
acta physica slovaca vol. 48 No. 3, 323 { 333 June 1998QUANTUM CARPETS MADE SIMPLE1I. Marzolia, F. Saif a, I. Bialynicki-Birulab, O. M. Friescha, A. E. Kaplanc,W. P. Schleicha2(a) Abteilung f�ur Quantenphysik, Universit�at Ulm, D{89069 Ulm, Germany(b) Center for Theoretical Physics, Lotnik�ow 46, 02{668 Warsaw, Poland(c) Electr. & Comp. Eng. Dept., The Johns Hopkins University, MD{21210, USAReceived 30 May 1998, accepted 1 June 1998We show that the concept of degeneracy is the key idea for understanding thequantum carpet woven by a particle in the box.1. IntroductionInteresting structures [1, 2] emerge in the space-time representation of the proba-bility distribution for a particle in the box, as shown in Fig. 1. Three explanationsof these quantum carpets o�er themselves: Interference terms in the Wigner function[3, 4], degeneracy of intermode traces [5, 6] and cancelation between appropriate termsof the energy representation [2, 7, 8]. All of these explanations are rather involved.We therefore in the present paper develop a simple argument for this surprising phe-nomenon.We identify three properties of the particle in the box as the thread of the quantumcarpets:(i) The probability density involves the product of two standing waves creating con-tributions with the sum and the di�erence of the wave numbers.(ii) The quadratic dispersion relation connecting the energy and the momentum givesrise to a multi-degeneracy.(iii) The appropriate initial conditions enhance this degeneracy.The paper is organized as follows. In Section 2 we brie
y review the importantformulas of the problem of the particle in the box. We then in Section 3 give a heuristicargument for the quantum structures. In the Appendix A we derive a summationformula which allows us in Section 4 to cast the probability density into a form whichbrings out most clearly the canals and ridges of the quantum carpets. We conclude bysummarizing the main results in Section 5.1Special Issue on Quantum Optics and Quantum Information2E-mail address: schleich@physik.uni-ulm.de0323-0465/96 c
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Fig. 1. Quantum carpet woven by a non-relativistic (left) and a slightly relativistic (right)particle moving in a one-dimensional box. The carpet arises from the space-time represen-tation of the probability density. Dark areas correspond to large probability whereas lightareas represent low probability. We propagate a Gaussian wave packet according to theSchr�odinger equation with the non-relativistic Hamiltonian Hnr = p2=(2M) or with the Hamil-tonian Hr � Hnr[1 � Hnr=(2Mc2)] approximating the relativistic Hamiltonian. In the lattercase the straight canals and ridges of the non-relativistic box problem are curved. In both caseswe use a Gaussian wave packet of width �x = 0:03L and average wave number k = 10=L lo-cated at x = L=2. In the slightly relativistic example the ratio of the ground state energy ofthe non-relativistic box and the rest mass is q � 10�6.2. The particle in the box: FundamentalsIn the present section we summarize the essential ingredients of the problem of theparticle in the box. In particular, we focus on the energy representation of the wavefunction.The probability amplitude  (x; t) to �nd the particle of mass M at time t at theposition x in the box of length L reads (x; t) = 1Xm=1 mum(x) exp�� i�hEmt� : (1)



Quantum Carpets made simple 325Here the quantities  m � Z L0 dx'(x)um(x) (2)are the expansion coe�cients of the initial wave packet  (x; t = 0) � '(x) into theenergy wave functions [9] um(x) �r 12L 1i �eikmx � e�ikmx� (3)with wave numbers km � mk1 � m�L (4)and eigen energies Em � (�hkm)22M = m2E1 = m2�h!1 � m2�h2�T : (5)In the last step we have introduced [10, 11] the revival timeT � 4ML2�h� (6)at which the wave function is identical to its initial form at t = 0, that is  (x; t = T ) = (x; t = 0).We conclude this summary of the important equations by deriving a representationof the probability amplitude  that is slightly di�erent from Eq. (1). In Section 4 wewill use this expression to bring out the location and shape of the structures in thequantum carpets.We substitute the energy wave function um into Eq. (1) and use the expressionsEqs. (4) and (5) for the wave numbers km and energies Em. We then arrive at (x; t) = 1ip2L 1Xm=1� m exp �i�m�xL �m2tT ���  m exp ��i�m�xL +m2tT ��� :(7)When we de�ne the expansion coe�cients  m for negative values of m by �jmj � � jmj (8)we �nd the compact representation (x; t) = 1ip2L 1Xm=�1 m exp�i�m�xL �m2tT �� (9)of the wave function.



326 I. Marzoli et al.3. Quantum carpets: A heuristic argumentIn the present section we use the expression Eq. (1) to show that the probability den-sity consists of four terms: Two terms correspond to the classical trajectories, whereasthe other two represent the striking canals and ridges of Fig. 1.Since the structures appear in the probability densityW (x; t) �  �(x; t) (x; t) (10)we now use the energy representation Eq. (1) of  to �nd W and arrive atW (x; t) = � 12L 1Xm;n=1 �m n (eikmx � e�ikmx)(eiknx � e�iknx) exp�i(k2m � k2n) �ht2M � :(11)Here we have used the expressions, Eqs. (3) and (5), for the energy wave functions andthe energies.When we multiply out the individual waves in the product of the two energy wavefunctions we recognize that the probabilityW = I(+)qc + I(�)qc + I(+)cl + I(�)cl (12)consists of four contributions. The termsI(�)qc (x; t) � � 12L 1Xm;n=1 �m n exp��i(km + kn) �x� (km � kn) �ht2M �� (13)arise from the multiplication of the two co-propagatingwaves exp(�ikmx) and exp(�iknx)in the two energy wave functions. Note that the relationk2m � k2n = (km + kn)(km � kn) (14)has allowed us to factor out the sum km + kn of the wave numbers in the expressionEq. (13). This creates the di�erence km � kn of the wave numbers in the expression inthe square brackets.In contrast the termsI(�)cl (x; t) � 12L 1Xm;n=1 �m n exp��i(km � kn) �x� (km + kn) �ht2M �� (15)are a consequence of the multiplication of the two counter-propagatingwaves exp(�ikmx)and exp(�iknx) in the two energy wave functions. Here the factorization propertyEq. (14) has led to the di�erence km � kn of the wave numbers outside the squarebrackets and the sum km + kn inside.The phases �(�)m;n(x; t) � xL � (km � kn) �ht2ML = xL � (m� n) tT=2 (16)



Quantum Carpets made simple 327and �(�)m;n(x; t) � xL � (km + kn) �ht2ML = xL � (m+ n) tT=2 (17)in the square brackets of Eqs. (13) and (15) correspond to straight lines in space-time.The steepness of these world lines is determined by the di�erence and the sum of thequantum numbers m and n. As it was shown in Ref. [5], this opens the possibility fora multi-degeneracy: Di�erent pairs of quantum numbers m and n can give rise to thesame di�erence m�n or sum m+n. Therefore many world lines can lie on top of eachother enhancing in this way the contrast of the structures.It is the expansion coe�cients  m that decide the question of enhancement or sup-pression of these world lines. To understand this we consider a distribution  m of energyexcitations which satis�es the factorization property �m  n =  (+)m+n  (�)m�n: (18)Hence we can replace the product  �m n of the initial expansion coe�cients by anotherproduct of new expansions coe�cients  (+)s and  (�)r which now only depend on thesum s and the di�erence r of the quantum numbers. Any Gaussian wave packet satis�esthis condition.We conclude this section by considering a Gaussian wave packet centered at quantumnumber m and width �m such that 1 � �m � m. In this case we �nd a clearseparation of classical and quantum trajectories contributing to the probability density[5]: The terms I(�)cl contain the classical trajectories whereas the terms I(�)qc are theorigin of the carpet. In order to bring this out we recall that the terms I(�)cl containthe phase �(�)m;n with the sum of the quantum numbers. Due to the Gaussian weightfactor with its maximum at m � 1 this gives rise to large quantum numbers of theorder of 2m. The steepness of the corresponding world lines is therefore proportional tom�1 � 1. Consequently the world lines are rather 
at and correspond to the classicaltrajectories. In contrast the terms I(�)qc contain the phase �(�)m;n with the di�erence ofthe quantum numbers. This corresponds to steep world lines|the striking canals andridges. 4. A new representation of the probability densityIn the preceding section we have shown that for the evaluation of I(�)qc and I(�)cl itis natural to introduce the new summation indices m � n. In the present section wepursue this idea. However, we do not start from Eqs. (13) and (15) but from Eq. (9).The probability W then readsW (x; t) = 12L 1Xm;n=�1 �m n exp��i�(m� n) �xL � (m+ n)2tT �� : (19)With the help of the summation formula1Xm;n=�1 fm;n = 12 1Xl=�1 1Xj=�1(�1)jl Z 1�1 d� f �12(j + �); 12(j � �)� exp(i�l�) (20)



328 I. Marzoli et al.derived in the Appendix A the probability density takes the formW (x; t) = 14L 1Xl;j=�1(�1)jl	(W )� j2 ; �j;l(x; t)� : (21)Here we have introduced the Wigner function	(W )(�; �) � Z 1�1 d� �h�+ �2i  h�� �2i exp(�i���); (22)of the expansion coe�cients  m. Note that  [�] is a continuous extension of  m suchthat  [�] �  m for � = m.Moreover, we have de�ned�j;l(x; t) � xL � j tT=2 � l: (23)Expression (21) for the probability density is the main result of the present paper. Itbrings out most clearly that the probability density j (x; t)j2 consists of a superpositionof structures 	(W ) aligned along straight lines de�ned by �j;l(x; t). The Wigner function	(W ) of the expansion coe�cients determines the shape of these structures.We conclude this section by making contact with the expression,W (x; t) = ��h2L 1Xl;j=�1(�1)jl �(W )[�j;l(x; t); pj ]; (24)derived in Ref. [3]. Here pj � j��h=(2L) and�(W )(x; p) � 12��h Z 1�1 dy ��x+ y2� �� �x� y2� exp(�ipy=�h) (25)is the Wigner function [12] of the superposition wave function�(x) � '(x) � '(�x) (26)built out of the original wave packet and its mirror image.The similarity of the two expressions Eqs. (21) and (24) for the probability densityalready suggests that the Wigner function 	(W ) in (�; �) space is related to the Wignerfunction �(W ) in (x; p) phase space. Indeed in Appendix B we derive the relation	(W )(�; �) = 2��h�(W ) �L�; ��hL �� : (27)Hence the two arguments � and � appropriately scaled now play the role of momentump � �hk� and position x � L�.



Quantum Carpets made simple 3295. ConclusionsIn the energy representation the probability of �nding the particle at time t atposition x is a double sum over all energy quantum numbers. The quadratic dispersionrelation of the free particle allows us to express this double sum by another doublesum extending over the sums and di�erences of the quantum numbers. In this waywe represent the probability distribution in space-time as a superposition of structuresalong straight world lines. Their steepness and their starting points are determinedby integers. The shape of the initial wave packet, that is the form  m of the initialexcitation of the energy eigenstates governs the shape of these structures.We emphasize that the expression (21) for the probability density derived in thepresent paper is very di�erent from the one which follows from the representation [2,10, 11] �x; t = qr T +�t� = 1Xl=�1W(r)l '�x� lr 2L;�t�� 1Xl=�1W(r)l '��x+ lr 2L;�t� ;(28)of the wave function  in the neighborhood of a fraction q=r of the revival time T . HereW(r)l � 1r r�1Xp=0 exp ��2�i�p2 qr � p lr�� (29)denotes the Gauss sums [13, 14] and'(x; t) � Z L0 dx0Gfree(x; tjx0; 0)'(x0) (30)is the initial wave function '(x) �  (x; t = 0) propagated freely according to theGreen's function Gfree of the free particle.Indeed the above formula Eq. (28) is a local representation in space-time whereasEq. (21) is a global one: It depicts the probability densityW as a superposition of struc-tures along vertical and tilted world lines, whereas the revival representation Eq. (28)uses a superposition of structures along lines of constant time, that is along horizontalworld lines.We have obtained these results using the summation formula derived in the Ap-pendix A. This formula has a much wider range of application. For example, it im-mediately provides an expression for the slightly relativistic particle. In this case thestructures are not along straight but curved lines as shown in Fig. 1 (right). Moreover,it provides insight into the development of fractal canals discovered in Ref. [2], whenthe initial wave packet is uniform. However, space does not allow us to go deeper intothese topics of future publications.AcknowledgementsWe express our gratitude to P. J. Bardro�, M. V. Berry, J. H. Eberly,M. Fontenelle, F. Gro�mann, M. Hall, H. J. Kimble, T. Kiss, W. E. Lamb, Jr., K. A. H.van Leeuwen, C. Leichtle, J. Marklof, M. M. Nieto, J. M. Rost, E. C. G. Sudarshan andP. Stifter for many fruitful discussions on this topic. Two of us (I. B.-B.) and (A. E. K.)thank the Humboldt Stiftung for their support.



330 I. Marzoli et al.Appendix A: A useful summation formulaIn this appendix we derive two di�erent but equivalent representations of the doublesum I � 1Xm;n=�1 fm;n (A.1)with coe�cients fm;n.Our derivation relies on the introduction of the new summation indices m+ n � sand m� n � r. Note however, that this de�nition puts certain restrictions on s and r.Indeed, we have to distinguish two cases: (i) when m and n are both even or odd, and(ii) when one of them is odd and the other is even. In the case (i) we �nd that m� nand m+ n are both even. Hence we have the substitutionsm� n � 2r and m+ n � 2s: (A.2)In the case (ii) we �nd that m�n and m+n are both odd, which leads to the de�nitionm� n � 2r + 1 and m+ n � 2s+ 1: (A.3)We therefore �nd the rule1Xm;n=�1 fm;n = 1Xr;s=�1 fs+r;s�r + 1Xr;s=�1 fs+r+1;s�r (A.4)for replacing the original sums extending over m and n by new sums extending over rand s.We can combine the two terms in Eq. (A.4) into one, when we replace either thesummation over r, or the one over s, by an integration. The Poisson summation formula[15] 1Xm=�1 gm = 1Xl=�1 Z 1�1 d� g[�] exp(2�il�) (A.5)allows us to do this in an exact way. Here g[�] is an extension of the function gm to thewhole real axis such that g[�] takes on the values gm at integer values � = m.When we apply the Poisson formula to the summation over r we arrive atI = 1Xl=�1( 1Xs=�1 Z 1�1 d� f [s+ �; s� �] exp(2�il�)+ 1Xs=�1 Z 1�1 d� f [s+ �+ 1; s� �] exp(2�il�)) ; (A.6)which after the substitutions ~� � 2� and �� � 2�+1 in the two integrals takes the formI = 12 1Xl=�1( 1Xs=�1 Z 1�1 d~� f �12(2s+ ~�); 12(2s� ~�)� exp(i�l~�)+ 1Xs=�1(�1)l Z 1�1 d�� f �12(2s+ 1 + ��); 12(2s+ 1� ��)� exp(i�l��)) : (A.7)



Quantum Carpets made simple 331Here we have used for the last integral the relationexp(i�l) = (�1)l; (A.8)and have written the arguments of the function f in a way that brings out most clearlythat the two integrals are the even and odd terms of a single sum. The only obstacleleft before we can combine these two terms is the term (�1)l. When we recall that(�1)jl = � (�1)2sl = 1 for j = 2s(�1)(2s+1)l = (�1)l for j = 2s+ 1 (A.9)we �nd indeed1Xm;n=�1 fm;n = 12 1Xl=�1 1Xj=�1(�1)jl Z 1�1 d� f �12(j + �); 12(j � �)� exp(i�l�): (A.10)We conclude this appendix by presenting a di�erent expression for the double sum Iwhich follows from Eq. (A.4) when we replace the summation over s by an integrationusing the Poisson summation formula, Eq. (A.5). In this case we �nd following thesame train of thought1Xm;n=�1 fm;n = 12 1Xl=�1 1Xj=�1(�1)jl Z 1�1 d� f �12(� + j); 12(� � j)� exp(i�l�): (A.11)We recognize that the two representations are di�erent: In the one of Eq. (A.10) theintegration variable � enters in an asymmetric way whereas in the one of Eq. (A.11) theintegration variable � appears in a symmetric way. Nevertheless, both representationsare completely equivalent.Appendix B: Relation between the two Wigner functionsIn this appendix we relate the Wigner function	(W )(�; �) � Z 1�1 d� �h�+ �2i  h�� �2i exp(�i���) (B.1)of the continuous extension  [�] of the expansion coe�cients m � Z L0 dx'(x)um(x) (B.2)to the Wigner function�(W )(x; p) � 12��h Z 1�1 dy ��x+ y2� �� �x� y2� e�ipy=�h (B.3)



332 I. Marzoli et al.in position x and momentum p of the superposition state�(x) � '(x)� '(�x): (B.4)For this purpose we �rst note that the initial wave packet vanishes at the walls atx = 0 and x = L. Moreover, it vanishes outside of the box. We can therefore extendthe integral in the de�nition of the expansion coe�cients to �1 and +1, that is m �r 2L Z 1�1 dx'(x) sin�m� xL� (B.5)where we have used the de�nition Eq. (3) of the energy eigenfunctions.When we substitute this expression into the de�nition of theWigner function Eq. (B.1)we arrive at	(W )(�; �) = � 12L Z 1�1 dx0 Z 1�1 dx00 '�(x0)'(x00)� �exp�i��x0 + x00L �Z 1�1 d� exp�i���x0 � x002L � ���� exp�i��x0 � x00L �Z 1�1 d� exp �i���x0 + x002L � ���� exp��i��x0 � x00L �Z 1�1 d� exp �i����x0 + x002L � ���+ exp��i��x0 + x00L �Z 1�1 d� exp �i����x0 � x002L � ���� : (B.6)We now introduce the new integration variables x00 � �x00 in the second, x0 � �x0in the third and the pair x0 � �x0 and x00 � �x00 in the forth term of the brackets.This allows us to combine the four contributions which yields	(W )(�; �) = � 1L Z 1�1 dx0 Z 1�1 dx00 ['�(x0)� '�(�x0)] ['(x00)� '(�x00)]� exp�i��x0 + x00L � ��x0 � x002L � �� : (B.7)Here we have also made use of the relationZ 1�1 d� ei��� = 2 �(�): (B.8)When we now perform the integration with the help of the delta function we �nd	(W )(�; �) = �2 Z 1�1 dx00 ��(x00 + 2L�)�(x00) exp�2�i�x00 + L�L � (B.9)
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