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Statistical properties of optical fields in asymmetric nonlinear couplers composed
of two waveguides are investigated within the framework of a generalized superpo-
sition of coherent fields and quantum noise. Raman or Brillouin processes (with
classical pumping) are in operation in the first waveguide. Stokes or/and anti-
Stokes modes are connected through the linear interaction with corresponding
modes in the second waveguide. Various phase mismatches are assumed. An
approach to analytical solution of Heisenberg equations of motion is described.
Various regimes for different values of Stokes and anti-Stokes linear coupling con-
stants are discussed. An influence of various phase mismatches on the generation
of nonclassical states of light including sub-Poissonian statistics, negative reduced
factorial moments and squeezing of quadrature variances is investigated.

1. Introduction

Nonlinear couplers are devices composed of two or more waveguides with mutually
connected modes by means of evanescent waves. In one or more of these waveguides a
nonlinear process takes place. Dynamics of such devices and quantum statistical pro-
perties of their optical fields have been investigated. Assumed nonlinear processes vary
from second harmonic generation, parametric processes, Kerr nonlinearity to Raman
scattering. For details, see Refs. [1-10].

Raman and Brillouin scattering is one of very important and interesting optical
processes, having broad spectra of applications from high-resolution spectroscopy to
Raman amplifiers and generators.

ISpecial Tssue on Quantum Optics and Quantum Information
2E-mail address: fiurasek@prfnw.upol.cz
3E-mail address: perina@risc.upol.cz

0323-0465/96 (© Institute of Physics, SAS, Bratislava, Slovakia 361



pleys J. Flurasek, .. Ferina

In this paper we present an analysis of asymmetric Raman coupler composed of two
waveguides. Stimulated Raman or Brillouin scattering with strong classical pumping of
laser mode is assumed in first waveguide. This assumption allows us to linearize equa-
tions of motion for creation and annihilation operators and find their analytic solution.
Stokes or anti-Stokes modes can interact with their counterparts in the second waveg-
uide, which are injected as the inputs. For simplification we set anti-Stokes coupling
constant k4 = 0 or Stokes coupling constant ks = 0 and analyze influence of Stokes
and anti-Stokes coupling separately.

General discussion of such type of couplers has been given in [5]. Authors restrict
themselves to the case, when phase matching conditions were fulfilled. In this paper we
analyze influence of phase mismatch on the dynamics of coupler. We obtain a strong
dependence on the values of various phase mismatches. We also give some further
analysis of phase matching case.

2. Equations of motion

We consider asymmetric nonlinear coupler schematically illustrated in Fig .1. This
coupler can be described with the use of the momentum operator G in the form

G = > hkjala; + [hjaapiav,aly, + hgs,araal,al + hel
j=S1,41,1

+ Y hkjala; + [hesas,aly, + heada,aly, + bl (1)
j=S2,A2
where g1, aar, dsa, Gas, ar1, av, (aky, aly,, ak,, al,, ab,, al ) are annihila-
, 1

tion (creation) operators of Stokes and anti-Stokes modes in the first and the second
waveguides and laser and vibration modes in the first waveguide. Phenomenological
constants gsi, gai1 describe nonlinear Stokes and anti-Stokes interaction in the first
waveguide and kg, k4 characterize linear coupling of Stokes and anti-Stokes modes in
both waveguides.

Equations of motion can be obtained from Heisenberg equation ih% = [Gé] .
Symbol [,] represents commutator. Assuming strong classical pumping in laser mode
we can replace operator ar; with the complex amplitude a1 — arie*71% and introduce
new constants gs1 = gsiarni, ga1 = gaiar1. We will work in the interaction picture
introducing new operators Aj = ajexp(—ik;z), j = S1,41,V1,S52, As. Equations of
motion have the form

dAg o . o N
L = zgslelAksleLl +irge AKszAg
dz
dA, o . , . R
1 _ ZgAlelAkAlevl + Zﬁj‘eszKAzAA2 ,
dz
dAvy,

— igsleiAkgleL1 + igzlefiAkAleAl 7
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dAS2 IAK
= 1Kge€ SZAq
dz !
dA . .
—r = imae Ay, (2)

where Akgy = ki1 — kvi —ks1 ,Akay = k1 + kv — ka1 ,AKs = ks, — ks, ,AK, =
ka, — ka, are phase mismatch vectors.

Ly Fig. 1. Scheme of the quantum nonlinear coupler formed

S, A, from t.WO waveguides. R:aman or Brillouin processes take

place in the first waveguide. L;, Si, A, Vi denote laser

pump, Stokes, anti-Stokes and vibration modes in the first

waveguide. gs, and ga, are Stokes and anti-Stokes nonlin-

A o ear coupling constants. Stokes or (and) anti-Stokes modes

S, Ay are linearly coupled with their counterparts S», A, in the

second waveguide. ks and ka are corresponding linear
Stokes and anti-Stokes coupling constants.

Ks KA

We start with the assumption k4 = 0, which reduces number of modes from 5 to
4, only Stokes mode S2 in the second waveguide is of importance. Similar analysis
can be done in the case kg = 0 so we can restrict description of solution to the above
mentioned case. We can transform (2) into the system of linear differential equations
with constant coefficients expressing A; by means of new operators
(Z)eé(AkS1 +Ak41 7AK5)Z
(Z)e%(Aksl+AkA1+AKs)z
( ) (Aksl 7Ak,A1+AKs)Z

i
By, (z)e2 )

)

)

Ag, (z) = Bs,
Ay, (z) = By,
Av,(2) = B

As,(2) = Bay ()ed (Mhsr tAka £AKs)= 3)
Equations for Bj written in matrix form are

d -

—B=MB. (4)
dz
The definitions of the matrix M and the vector B are following
%As‘l,Al,fS . 0 *iggl *ifﬁs ?J‘r"l
M = . 0 7%45’:}7‘4175 [ igAl 0 3 B = ?Al
igs, igh, —30s,-as 0 By,
—iK% 0 0 $A5,.4,,5 BLQ

Symbols Ag, 14,45 = Aks, + Ak4, + AKg are used for abbreviation.

We have to find eigenvalues A; of the matrix M to solve the system (4). For detailed
description of the solution, see [11]. M is 4 x 4 matrix and its characteristic polynom
is of the fourth order. We can find its roots A; analytically using Cardan formulae and
therefore we are able (after backward transformation (3)) to write down an analytical
solution of (2). This is rather boring and is not explicitly done here.
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3. Phase matching case

We focus ourselves now to the situation, when all the mismatches are zero. All diag-
onal elements of M vanish. Characteristic equation leads to the biquadratic equation.
A) k4 = 0. The eigenvalues are

A =[5 (<Uga = lgsi |+ ns]®) £ /(ga = lgsi P+ Iws)? = Ales Plga )]
(5)
All four combinations of signs are possible. The expression under the symbol of the
square root plays a key role. Its sign determines the behaviour of the coupler. There
are two possible situations: either all four roots are purely imaginary and we obtain
oscillating solution, either they have nonzero real part and we obtain exponentially

amplified solution. We find three different regions for different values of |xg|

1. |ks] < ||g94,|—lgs,|| linear coupling is too small to change completely behaviour
of scattering, the dynamics of the coupler is similar as for |kg| = 0. We have
oscillating solution for |ga,| > |gs,| and exponential increase for |ga,| < |gs, |-

2. |lga,| —lgs. |l < |ks| < |ga,|+]gs,| — linear coupling induces exponential increase.
The above mentioned expression has negative value in this interval and its square
root is purely imaginary. The four eigenvalues have the form A\; = £Agr£i)A; with
nonzero real parts.

3. |94, + lgs,| < |ks| the behaviour is changing again. Strong linear Stokes
coupling induces oscillations despite of the rate |ga,| : |gs,|. All the eigenvalues
are purely imaginary.

The same approach can be used in the case kg = 0. We receive the matrix M in
similar form as before but small changes induce strong differences. The eigenvalues can
be expressed as

A =[5 (=Uga = lgsi [+ Imal®) £ /(g —lgs P+ ral)? + Amalls P )|
(6)
The sign in the expression under the symbol of the square root has changed from — to
+. This means that two eigenvalues are real (one positive and the other negative) and
the remaining two are purely imaginary. The positive real A; (both signs + in (6)) leads
to exponential increase for all nonzero values of |k4|. The limit value for |k4| — oo is
A= [gs. |-
Phase mismatches generally reduce corresponding processes, lead to faster oscil-
lations in spatial evolution and can change exponentially increasing character of the
solution to oscillating. Their influence will be discussed below in detail.
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4. Photon statistics, factorial moments and squeezing of vacuum
fluctuations

To describe quantum statistical properties of the optical and phonon fields we use
normal characteristic function, which is generating function of the normal ordered mo-
ments of any order. We work within the framework of the generalized superposition of
coherent fields and quantum noise with normal characteristic function in the Gaussian
form

V({8i)7) = e Z[—Bj(z)ﬁj|2+(%@(z)ﬁ_yuc.c.ﬂ )

J

+ Z Z 2)B; By + Dji(2)B 85 + c.c.] + Z 18;€ (2) — c.c.]

Jj ok>j

Here &;(2) = (A;(2)) are corresponding complex amplitudes and a definition of param-
eters is

Bi(z) = (AATAAY),  Dyj(z) = (AA,

AA;
Ci(z) = (AA;AA)),  Dij(z) = —(AATA

i)
Aj) . (8)

We are interested in the possibility of generation of nonclassical states of light in-
cluding sub-Poissonian statistics, negative reduced factorial moments or squeezing of
vacuum fluctuations. As discussed in [5], these effects do not occur in single modes
assuming classical input light. Thus we mostly analyze compound modes, composed
of two single modes. Corresponding number operator is f;; = ATA + ATA and the
integrated intensity W;; = ({ax}|7;j|{ax}) where [{ar}) is the coheren‘r q‘ra‘re The
equations of motion have the form predicting that for any compound mode D;;(z) =0
or D;;(z) = 0 which simplifies our calculations. These special cases are discussed in [4].

We introduce normal generating function and formulae for evaluation of photon
probability distribution and factorial moments of k-th order [4]:

2 2 ]
(Wij) 1 Ab
C A, = —e — e ,
2 _
AI n )\l )\n l
= 7(l+1)
p(n,2) <exp ( 2} 1+/\/\k> I l)!(1+)\1)
fA’ — Al
1 )\ l*(n+1) LU ( 1 ) LO ( 2 >>
( + 2) 1 A](l + )\]) n—lI Az(l + )\2) ’

o B )

X
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Statistical properties of the fields are described by the superpositions of the coherent
signals A} and noises Ay (they are completely different from the eigenvalues in previous
discussion).

Quadrature components (in the interaction picture) are §;; = A4; + fl_i + fl;’ + fl;
and p;; = —i(A; + A; — flf - A;) Their variances are [3]

(A9)*) = 2{1 + Bi(z) + Bj(2) — 2Re[Di;(2)] £ Re[C;(2) + C;j(2) + 2D;(2)]}
and the principal squeezing variance A is

Squeezing of vacuum fluctuations occurs for A;; < 2. We can also define uncertainty
product u;;(2) = ((Api;)?)((Agi;)?) , satisfying the inequality u;;(z) > 4 (an analogue
of the Heisenberg relations of uncertainty).

5. Discussion of results

In this part we give a discussion of the influence of various phase mismatches on
the generation of nonclassical states of light. We assume stimulated Brillouin (phonon
mode in coherent state) or Raman (phonon mode in chaotic state) scattering. We
assume coherent state or vacuum state in all input optical fields. Initial phases of
the modes are important for generation of nonclassical states of light. If their phase
differences are suitably chosen the efficiency of the generation is maximized.

Let us first remark that only oscillating behaviour of the solution is suitable for
our purposes. Exponential amplification does not lead to any nonclassical states of
light for longer z. Therefore the anti-Stokes linear coupling x4 negatively influences
such generation and should be eliminated. This can be done with the help of the anti-
Stokes linear phase mismatch AK 4, which reflects slightly different dispersion in both
waveguides.

Stokes linear coupling constant kg can support generation of nonclassical light as
discussed in [5]. Our analytic results in section 3 reveal that this is true only for
sufficiently high values of kg. There exists a region of its values causing exponential
increase giving no possibility to obtain nonclassical light in the output.

Various phase mismatches generally reduce corresponding interaction, e.g. Akg,
nonlinear Stokes interaction and AKg linear Stokes coupling between both waveguides.
There are generally three regions of their values.

1. Phase mismatch is much smaller than the appropriate coupling constant. The
influence of phase mismatch is small, spatial developement is similar to phase
matching case, induced oscillations have long period.

2. Phase mismatch has a value compared to appropriate coupling constant. The
behaviour of the process is strongly changing. Faster oscillations appear.
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3. Phase mismatch is much greater than coupling constant. This leads to effective
suppression of influenced process, spatial development is similar to the case when
appropriate coupling constant equals zero, and it is modulated with fast oscilla-
tions of small amplitude.

Given division is just qualitative and without sharp boundaries. Generally phase mis-
matches lead to decrease of the nonclassical character of the generated light. Some
exceptions however exist. Phase mismatch can compensate wrong phases. From the
point of view of equations (2) phase mismatch leads to spatial change of the phase of the
corresponding coupling constant. Thus intervals suitable for generation of nonclassical
states of light can appear followed with the intervals destroying this character again.
Phase mismatches can also suppress effects not suitable for nonclassical light generation
such as in the case of non-zero k4.

We restrict our analysis to light modes though statistics of compound photon-phonon
modes can also be studied and interesting results can be obtained. Initial statistics of
compound modes composed of two Stokes or two anti-Stokes modes are mostly con-
served and change from Poissonian to slightly super-Poissonian due to linear coupling
between those modes. So we restrict ourselves to modes composed of Stokes and anti-
Stokes modes.

Influence of linear Stokes phase mismatch AKg

Considering configuration with Stokes linear coupling, nonclassical light with negative
reduced factorial moments can be reached in compound modes (S, 4;) and (Sa2, A1)
for |ga,| > |gs,| and Brillouin scattering. Phase mismatch AKg makes the intervals
of negative factorial moments shorter and intervals of higher positive values occur in
comparison with phase matching case. This is shown in Fig. 2.

The behaviour of the system changes rapidly with the further increase of AKg. Its
high values destroy linear coupling and also the generation of nonclassical light in the
above mentioned compound modes. Reduced factorial moments are positive, modu-
lated with fast oscillations as Fig. 3 shows.

Influence of nonlinear Stokes phase mismatch Akg,

Nonlinear mismatch reduces Stokes process and decreases an ability of generation of
the light with sub-Poissonian statistics. Reduced factorial moments increase but af-
ter that they start to decrease and reach zero value and start to increase again. This
represents changes from coherent light (Poissonian) to super-Poissonian and back to
coherent state. Process repeats periodically, see Fig .4a.

Phase mismatch can support generation of squeezed light in modes (Sy, A1) and
(S2, A1). For mode (S3, A1) the minimal value of A is 1, which is 50% decrease. Fig. 4b
illustrates this situation. Uncertainty product is also plotted there. Its increase and
return to starting value corresponds with increase of noise and the following return to
the coherent state (compare Figs. 4a and 4b).

Influence of linear anti-Stokes phase mismatch AK 4
Its possible influence was mentioned before. Anti-Stokes linear coupling suppresses
possibility of generation of nonclassical light. Mismatch AK 4 can switch off this cou-
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Fig. 2. Reduced factorial moments of the integrated intensity (W*(2))/(W)* — 1 for k
2 (=), k=3 (), k=4 (0) and k = 5 (A) for mode (S2,A1); gs, = 1, ga, = 2, ks =
—10, &s, =2, €s, =2, &y, =1, AKs = 10, and the other parameters are zero.

Fig. 3. Second (—) and third (o) reduced factorial moments for mode (S1, A1); ga, = 3, ks =
6i, AKs = 50 and the other parameters are the same as in Fig. 2.

pling and can improve the conditions for nonclassical light generation. Fig. 5 shows it
explicitly.

Here we have to mention that analyzed configuration includes all five modes if kg # 0
and k4 # 0. Transformation (3) can be still used, but now we have five independent
variables, matrix M has 5 lines and columns and we have to find its eigenvalues numer-
ically. In more general configurations including Raman scattering in both waveguides
we cannot write down a transformation similar to (3) and we have to solve differential
equations with varying coefficients. Generally we have to use numerical calculations
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Fig. 4 (a) Reduced moments of the integrated intensity (W*(2))/(W)* —1 for k =2 (o), k =
3 (O0) and k = 4 (A) and the integrated intensity W (—) for mode (S2, A1), (b) quadrature
variances ((Ap(2))?) (A), ((Ad(z))?) (D), principal squeeze variance A(z) (=) and uncertainty
product u(z) (<) for mode (S2, 41); v, =0, ny; = 0.1, AKs =0, Aks, = 10 and the other
parameters are the same as in Fig. 2.
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Fig. 5. Second reduced factorial moments for Fig. 6. Second reduced factorial moment for
mode (S1, A1) for AK4 = 0 (o) and AK4 = mode (S1, A1); Aks, = 25, Aka, = —20,

150 (=); gs, =1, ga, =2, ks = —10, ka = AKgs = 10 and the other parameters are the
10, és, =1, &€s, =1, &v; = 1 and the other same as in Fig. 2.

parameters are zero.

but some analytical results can be found. But this is beyond the scope of this paper.

Influence of nonlinear anti-Stokes phase mismatch Ak 4,
Its influence is comparable with Stokes nonlinear mismatch Akg,. With its increase
anti-Stokes interaction is strongly suppressed. Statistics of all modes are Poissonian or
super-Poissonian and fast oscillations appear.

Stokes and anti-Stokes nonlinear mismatches can partially compensate each other.
If condition Akg, + Ak, = 0 is fulfilled, only one of four diagonal elements of matrix
M is nonzero (—%(Aks, — Aka,)) and remaining three elements are zero. For small
absolute values of mismatches this compensation can be effective, but with their increase
nonlinear scattering is weakened and initial states of light fields are conserved. An
example is given in Fig. 6. Linear Stokes mismatch is also included to demonstrate
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some general case. Fast oscillations are induced by AKg, Aks, + Aka, = 5 so the
above mentioned compensation takes place.

6. Conclusions

We have investigated nonlinear asymmetric coupler composed of two waveguides.
Raman scattering is active in the first waveguide and Stokes and anti-Stokes modes
of both waveguides are linearly coupled by evanescent waves. We have performed the
linearization of equations of motion assuming strong coherent pumping of laser mode
in the first waveguide. We have included various phase mismatches. The description
of analytic solution in the case k4 = 0 or kg = 0 was given. Analysis of influence of
Stokes and anti-Stokes linear coupling constants based upon calculation of eigenvalues of
matrix M was performed in phase matching case. Three different regions were obtained
for different values of |kg|. Coupling constant k4 supports exponential increase of
integrated intensities and suppresses generation of nonclassical light.

General analysis of influence of phase mismatches was performed. They reduce
corresponding processes and induce fast oscillations in spatial developement. Quantum
statistical properties of compound modes composed of Stokes and anti-Stokes modes
were investigated. Strong dependence on values of various mismatches was obtained.
Nonlinear Stokes mismatch Akg, can support generation of squeezed light. Linear
anti-Stokes coupling can counteract negative influence of anti-Stokes linear coupling
k4 and thus supports generation of nonclassical states of light. Nonlinear Stokes and
anti-Stokes phase mismatches can partially compensate each other.
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