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Using Schwinger’s model of angular momentum it is possible to introduce general
angular momentum phase space distributions by using two independent harmonic
oscillators. We establish the connection between general and fixed j phase space
functions. This is a reduction based on a relationship between the corresponding
coherent states.

1. Introduction

Quasiprobability distributions have already become customary tools of analyzing
experimental results in detecting quantum states of systems like an ion oscillating in a
harmonic trap, or for a mode oscillator [1]. Recent developments have made it available
to work with theoretical constructions of quasiprobabilities for a system of two-level
atoms [2]. The best known example for such quasiprobabilities was the P function
introduced in [3]. Actually the concept of using quasiprobability functions for systems
with a given spin is much older, a Wigner type function has been proposed first by
Stratonovich [4] and later on similar constructions have been considered independently
by several authors [3, 5, 6, 7, 8]. We use here the construction and notation intro-
duced by Agarwal [5]. Similarly to the case of oscillator quasidistributions [9, 10], the
quasiprobability functions for angular momentum states are not unique either.

In the present paper we show a certain connection between these two types of phase
space distributions. The method is based on the Schwinger model for angular momen-
tum [11], and the connection between the coherent states of the two systems. As the
coherent states are most closely related to the ) function, which is the expectation
value of an operator in a coherent state, it is natural that the closest connection that
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can be found is between the Q" function of a double harmonic oscillator, and the Q7
function of angular momentum in a subspace of fixed angular momentum quantum
number. We do not restrict ourselves below to the case of the density operator, for
which the phase space representation is a quasiprobability distribution, but we shall
allow arbitrary operators, used in the description of the systems in question.

In Section 2 we give a short overview of the angular momentum coherent states
based on the Schwinger model. In Section 3 we summarize the method of phase space
representations for the oscillator and for angular momentum with fixed value of j. In
Section 4 the construction of phase space distributions for general angular momentum
is given, and finally in Section 5, we show, how to reduce the general construction of
Section 4 to the case of fixed j.

2. Schwinger model and angular momentum coherent states

Let us first recall [12] how one defines angular momentum coherent states based
on the Schwinger model [11]. One takes two independent harmonic oscillators: a “+”
one and a “—” one, with creation and annihilation operators aL a4, and al , a_,
respectively. The operators with different subscripts commute among others, while
those with identical subscripts satisfy the usual oscillator commutation relations. They
act in a Hilbert space spanned by the double number state basis, which are eigenvectors

of the number operators N; = aL_aJr, N=ala_:

(IT n+ (IT n_
nyan) = DO ), 1)
n+.n,.

If one defines the following operators:

1 1
Jyo= ala,, J_ =a,a Jz = 5(a1a+ —dla )= §(N+ - N_), (2

it is not difficult to show, that these satisfy the standard angular momentum commu-
tation relations (h = 1):

[Ty, ] ] =2, [T, Je,] = £J4. 3)

This means that the two operator algebras are the same, so the simultaneous eigenvec-
tors of J3 and J? can be labeled by ny, and n_. Tt is simply seen from the definition
of .J3 that

1 1
mzi(n+—n,), j:E(n++n,)7 ng=j+m, n_=j-m. (4
The eigenvalues of J? are then, of course, 1(ny +n_)(3(ny +n_) +1).
So the double oscillator is equivalent to an angular momentum representation, where

each 0 < j < oo occurs exactly once, with all the possible m-s. The coherent states
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| ag, a_) of the double oscillator can be defined e.g. by their expansion in the number
state basis as:

g ) = ol Pl /2§ Q00 |n+, (5)

e \/n+'n

By rearranging the terms in the doubly infinite sum above, so that first one makes the
finite summation over terms where j = —(n+ +n_) is fixed, and then over all possible
j-s, the identification (4) leads to:

o 2 1 [ 2 i
|a+_a7> = ef(‘ﬂ+‘ +la_| )/22 Z < ) )ai m,ai m|7m> _
; T + Js
j V(2-7)'m:—j JTm

= e (o =2 N+ m)!(G = m)) ™ (apal )T (aal )T710,0).  (6)

J,m

These states can be considered as the coherent states for angular momentum. For a
fixed j they coincide with the atomic coherent states of [3] apart from a normalization
factor. As the definition of certain spin quasiprobabilities, P and () functions are based
on these coherent states, this formula will have a definitive role in what follows.

3. Phase space representations

3.1. Oscillator

In definitions of phase space representations for a single oscillator a fundamental
role is played by the continuous operator basis:

D()\) = exp(Aa’ — Xa). (7)

labeled by the complex number A. The characteristic function of an operator in the
Hilbert space of a single oscillator is defined as:

xa(A) = Tr(A D()N)). (8)

The f type phase space distribution of an operator A is then the Fourier transform
of the product of the characteristic function x4(A) and of another ¢-number function

fO):

Falai f) = — / XA FNel T NN = Tr(AA(w; ), (9)

where in the second equality we have introduced the f type operator kernel:

a f ﬂ_g/f a)\*fa )\)dQA (10)
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Specifically the s ordered distribution function [9]is obtained with:
F(A) = exp(s[A]*/2). (11)

As it is well known, for the density operator the special cases of s in (11) correspond
to distinguished quasiprobabilities, namely, when s = 1,—1,0 then the function F
reduces to the P function, @ function and the Wigner function respectively. For an
arbitrary operator A the Wigner function Wx(a) := Fa(a; f = 1), (which is called the
Moyal representation[13]), plays a special role, as in that case the following product
rule holds:

Tr(AB) == /WA(Q)WB(a)dQOz. (12)

3.2. Angular momentum

A similar procedure has been used earlier for the angular momentum for a fixed j
[4, 5, 6, 7] (we use the notation of Ref. [5]). One first chooses an operator basis in the
27 + 1 dimensional Hilbert space, and defines the characteristic function as expansion
coefficients in this basis. The most straightforward set of operators is the set of the
spherical tensor operators Tk, which transform among others irreducibly under the
action of the rotation operators[14]. Their explicit expression is:

Tro = Z‘(—l)jm(2K+1)1/2<];n . ij>j7m>(j7m—Q|= (13)

j K J . . . )
where < “mQ m-Q > is the Wigner 3j symbol. Then one introduces the char-

acteristic matrix of any operator A with respect of this operator basis as:
Akq = Tr(ATL), (14)

which, according to the orthogonality property Tr(TKer TIT(Q) = Opp 5QQ’ can be
inverted yielding the expansion of A in terms of the Tkg-s:

27 K
A=Y Y AkeTka (15)

K=0Q=-K

One defines now the following two operator kernels of type Qand Q1

A(B,0;0) =Y TrqYi o0, 9)%kq | (16)
K,Q

Ao 1

A (97%9) - ZTKQYK,Q(97()0)QKQ . (17)

K.Q
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where the Yk -s are the spherical harmonics, and the QQxg-s are complex numbers
depending on the discrete indices K and (). These operators are self adjoint if Qg =
Q) - The Q type quasiprobability distribution for an operator A in the 2j + 1
dimensional Hilbert space is defined with the help of these kernels according to:

1 [2j+1
7900 47

Fi(6,4;9) Te(AX (8,0 02)). (18)

It is also useful to introduce the conjugate distribution according to:

27 +1

F1(8,9;9) = Qoo Te(A A (6, 0:92)). (19)

The simplest type of function, which is the analog of the Wigner function of the
oscillator is the one in which Qgg = 1 for all K and @. Then the F' function is self-

conjugate: F;i (0,0,1) = F,(8,0;1) = Wa(8, ) (for Wigner) and the product rule can
be shown to hold:

Tr(AB) = /WA(H,@)WB(G,(p) sin fdfdp. (20)

It has become customary to call the expectation value of an angular momentum
operator A in an atomic coherent state,

j .
2 s m0 j—m o —i(j+m .
0.0 = D, ( jﬁm)sm-“ 5 cos’ " Se T ) (21)

m=—j
the @ function:

, 2 +1
Q0. ) = 1 (0,0l Alf,¢);. (22)

One can show that the corresponding set of Q-5 is the following:

0 CDFOVIRQ))!
K= i -KIRj+ K+ 1)

4. Quasiprobabilities for arbitrary angular momentum

Based on the Schwinger connection between the double oscillator and angular mo-
mentum, it is possible to construct phase space distribution functions for general angular
momentum operators, as we are going to show below. By the term “general” we mean
that the operators, which we want to be represented by the quasiprobability distribution
functions, do not need to be restricted to a subspace specified by a particular eigenvalue
of the square of the angular momentum.



24l . rola1 et al.

The construction of these quasiprobability distribution functions is straightforward.
In view of the Schwinger model the operators

D()\+,)\,) - D+()\+) D,()\,) 5 )\+,)\7 € C, (23)

form a basis among the general angular momentum operators, therefore any operator
A can be expanded as

1 1
A=— dz/\+/d2)\,m XA(A4,A-) DAy, A-), (24)

2
where the f type characteristic function x4 (A4, A_) is the following:
xa (A ) = Tr (A £ (A, A ) DG, A L)) (25)

Now we introduce the following pair of phase space dependent kernel operators,
which also have a functional dependence on the phase space function f (Ay,A_) :

1 N .y
Alay,a;f) = vy /d2>\+ /dz)u FOGA) DA, A )etvasdias oo mdzasy

N . 1 2 2 1 A apr—Apal A a_—X_a*
A(a%-:a—:f):F'/d )\+/d )\,mDT()\+,)\7)€++ +Ay M- —

1
= Al <a ,a;—) .
+ f*

The function f is not specified more closely, except that it should ensure the existence
of both definitions. For different f functions we get pairs of different types of quasiprob-
ability distribution functions, characterizing the general angular momentum operator
A, by the following definition:

FA (O‘+7a*7f) = Tr (A A(O@-:a*;f)); (26)
FA (ay,a, f) = TI“(AZ(O(+7a7;f)). (27)

It is not difficult to show that
A = 7r2/d2a+/d2a,FA (ar,a;f)A(ar,a_;f)
= 7r2/d2a+/d2a, Falag,a;f)A(ay,a_;f) (28)
The quasiprobability distribution functions F' and F (with the same f) constitute

a pair in the sense that the trace of the product of two operators A and B can be
calculated with the help of F4 (ay,a—, f) and Fg (ay,a_, f):

Tr(AB) = n* /d2a+ /d2a, Falag,a;f)Fp(ap,a_;f) (29)

as it can be verified by equation (28).
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The most well known quasiprobability distribution functions, like the @, P and
Wigner function, can be obtained by using the following particular functions f:

foAp, A )=¢e" (X4 P+A-12)/ 2, Q" (ap,a_) == Fy (a+’a7; o= (M+P+x=1?)/ 2)
PO, A) = (A4 P+ %)/ 2 Ph(ay,a )= F4 (a+,a,; (A4 P+ %)/ 2)
fw (A, A0) =1, W,Z/(CH»:O‘*) = Fa(at,a-; 1)

(30)
where the superscript h refers to the double harmonic oscillator. As we can see, the
Wigner function is unique in that its pair is itself. If the operator A is a tensor product,
ie. A=A, A | where Ay and A_ act only in the state spaces of the oscillators “+”
and “—” respectively, then the corresponding @), P and Wigner functions factorize.

These definitions are consistent with the well known [9] properties of the P and @

functions:.
1
Qh (ay,a ) = ) (ay,a_ | Alag,a-); (31)

A = [da, [#a Phara)laa)@ial, @
where |ay,a_) is a double coherent state of the double oscillator.

5. Reduction to angular momentum with fixed j

In this section we show that there is a direct connection between the fixed j angular
momentum @ function, Q7 (f, ), and the arbitrary angular momentum  function,
Qh (a+7 a*)'

This connection is based on the following important observation concerning fixed
j coherent states |07cp)j and arbitrary angular momentum coherent states |ai,a_).
Expanding both states in the |j, m) basis:

J .
B 27 . 4+m0 .7m0 —iGitm)e |
o, = 342 ) Geo g iy o
o (Jas P 2)/ 2 oo 1 ( 27 > jtm j—m - 34
ap,a_)=ce . o’ Mol ,m),
ay, o) ;:M;:ii &l itm )% lj,m), (34)

the similarity in the expansion coefficients can be noticed. If we project the |ay,a_)
state onto the fixed j angular momentum subspace with the projector

W= 3 lim)G.ml, (35)

m=—j

and choose

= e "¥sin -,
2

0
a- = cosg, (36)
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we get the following important relation:
10, 0); = Ve (25)' 11,

Now it is easy to infer the connection between Q7(, ) and Q" (ay,a_), taking
into account (31) and (22):

; 0 0
e "% sin 5 €08 §> . (37)

27 +1

Q% (8,0) =

; 0 0
e(2j)! Q’j‘j <e“" sin 5 €08 5) , (38)

where

is the restriction of the general angular momentum operator A to the fixed j angu-
lar momentum subspace. Since equation (38) is valid for arbitrary A;, the following
important relation can be established between the corresponding operator kernels:

Ad (07@;()@) — #e

- 0 0
(25)! ;A (e“" sin 5 C08 5;67 (24P +A- %)/ 2) Im;, (40)
Finally we note that the question of the reduction of an arbitrary f type angular

momentum phase space function to a fixed j phase space function arises naturally. This
will be the subject of a subsequent publication.
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