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350 V.V. Dodonov, S.S. Mizrahif (a;e)k (bn) being arbitrary nonnegative functions of the photon number operator bn = bayba.If the Hamiltonian is diagonal in the Fock basis, bH = bH(bn), then Eqs. (1) and (2) resultin a closed set of equations for the occupation probabilities pn = hnjb�jni (n = 0; 1; : : :)_pn =Xk hn(+)k f (a)k (n)pn+k � n(�)k f (a)k (n� k)pni�Xk hn(+)k f (e)k (n)pn � n(�)k f (e)k (n� k)pn�ki ; (3)where n(+)k � (n + k)!=n!, n(�)k � n!=(n � k)!. Note that Eq. (3) does not con-tain o�-diagonal matrix elements. And vice versa, the evolution of the o�-diagonalelements is completely independent of the evolution of the diagonal ones, since thederivative @hmjb�jni=@t is expressed in terms of the elements hm+ kjb�jn+ ki only (withk = 0;�1;�2; : : :). This means that the stationary solutions to Eqs. (1)-(2) describecompletely decoherent states, since all o�-diagonal elements relaxate to zero values.If f (a)k and f (e)k are constant positive numbers, then the terms labeled with super-scripts (a) or (e) describe the processes of k-photon absorption or emission by someatomic reservoirs [4]. The choicef (e)k (n) = dk h1 + 
kn(+)k i�1 ; f (a)k (n) = const (4)corresponds to a multiphoton generalization of the Scully-Lamb [5] single-mode laserequation, the coe�cient 
k being responsible for the saturation e�ect. Another equation,implying the presence of emission processes of all orders, described by means of powersof the shift operator bupn � pn�1 � pn, was proposed by Golubev and Sokolov [6]:_pn = r ln (1 + bu) pn +D(a)1 [(n+ 1)pn+1 � npn] : (5)In this case, coe�cients f (e)k (n) are some rational functions determined by the Taylorexpansion of function ln(1+u). A more general equation, with transcendental (trigono-metrical) coe�cients f (e)k (n), was obtained in [7].It appears that the family of known exact solutions of Eqs. (1) and (3) is not verylarge. For instance, exact solutions for arbitrary functions f (a)k (n) and f (e)k (n) werefound only in the stationary case with k = 1 [8]. Exact time dependent solutions ofEq. (3) (as well as of equations for the o�-diagonal elements) in the case of constantcoe�cients f (a)1 and f (e)1 were obtained in [9] (see also [10]). Exact time evolution forthe one-photon Scully-Lamb equation without absorption (f (a)1 = 0) was found in [11].For k � 2 (multiphoton processes), exact time dependent solutions of Eq. (3) with asingle nonzero coe�cient (either f (a)k or f (e)k ) were found in Refs. [11{21]. In particular,the two-photon emission with f (e)2 = const was considered in [12, 14]. The case of thefunction f (e)2 (n) in the modi�ed Scully-Lamb form (4) was treated in [11]. The two-photon absorption without emission (f (a)2 = const) was studied in detail in [13{17].The case f (a)k = const with an arbitrary k � 2 was investigated in [19, 20], and the case



Stationary distributions and phase-averaged even/odd states . . . 351f (e)k = const | in [20] (the evolution of the o�-diagonal matrix elements in the case oftwo-photon absorption was studied in [18], and for k-photon absorption | in [20, 21]).Other references can be found, e.g., in [22, 23]. Exact time dependent solutions withtwo nonzero coe�cients were obtained in [6,24{26]. In particular, the time dependentabsorption problem with constant coe�cients f (a)1 and f (a)2 was solved in Ref. [24] (amore detailed analysis was given recently in [26]).A simpli�ed version of equation (5), with the operator ln (1 + bu) replaced by the�rst two terms of the Taylor expansion, bu�bu2=2, was solved in [6], whereas the solutionin a general case was given in [25]. Other exact solutions with two (or more) nonzerocoe�cients were found in the stationary regime only. For the case of simultaneous k-photon absorption and k-photon emission (the so called systems in detailed balance)this was done in [27] for the coe�cients in the form (4), and in [28] for constant f (a)kand f (e)k (see also [16] for k = 2). A scheme of obtaining exact stationary solutions ofthe two-photon Scully-Lamb equation with single-photon losses (f (a)1 = const, f (a)2 = 0)was given in [29]. It was generalized to an arbitrary k � 2 in [30]. A stationary solutionthe case f (e)2 = An=(n + 2), f (a)2 = Bn(n � 1), was found in [31] . The case of threecoe�cients, f (a)1;2 = const, f (e)1 (n) = const or f (e)1 (n) = A(n + 1)�1, was consideredbrie
y in [32, 33]. A detailed analysis of the problem with three constant coe�cients,f (a)1 , f (a)2 and f (e)1 (when one has one- and two-photon absorption, but only one-photonemission), was given recently in [34].The aim of the present article is to �nd a stationary exact solution to Eq. (3) in thepresence of a two-photon emission. Although we did not succeed in solving the equationfor a constant emission coe�cient f (e)2 , we found that the problem can be solved in thecomplete saturation regime (
2 � 1) of the two-photon Scully-Lamb equation (4), whenthe two-photon emission is described by the function f (e)2 (n) = D[(n + 1)(n + 2)]�1(with the standard form f (a)k = const for the absorption terms, k = 1; 2). Underthis restriction, there exists a 4-parameter family of equations, whose solutions can beexpressed in terms of the con
uent hypergeometric function or its special cases.The physical motivation for studying the new model (which is, in turn, a specialcase of a more general 6-parameter family of equations admitting exact solutions) isexplained by the fact that in the case of weak one-photon processes the stationarysolutions describe an interesting class of nonclassical states, namely phase-averagedeven and odd states (PAEOS), which are mixed analogs of the even and odd coherent(pure) states (EOCS)j��i = N�(j�i � j � �i); N2+ = exp(j�j2)4 cosh(j�j2) ; N2� = exp(j�j2)4 sinh(j�j2) (6)(j�i means the Glauber coherent state [35]), introduced in [36] and studied, e.g. in[23,37{41] (for generalizations see, e.g. [42{46]). Since EOCS are the simplest examplesof the \Schr�odinger cat states" (another simple example is the Yurke-Stoler state [47]je�iY S = (j�i + ij � �i) =p2, the principal di�erence between EOCS and YS-states isthat the EOCS have super- (even states) or sub-Poisson (odd states) photon statistics,



352 V.V. Dodonov, S.S. Mizrahiwhereas the statistics of the YS-states is exactly Poissonian), many authors considereddi�erent schemes of generating these states in physical processes: see, e.g. [48{52] andan extensive review [53]. It is known, in particular [51], that even and odd coherentstates can arise due to the competition between a two-photon absorption and two-photon parametric processes (described by means of a nondiagonal Hamiltonian bH(t))for a special initial �eld state. Here we show that one can obtain phase-averaged evenand odd states using a diagonal Hamiltonian, provided that the (saturated) two-photonemission is admitted. 2. A family of exact solutionsA complete information about the distribution fpng is contained in the generatingfunction (GF) F (z; t) = P1n=0 pn(t)zn. Its derivatives yield the probabilities pn andthe factorial moments Nm �P1n=m n(n� 1) � � � (n�m+ 1)pn:pn = 1n! @nF@zn ����z=0 ; Nm = @mF@zm ����z=1 : (7)If the products n(�)k f (a;e)k (n) are polynomials of n, then one can replace the in�nitesystem of di�erence equations (3) for the probabilities pn by a single di�erential equationfor F (z). In the simplest cases, corresponding either to one-photon processes [9, 10],or to a speci�c form of the emission operator (5) [6, 25], one gets a linear di�erentialequation of the �rst order. In the most of other known cases, the generating functionssatisfy the second order di�erential equations of the hypergeometric type [13{18,24,26](an exception is the case considered in [31], where a speci�c equation of the fourthorder was solved with the aid of the Laplace method). One can verify that the setof stationary ( _pn = 0) equations (3) results in the second order equation with linearcoe�cients (F 0 � dF=dz),hD(a)2 (1 + z) + �D(a)10 +D(a)12 � ziF 00+24D(a)1 + 2D(a)12 � z0@D(e)1 +Xj 6=1W (e)1j 1A35F 0�24D(e)2 (1 + z) +D(e)1 +D(e)11 +Xj 6=1 jW (e)1j 35F = 0; (8)provided that functions f (a;e)k have the following form:f (e)2 (n) = D(e)2(n+ 1)(n+ 2) ; f (a)2 (n) = D(a)2 ; (9)f (a)1 (n) = D(a)1 +D(a)10 n+D(a)12 (n+ 2); (10)



Stationary distributions and phase-averaged even/odd states . . . 353f (e)1 (n) = D(e)1 + 1n+ 1 0@D(e)11 +Xj 6=1W (e)1j (n+ j)1A ; (11)D(a;e)ij and W (e)1j being nonnegative constant coe�cients, whereas j can be any integer(excepting the value j = 1, which is distinguished for the sake of convenience, because itcorresponds to the usual one-photon emission described by the coe�cient D(e)1 ). SinceEq. (8) can be reduced to the Kummer equation [54]xy00 + (c� x)y0 � ay = 0; (12)we have a whole family of master equations admitting exact stationary solutions interms of the con
uent hypergeometric function�(a; c;x) = 1Xk=0 (a)kxk(c)kk! ; (13)where (a)n � a(a+1) � � � (a+n�1). This family is determined by 6 independent positiveparameters, so it is larger than any one considered until now. Note, however, that wehave some freedom only in the choice of terms responsible for the one-photon processes,while the structure of two-photon terms is �xed: the usual two-photon absorption andthe completely saturated two-photon emission (corresponding to the limit 
2 ! 1,d2=
2 ! D(e)2 in Eq. (4)).Here we con�ne ourselves to the special case D(a)10 = D(a)12 = W (e)1j = 0. Then wehave 5 independent parameters, D(a;e)1;2 and D(e)11 . Normalizing all the coe�cients bythe two-photon absorption coe�cient, D(a)2 , we arrive at the following set of stationaryequations for the probabilities and for the generating function:� f(n+ 1)pn+1 � npn � s [(n+ 1)pn � npn�1]� � [pn � pn�1]g+(n+ 1)(n+ 2)pn+2 � n(n� 1)pn � r2 (pn � pn�2) = 0; (14)(1 + z)F 00 + �(1� sz)F 0 � ��(s+ �) + r2(1 + z)�F = 0; (15)where we have introduced the dimensionless coe�cients� � D(a)1 =D(a)2 ; s � D(e)1 =D(a)1 ; � � D(e)11 =D(a)1 ; r2 � D(e)2 =D(a)2 : (16)A regular solution to Eq. (15) (without a singularity at z = �1) satisfying the normal-ization condition F (1) = 1 can be expressed in terms of the con
uent hypergeometricfunction F (z) = eh(1�z)�(�g ; �[1 + s] ; R[1 + z])�(�g ; �[1 + s] ; 2R) ; (17)where R = �(�s)2 + 4r2�1=2 ; h = 12(R� �s); g = 1R [s+ � + h(1 + s)]:



354 V.V. Dodonov, S.S. MizrahiIn particular, if s = 0, then R = 2r, h = r, and g = 12 (1 + �=r). The probabilities andfactorial moments can be found with the aid of Eq. (7) and the relation [54]dndxn�(a; c;x) = (a)n(c)n �(a+ n; c+ n;x):2.1. Some special casesIf the one-photon processes dominate over two-photon ones, � !1 (whereas r; s; �remain �nite), then h! 0, R � �s, �g ! 1+�=s. Replacing (c)k by ck in the Kummerseries (13) for c � 1, we obtain the following limit of the generating function (17) as� !1: F (z) = � 1� s1� sz�1+�=s : (18)This is the GF of the negative binomial distribution, which was considered in connectionwith the problems of quantum optics, e.g. in Refs. [55, 56]. For � = 0 (18) becomes theGF of the thermal (Planck's) distribution, whereas for s ! 0 it goes to the GF of thePoisson distribution. Evidently, Eq. (18) is valid only for s < 1, whereas the generalformula (17) holds for all nonnegative parameters s; �; �; r. If s � 1, the asymptoticbehaviour of GF at � � 1 is more complicated. For instance, in the particular caser = � = 0, the distribution fpng becomes Gaussian when � � 1 and s � 1 [34].The Poisson distribution arises also in the limit s ! 1. Then the GF tends toexp(z�1), i.e. the limit distribution has the mean photon number n = 1, independentlyon the values of other (�nite) parameters, �; �; r.Another simple expression for the GF is obtained in absence of the two-photonabsorption, D(a)2 = 0. Then instead of Eq. (15) we get the �rst order equation�(1� sz)F 0 � [�(s+ �) + �(1 + z)]F = 0 (19)(� � D(e)2 =D(a)1 ), whose normalized solution readsF (z) = � 1� s1� sz�1+
 exp h�s (1� z)i ; 
 = 1s �� + �+ �s� : (20)3. Phase-averaged even and odd statesNow let us consider the situation, when the two-photon processes dominate over theone-photon counterparts. Suppose �rst that the one-photon processes are completelyabsent, i.e. � = �s = �� = 0. Then the solution of Eq. (15) satisfying the conditionF (1) = 1 reads F (z) = (1� �)cosh(rz)cosh(r) + � sinh(rz)sinh(r) ; (21)so the occupation probabilities are given byp2k = (1� �)r2k(2k)! cosh(r) ; p2k+1 = �r2k+1(2k + 1)! sinh(r) : (22)



Stationary distributions and phase-averaged even/odd states . . . 355The distribution (22) is nothing but a combination of the photon distribution functionsof the even and odd coherent states j�+i and j��i (6) with relative weights 1�� and �,respectively, provided that j�j2 is identi�ed with the ratio of the two-photon emissionand absorption coe�cients r. The relative weight of the odd states � is determinedby the initial conditions, since there is no correlation between even and odd states:� =P1k=0 p2k+1(0).Using the known Wigner function of the Fock state jnihnj [57, 58]Wn(p; q) = 2(�1)n exp ��p2 � q2�Ln �2p2 + 2q2�(Ln(x) being the Laguerre polynomial) and the generating function of the Laguerrepolynomials [54] 1Xn=0 znn! Ln(x) = ezJ0 �2pxz� ;it is not di�cult to write an explicit expression for the Wigner function of the mixedstate b� =P pnjnihnj with the coe�cients given by Eq. (22):W (p; q;�; r) = exp ��p2 � q2�sinh(2r) n�1� (1� 2�)e�2r� I0 �p8r (p2 + q2)�+ �(1� 2�)e2r � 1�J0 �p8r (p2 + q2)�o : (23)Here J0(z) is the Bessel function and I0(z) is the modi�ed Bessel function. The Wignerfunction (23) has zero mean values of the quadratures q and p, and it is very di�erentfrom the Wigner functions of the pure even/odd coherent statesW�(p; q; �p; �q) = 2N2�n exp h� (q � �q)2 � (p� �p)2i+ exp h� (q + �q)2 � (p+ �p)2i� 2 exp ��q2 � p2� cos [2 (q�p� p�q)]o; (24)where �p; �q are the mean values of the quadratures in the initial coherent state j�i with� = (�q + i�p) =p2. However, assuming �q = p2r cos', �p = p2r sin' and averagingW�(p; q; �p; �q) over the angle ' according to the formulafW�(p; q; r) � Z 2�0 d'2�W�(p; q;p2r cos';p2r sin')we arrive exactly at Eq. (23) with � = 0 for the even states and � = 1 for the oddstates. For this reason we call the state described by the Wigner function (23) asthe phase-averaged even/odd state (PAEOS). The phase-averaged coherent states wereconsidered in [59] in connection with the problem of a classical limit for the quantumoscillator. The PAEOS are quantum mixtures, since the purity coe�cient� � Tr(�2) = 12 (� 1� �cosh r�2 [I0(2r) + J0(2r)] +� �sinh r�2 [I0(2r)� J0(2r)])



356 V.V. Dodonov, S.S. Mizrahiis less than 1 for r > 0. It is a monotonous function of r, whose asymptotics are� � (1� �)2(1� r2) + �2(1� r2=3); r � 1; � � �(1� �)2 + �2� =p�r; r � 1:Nonetheless, PAEOS are nonclassical states, since the Wigner function W (q; p) (23)assumes negative values, as shown in Figs. 1 and 2, where we plot W (q; p) as a functionof x = pq2 + p2. If r > 1, then the plots corresponding to parameters 1 � � and� have a mirror symmetry with respect to the x-axis for x < pr=2, since in thisregion the contribution of the oscillating function erJ0 �xp8r� is dominating (note thatW (0; 0; r; �) = 2(1� 2�) does not depend on r).
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Fig. 1. Wigner function W (x), x � pq2 + p2, of the phase-averaged even state (� = 0) forr = 10.
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Fig. 2. Wigner function W (x), x � pq2 + p2, of the phase-averaged odd state (� = 1) forr = 10.However, the dependence on � disappears for x > pr=2 > 1, where the Wignerfunctions are close to zero in a wide interval (which increases with an increase of r),then exhibit wide and not very high maxima (at x � p2r), and �nally tend to zeroexponentially for x � p2r. In the special case � = 1=2 the Wigner function (23) is
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Fig. 3. Wigner function W (x), x �pq2 + p2, of the phase-averaged \maximally mixed state"(� = 0:5) for r = 10.positive and does not oscillate even for large values of the parameter r, as shown inFig. 3. Note that the purity coe�cient � also attains its minimum (for a �xed value ofr) when � is close to 1=2.The type of the photon statistics (sub- or super-Poissonian) is determined by Man-del's parameter Q � N2=N1 �N1. In the case of PAEOS this parameter equalsQ = rB �1�B2� ; B = (1� �) tanh(r) + � coth(r);so the photon statistics becomes sub-Poissonian for � > 12 �1� e�2r�, i.e. 1�2� < e�2r.In particular, in the case � = 1=2 (Fig. 3) we still have the sub-Poisson statistics.Till now we assumed that we had no one-photon processes at all. Now let us allowa small (but nonzero) coe�cient � (weak one-photon processes). Then we can simplifyEq. (17) with the aid of the relation lim�!0 �(a�; c�;x) = 1 + (a=c) (ex � 1). In thislimit, R ! 2r, h ! r, g ! 12 (1 + s) + (s + �)=(2r), we arrive again at Eq. (21).The essential di�erence is that now the coe�cient � is determined not by the initialconditions, but by the relative strengths of the emission and absorption processes:� = sinh(r) sinh(r) + (S=r) cosh(r)cosh(2r) + (S=r) sinh(2r) ; S � s+ �s+ 1 ; (25)and it is always less than 1=2, since1� 2� = [cosh(2r) + (S=r) sinh(2r)]�1 > 0:It is remarkable that parameter � does not enter the formulas describing the stationarydistribution in the limit � � 1. It in
uences only the relaxation time trel � ��1, butnot the form of the stationary state. If r ! 0 (no two-photon emission, two-photonabsorption only), then � ! S=(1 + 2S). If we have no one-photon emission (S ! 0),then � ! tanh2(r)= �1 + tanh2(r)�. The maximal value � = 12 is achieved when S !1or r !1.



358 V.V. Dodonov, S.S. MizrahiMandel's parameter reads nowQ = r �1� (S=r)2� �1� tanh2(2r)�[1 + (S=r) tanh(2r)][(S=r) + tanh(2r)] : (26)The photon statistics is sub-Poissonian if r < S, and super-Poissonian if r > S. For a�xed r, function Q(S) monotonously decreases from Q(0) = r coth(2r) �1� tanh2(2r)�to Q(1) = �r coth(2r) �1� tanh2(2r)�. Consequently, � 12 < Q(r; S) < 12 .4. ConclusionLet us formulate the main results of the paper. We have found an exactly solvable6-parameter family of stationary master equations for the diagonal elements of the1-mode �eld in a cavity in the presence of competing one- and two-photon emissionand absorption processes, and we gave explicit solutions for its 4-parameter subfamilydescribing the completely saturated two-photon emission regime. We have shown thatin the limit case of weak one-photon processes, the �eld mode goes to the nonclassicalstationary state which can be considered as a mixed analog of even and odd purecoherent states. Although we considered an idealized case of a completely saturatedtwo-photon emission, the results obtained could help to understand the qualitativefeatures of real (partially saturated) processes.Acknowledgements This research was supported by FAPESP, project 1995/3843-9.SSM thanks CNPq and FINEP, Brasil, for partial �nancial support.References[1] A.A. Belavin, B.Ya. Zel'dovich, A.M. Perelomov, V.S. Popov: Zh. Eksp. Teor. Fiz. 56(1969) 264; Sov. Phys. JETP 29 (1969) 145[2] G. Lindblad: Commun. Math. Phys. 48 (1976) 119[3] E.B. Davies: Quantum Theory of Open Systems (Academic, London, 1976)[4] Y.R. Shen: Phys. Rev. 155 (1967) 921[5] M.O. Scully, W.E. Lamb: Phys. Rev. 159 (1967) 208[6] Yu.M. Golubev, I.V. Sokolov: Zh. Eksp. Teor. Fiz. 87 (1984) 408; Sov. Phys. JETP 60(1984) 234[7] J. Bergou, L. Davidovich, M. Orszag, C. Benkert, M. Hillery, M.O. Scully: Opt. Comm.72 (1989) 82[8] R. Landauer: J. Appl. Phys. 33 (1962) 2209[9] B.Ya. Zeldovich, A.M. Perelomov, V.S. Popov: Zh. Eksp. Teor. Fiz. 55 (1968) 589; Sov.Phys. JETP 28 (1969) 308[10] A. Schell, R. Barakat: J. Phys. A 6 (1973) 826[11] A. Bandilla, H. Voigt: Opt. Comm. 43 (1982) 277[12] P. Lambropoulos: Phys. Rev. 156 (1967) 286[13] G.S. Agarwal: Phys. Rev. A 1 (1970) 1445[14] K.J. McNeil, D.F. Walls: J. Phys. A 7 (1974) 617



Stationary distributions and phase-averaged even/odd states . . . 359[15] N. Tornau, A. Bach: Opt. Comm. 11 (1974) 46[16] H.D. Simaan, R. Loudon: J. Phys. A 8 (1975) 539, 1140[17] A. Bandilla, H.-H. Ritze: Ann. Physik (Leipzig) 33 (1976) 207[18] H.D. Simaan, R. Loudon: J. Phys. A 11 (1978) 435[19] H. Voigt, A. Bandilla, H.-H. Ritze: Zs. Phys. B 36 (1980) 295[20] M.S. Zubairy, J.J. Yeh: Phys. Rev. A 21 (1980) 1624[21] H. Voigt A. Bandilla: Ann. Physik (Leipzig) 38 (1981) 137[22] H. Paul: Rev. Mod. Phys. 54 (1982) 1061[23] J. Pe�rina: Quantum Statistics of Linear and Nonlinear Optical Phenomena (Kluwer,Dordrecht, 1991)[24] A. Bandilla: Opt. Comm. 23 (1977) 299[25] W. Tan: Phys. Lett. A 190 (1994) 13 Opt. Comm. 115 (1995) 303[26] V.V. Dodonov, S.S. Mizrahi: J. Phys. A 30 (1997) 2915[27] K.J. McNeil, D.F. Walls: J. Phys. A 8 (1975) 104[28] V.V. Dodonov, S.S. Mizrahi: Physica A 214 (1995) 619[29] M.S. Zubairy: Phys. Lett. A 80 (1980) 225[30] A. Bandilla, H. Voigt: Zs. Phys. B 58 (1985) 165[31] A.R. Bulsara, W.C. Shieve: Phys. Rev. A 19 (1979) 2046[32] A. Bandilla, H.-H. Ritze: Opt. Comm. 19 (1976) 169[33] G.P. Hildred: Optica Acta 27 (1980) 1621[34] V.V. Dodonov, S.S. Mizrahi: J. Phys. A 30 (1997) 5657[35] R.J. Glauber: Phys. Rev. 131 (1963) 2766[36] V.V. Dodonov, I.A. Malkin, V.I. Man`ko: Physica 72 (1974) 597[37] M. Hillery: Phys. Rev. A 36 (1987) 3796[38] Y. Xia, G. Guo: Phys. Lett. A 136 (1989) 281[39] V. Bu�zek, A. Vidiella-Barranco, P.L. Knight: Phys. Rev. A 45 (1992) 6750[40] C.C. Gerry: J. Mod. Opt. 40 (1993) 1053[41] V.V. Dodonov, V.I. Man'ko, D.E. Nikonov: Phys. Rev. A 51 (1995) 3328[42] M.S. Abdalla, M.H. Mahran, A.-S.F. Obada: J. Mod. Opt. 41 (1994) 1889[43] V. Spiridonov: Phys. Rev. A 52 (1995) 1909[44] C. Brif, A. Mann, A. Vourdas: J. Phys. A 29 (1996) 2053[45] C. Brif: Ann. Phys. (NY) 251 (1996) 180[46] D.A. Trifonov: J. Phys. A 30 (1997) 5941[47] B. Yurke, D. Stoler: Phys. Rev. Lett. 57 (1986) 13[48] A. Mecozzi, P. Tombesi: Phys. Rev. Lett. 58 (1987) 1055[49] M. Brune, S. Haroche, J.M. Raimond, L. Davidovich, N. Zagury: Phys. Rev. A 45 (1992)5193[50] V. Bu�zek, H. Moya-Cessa, P.L. Knight, S.J.D. Phoenix: Phys. Rev. A 45 (1992) 8190[51] C.C. Gerry, E.E. Hach III: Phys. Lett. A 174 (1993) 185[52] S.M. Chumakov, A.B. Klimov, J.J. Sanches-Mondragon: Phys. Rev. A 49 (1994) 4972[53] V. Bu�zek, P.L. Knight: Progress in Optics, ed. E. Wolf (North Holland, Amsterdam,1995) Vol 34, p. 1



360 V.V. Dodonov, S.S. Mizrahi[54] Bateman Manuscript Project: Higher Transcendental Functions, ed. A. Erd�elyi (McGraw-Hill, New York, 1953)[55] A. Joshi, S.V. Lawande: J. Mod. Opt. 38 (1991) 2009[56] G.S. Agarwal: Phys. Rev. A 45 (1992) 1787[57] H.J. Groenewold: Physica 12 (1946) 405[58] V.V. Dodonov, V.I. Man'ko: Physica A 137 ( 1986) 306[59] V.V. Dodonov, V.I. Man'ko, V.N. Rudenko: Kvantov. Elektron. 7 (1980) 2124; Sov. J.Quantum Electron.10 (1980) 1232


