0:13. However, when weextend the time-scale (Fig. 2) { the remaining parameters are the same as for the caseshown in Fig. 1 { the situation observed changes considerably. It is seen that the valueof Q starts to oscillate and these oscillations are heavily damped. In consequence, Qreaches � 6:5 and remains constant. For � � 2:8 new oscillations become visible. Afterseveral oscillations they are damped and the Mandel Q-parameter becomes constantagain. Next, we observe oscillations starting for � � 5:5 that are symmetrical to thosefor �� < 0; 1 >. In consequence, the behaviour of the Q-parameter resembles collapsesand revivals. However, the essential feature of this evolution resides in its periodicity.The periodicity is visible as � reaches 2�, when the Mandel parameter reaches the samevalue as for � = 0. Then Q starts to evolve identically as for lower values of �.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−1

0

1

2

3

4

5

6

χ

Q

Fig. 1. Mandel Q-parameter for various values of �. The parameters � and � are assumed tobe real { � = 4, � = 2.A similar character of the evolution can be observed for the parameters describingsqueezing. Thus, similarly as in [5], we can de�ne quadrature operators X̂1 and X̂2:X̂1 = â+ ây2 ;X̂2 = â� ây2i (12)and in consequence, squeezing parameters S1;2:S1;2 = 4 h�h�â1;2)2E� 1=4i : (13)
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Fig. 2. The same as for Fig. 1, albeit for �� < 0; 8 >.They can be expressed as:S1 = 2 < n̂ > +2Re < â2 > �4Re(< â >)2 ;S2 = 2 < n̂ > �2Re < â2 > �4Im(< â >)2 : (14)Fig. 3 shows the above squeezing parameters as functions of the nonlinearity �. Theplots are prepared for the same values of � and � as for Fig. 1. It is seen that theevolution of S1;2 has a similar character as that for the Mandel Q-parameter. Weobserve collapse and revival-like evolution and the periodic behaviour again. Moreover,for � � 2n�, (n = 0; 1; :::) the parameter S1 corresponding to the quadrature X1shows that the state under consideration has squeezing properties. Since all parametersdiscussed here are constructed using the mean values of the annihilation or creationoperators (and their combinations), the periodic character of Q and S1;2 will becomemore evident and clearer as we examine the evolution for mean values of â or ây andfor their combinations.Thus, in Fig. 4 the real parts of the mean values of the operators are plotted. Fig. 3acorresponds to Re < â >, Fig. 3b { Re < â2 >, Fig. 3c { Re < â3 > and Fig. 3d {Re < â4: >. Moreover, we assume that � = 4 and � = 0. This situation corresponds tothe Kerr state without displacement. It is seen that for< â > oscillations are visible onlyfor � � 2�n, (n = 0; 1; 2:::). These oscillations exhibit collapse and revival-like characteragain and are periodic with the period equal to 2�. This fact becomes more evident aswe examine Eq.(10) describing the evolution of the mean value of the operator âDKerr,and not the wave-function j	DKerri. The equation (10) contains periodic functionswith the period equal to 2�. This fact leads to the discussed character of the evolutionshown in Fig. 4a.For the cases of < âk >, (k = 2; 3; 4) shown in Figs.4b-d we observe additional



376 W. Leo�nski

0 1 2 3 4 5 6 7 8
−10

0

10

20

30

40

50

60

(a)

χ

S
1

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

(b)

χ

S
2

Fig. 3. Squeezing parameters S1;2 as function of �. All parameters are the same as in Fig. 1.
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Fig. 4. Real parts of the mean values of the operators: â { Fig. 4a, â2 { Fig. 4b, â3 { Fig. 4cand â4 { Fig. 4d. The parameters � = 4 and � = 0."revivals" for � = 2j�=k, where j = 1; :::; k � 1. Moreover, the amplitudes of all theoscillations are identical. In addition, for even powers of the operator â we observe



Periodic behaviour of displaced Kerr states 377phase inversion of subsequent oscillations. Those behaviors can be explained as a resultof quantum interference. We calculate mean values of products of the operators, notpowers of mean values calculated for single operators.The situation shown in Fig. 5 corresponds to the same parameters as for Fig. 4,albeit we assume that � = 2. In consequence, we deal here with DKS. All mean valuesshown exhibit similar behaviour as those for � = 0. However, we can observe somein
uence of the displacement operator. The additional oscillations are less pronouncedas � becomes signi�cantly greater than zero. Moreover, the amplitudes of satelliteoscillations around � = 2n�, (n = 0; 1; :::) are damped and the oscillations around thisregion of � become dominant.
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Fig. 5. The same as in Fig. 4 albeit for � = 2.It is seen from the above considerations that quantum parameters describing Kerrstates and DKS can exhibit behaviour similar to that well known and referred to ascollapses and revivals. Nevertheless, one should keep in mind that they are not purecollapses and revivals and this behaviour is typically periodic. We explain this phe-nomenon as a result of quantum interference. Moreover, additional oscillations canappear for mean values of the higher powers of the operators. For even powers of
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