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316 G. Ariunbold, J. Pe�rinaIn the present paper we study a resonant, lossless micromaser with injected atomsin a coherent superposition of the upper and lower states. By investigating the weakinteraction of large number of individual atoms (in abbreviation, WL{approximationor WLA) and radiation through one{photon resonant transitions in a lossless cavity, wehave found a general solution of the recursion relation with arbitrary initial states forthe reduced density matrix elements of the cavity �eld in the �rst order approximationof the total interaction strength. With the help of further numerical calculations, thebehaviour can perfectly be improved. For instance, the numerical calculation providesthe strong Holstein{Primako� SU(1; 1) coherent state (HPCS), even it is applicable tothe arbitrary �elds which are prepared initially in the micromaser cavity. Next sectionis devoted to the derivation and solution of the recursion relation for the density matrixelements under the WLA, in the same time, in comparison with certain numericalcalculations. 2. Quantum evolution of the �eld stateThe Hamiltonian describing the intensity{dependent Jaynes{Cummings model (ID-JCM) in the rotating{wave approximation and in the interaction picture is obtained tobe [6] Ĥ = �hg(R̂jaihbj+ R̂yjbihaj): (1)Here the operator jiihjj (i 6= j) describes the transition from level j to level i, g isreal constant and R̂ and R̂y are constructed from the photon annihilation and creationoperators â and ây of the cavity mode,R̂ = âpn̂; R̂y = pn̂ây; (2)where n̂ = âyâ is the photon number operator. It is clear that[R̂; n̂] = R̂; [R̂y; n̂] = �R̂y; [R̂; R̂y] = 2n̂+ 1: (3)One can say that the Hamiltonian (1) e�ectively describes the intensity{dependentcoupling between the atom and the radiation �eld.By using the relation jiihjjjkihlj = jiihlj�kj (here �kj is the Kronecker symbol), wecan easily show that(Ĥ=�h)2k = g2k[(âây)2kjaihaj+ (âyâ)2kjbihbj];(Ĥ=�h)2k+1 = g2k+1[R̂(âyâ)2kjaihbj+ R̂y(âây)2kjbihaj];where k(k � 0) is integer number. Hence, the time evolution operator Û(t) of theatom{�eld system can be expressed in the form [6]Û(t) = exp(�iĤt=�h)= cos (gt(n̂+ 1))jaihaj+ cos (gtn̂)jbihbj� iR̂ sin(gtn̂)n̂�1jaihbj � iR̂y sin(gt(n̂+ 1))(n̂+ 1)�1jbihaj: (4)



Holstein{Primako� SU(1; 1) coherent state in micromaser : : : 317Let the atoms be initially prepared in a coherent superposition of their states,�̂A = �aajaihaj+ �bbjbihbj+ �abjaihbj + �bajbihaj= Xi;j=a;b �ij jiihjj; (5)where �ii � 0; �aa + �bb = 1; �ab = ��ba;j�abj = j�baj � p�aa�bb;and be injected into a lossless microwave cavity at such a rate that at most one atom ata time is present inside the cavity. We assume that the time of the interaction of eachatom with the cavity �eld is much shorter than the lifetime of all the atomic levels.Then the atomic spontaneous decay processes to other levels or other modes can beignored while an atom is inside of the cavity, which means that the joint evolutionof the cavity �eld and atoms is unitary. For simplicity, we suppose that the injectedatoms be prepared in the same superposition of their upper and lower states and havethe same velocity and, therefore, interact with the cavity �eld of the same interactiontime, say � .Moreover, since there is a free evolution of the �eld density matrix in the timebetween the subsequent atoms entering the cavity, i.e., the matrix elements �(n; n0) ac-quire an extra phase factor exp(i(n�n0)!�t), where ! is the cavity resonance frequencyand �t is the time between the arrivals of subsequent atoms, we assume here that thetime �t is chosen in such a way that !�t is equal to a multiple of 2�. In this case theextra phase factor due to the free evolution is unity and can be discarded. Otherwisewe should take it into account in the overall density matrix evolution. If the atomswere arriving at random times they would meet the cavity �eld with random phases,and the cavity �eld phase, which is associated with the non{diagonal elements of the�eld density matrix, would necessarily become random (only diagonal elements wouldsurvive). This assumption is a very serious restriction to the model considered here. Itmeans that atoms should be injected into the cavity in a well controllable way.Assuming that this is possible, the �eld density matrix �̂ evolves according to�̂N = TrA[Û(�)�̂A 
 �̂N�1Ûy(�)]: (6)Here �̂N is the density matrix of the �eld after N atoms have passed through the cavity,TrA stands for the trace over the atomic variables. In writing (6) we have assumed thatthe state of the atom is not measured as it exits the cavity. The number of injectedatoms N is considered as a scaled evolution time of the system.By using (6) together with the expressions (4) and (5), we can easily get for the �elddensity{matrix elements the recursion relation�N+1(n; n0) = �aa[Cn+1Cn0+1�N(n; n0) + SnSn0�N (n� 1; n0 � 1)]+ �bb[CnCn0�N (n; n0) + Sn+1Sn0+1�N (n+ 1; n0 + 1)]+ i�ab[Cn+1Sn0+1�N (n; n0 + 1)� SnCn0�N (n� 1; n0)]� i�ba[Sn+1Cn0+1�N (n+ 1; n0)� CnSn0�N (n; n0 � 1)]; (7)



318 G. Ariunbold, J. Pe�rinawhere Cn = cos (g�n); Sn = sin (g�n):Given the initial state of the cavity �eld �̂(0) � �̂N=0 = �̂0, the recursion relation (7)allows us to obtain the �eld density matrix �N (n; n0) for any N . It is clear from (7) thatthe coupling between the o�{diagonal matrix elements �N (n; n�1) = ��N(n�1; n) occursonly when the atomic coherence is present, �ab = ��ba are not zero, if the micromaserstarts from the vacuum or from a thermal �eld and the �eld phase may not always berandom. The recursion relation (7) can be rewritten as�N (n; n0) = [�2Cn+1Cn0+1 + �2CnCn0 ]�N�1(n; n0)+ �2Sn+1Sn0+1�N�1(n+ 1; n0 + 1)+ �2SnSn0�N�1(n� 1; n0 � 1)+ i��ei�Cn+1Sn0+1�N�1(n; n0 + 1)+ i��e�i�CnSn0�N�1(n; n0 � 1)� i��ei�SnCn0�N�1(n� 1; n0)� i��e�i�Sn+1Cn0+1�N�1(n+ 1; n0); (8)where �aa = �2; �bb = �2; �ab = �ei��; �ba = �e�i��; �2 + �2 = 1; with the initialcondition �N=0(n; n0) = �0(n; n0) here �0(n; n0) stands for the input �eld state. Themethod adopted here has �rstly been used by Kien et al. [2]. So, we see that it isconvenient to introduce the de�nition�N (n; n0) = (ie�i�)n0�n0@ nYl=1Sl n0Yl0=1Sl01A�n+n0 ~�N(n; n0); (9)where Q0l=1 � 1. Substituting this expression into (8), we get the recursion relation~�N (n; n0) = [�2Cn+1Cn0+1 + �2CnCn0 ]~�N�1(n; n0)+ �2�2S2n+1S2n0+1~�N�1(n+ 1; n0 + 1)+ ~�N�1(n� 1; n0 � 1)� �2�Cn+1S2n0+1~�N�1(n; n0 + 1)+ �Cn ~�N�1(n; n0 � 1)+ �Cn0 ~�N�1(n� 1; n0)� �2�S2n+1Cn0+1~�N�1(n+ 1; n0); (10)with the condition~�0(n; n0) = (ie�i�)n�n0 0@ nYl=1Sl n0Yl0=1Sl01A�1 ��n�n0�0(n; n0): (11)Let � and Sn 6= 0. Note that ~�(n; n0) can form a real symmetric matrix and it does notdepend on the phase � of the initial atomic state; the dependence of the density matrix



Holstein{Primako� SU(1; 1) coherent state in micromaser : : : 319of the micromaser �eld on the phase of the initial atomic state is simply described bythe factor (i exp(�i�))n0�n in (9).Now we consider the case of weak atom{�eld interaction wheng� �n� 1; (12)where �n is average photon number of the cavity �eld, in the same time, we assume thatthe variance of the photon{number distribution always to be not too large for all thetime. In the �rst{order approximation the coe�cients readSn ' g�n; S2n ' 0; Cn ' 1;and the recursion relation (10) becomes~�N (n; n0) = ~�N�1(n; n0) + ~�N�1(n� 1; n0 � 1)+ �[~�N�1(n; n0 � 1) + ~�N�1(n� 1; n0)]; (13)with the condition (11). The solution of (13) is easily found to be,~�N (n; n0) = NXk;k0=0 #kXp=0 N !�k+k0�2pp!(k � p)!(k0 � p)!(N � k � k0 + p)!�~�0(n� k; n0 � k0); (14)here # k =min(k; k0): Because this solution is not very convenient to be used for largeN , we prefer to use the truncated form~�N (n; n0) = nXk=0 n0Xk0=0 #kXp=0 N !�k+k0�2pp!(k � p)!(k0 � p)!(N � k � k0 + p)!�~�0(n� k; n0 � k0): (15)The relation between the (p+ 1)th and pth terms in the sum on the right-hand side of(15) is  N !�k+k0�2(p+1)(p+ 1)!(k � p� 1)!(k0 � p� 1)!(N � k � k0 + p+ 1)!!� N !�k+k0�2pp!(k � p)!(k0 � p)!(N � k � k0 + p)!!�1= (k � p)(k0 � p)�2(p+ 1)(N � k � k0 + p+ 1)� kk0�2(N � k � k0) : (16)



320 G. Ariunbold, J. Pe�rinaLet � 6= 0 and N � 1. As is seen from the relation (16) between the (p + 1)th termand the pth term in the sum (15), in the region of values of n and n0 such thatn+ n0 + nn0�2 � N; (17)the term with p = 0 in the sum on the right-hand side of (15) dominates. Keepingonly the p = 0{term and using the approximation N !=(N � k� k0)! ' Nk+k0 , from thisexpression one �nds�N (n; n0) ' n!n0! nXk=0 n0Xk0=0 (��g�N)k+k0k!k0!(n� k)!(n0 � k0)!�(ie�i�)k0�k�0(n� k; n0 � k0); (18)with the conditions (12) and (17). Particularly, if the micromaser starts from a purestate j	0i, then the cavity �eld evolves into the pure state j	i as follows,hnj	i ' nXk=0 zkn!k!(n� k)! hn� kj	0i; (19)where z = �iei���g�N . Further, the condition z � 1 should be valid, prior to require-ment of completeness of the pure state, i.e., normalization coe�cient of j	i might beclose to that of j	0i. We see that our solution does not contain any information aboutthe normalization coe�cient.So far, we have given an analytical treatment of obtaining a weak solution of therecursion relation (8). Note that by using direct numerical solution of (8) the proposedsolution permits us to have a good understanding of the further evolution associatedwith generation of strongly evolved pure states. However, as is seen from (19), theweak displacement z (jzj � 1) of arbitrary states takes place, fortunately, rather strongdisplacement has been able to be demonstrated numerically in the WLA. For simplicity,we suppose that the micromaser starts from the HPCSjz0i = (1� jz0j2)1=2 1Xn=0 zn0 jni;where jz0j � 1, then (19) becomeshnj	i ' (1� jz0j2)1=2(z0 + z)n; (20)which de�nes jz0 + zi HPCS where jzj < 1. With the help of numerical calculationsof the �eld the kth order normalized factorial moments [10] which are hW ki=(hW ikk!)with hW ki = hâykâki and the intensity as functions of z, we can demonstrate the HPCS.As is seen from Fig. 1, the �eld normalized factorial moments decrease faster withthe increase of its order. As mentioned in papers [2,5], Fig. 2 illustrates cooperative
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Fig. 2. The �eld intensity evolution where theparameters are the same as in Fig. 1 (curvea), N = 15000 (curve b) and � = 3�=2; N =60000 (curve c) for initial Holstein{Primako�SU(1; 1) state with mean photon number �n =5.
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