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It is found that the Holstein—Primakoff SU(1, 1) coherent state of the cavity field
can be generated in a lossless micromaser under the weak Jaynes Cummings inter-
action with intensity dependent coupling of large number of individually injected
polarized atoms.

1. Introduction

In last few years the production and detection of nonclassical states in the micro-
maser cavity have attracted a great deal of attention. There are several schemes that
have been proposed to produce number states [1] and the possibility of generating co-
herent states [2] and so-called tangent and cotangent states [3] has also been predicted
by using micromasers in which a quantized field is in a high—Q cavity with injected
two-level atoms. Since the work of Kien, Scully and Walther [2] on the generation
of coherent states, several generalizations have been suggested by present authors. In
particular, by paying attention to multiphoton transition in two level atoms, there can
be produced displacement, squeezing of arbitrary excitations [4,5]. Although forego-
ing problems have been discussed by utilizing Jaynes—Cummings interaction, one can
consider the intensity—dependent Jaynes—Cummings interaction which can provide the
Holstein Primakoff SU(1, 1) coherent state [7,8].
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In the present paper we study a resonant, lossless micromaser with injected atoms
in a coherent superposition of the upper and lower states. By investigating the weak
interaction of large number of individual atoms (in abbreviation, WL-approximation
or WLA) and radiation through one—photon resonant transitions in a lossless cavity, we
have found a general solution of the recursion relation with arbitrary initial states for
the reduced density matrix elements of the cavity field in the first order approximation
of the total interaction strength. With the help of further numerical calculations, the
behaviour can perfectly be improved. For instance, the numerical calculation provides
the strong Holstein—Primakoff SU(1, 1) coherent state (HPCS), even it is applicable to
the arbitrary fields which are prepared initially in the micromaser cavity. Next section
is devoted to the derivation and solution of the recursion relation for the density matrix
elements under the WLA, in the same time, in comparison with certain numerical
calculations.

2. Quantum evolution of the field state

The Hamiltonian describing the intensity dependent Jaynes Cummings model (ID-
JCM) in the rotating wave approximation and in the interaction picture is obtained to
be [6] R R R

H = nhg(R|a)(b| + R[b){al). (1)
Here the operator |i)(j| (i # j) describes the transition from level j to level i, g is
real constant and R and R' are constructed from the photon annihilation and creation
operators G and a' of the cavity mode,

R =avh, Rt = Vhaa'; (2)
where 7 = a'a is the photon number operator. It is clear that
[R,7] = R, [RT,a] = —R!, [R,R"] =20 + 1. (3)

One can say that the Hamiltonian (1) effectively describes the intensity dependent
coupling between the atom and the radiation field.

By using the relation |i)(j||k)(I| = |i)(I|dx; (here d;; is the Kronecker symbol), we
can easily show that

(H/n)* = g**[(aa")**|a){al + (a'a)**b)(bl],

(H/h)* ! = g®* ! [R(ata)*|a) (b + B (aat)> |b)(al],

where k(k > 0) is integer number. Hence, the time evolution operator U(t) of the
atom—field system can be expressed in the form [6]

Ut) = exp(—iHt/h)
cos (gt(7 +1))|a){al + cos (gt7) b} (b]
iRsin(gtn)n"a)(b| — iR sin(gt(n + 1)) (7 + 1) [b){al. (4)
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Let the atoms be initially prepared in a coherent superposition of their states,
pa = paala)(al + peo|b) (b + papla) (bl +  pralb)(al

= 3 pulidl, (5)

i,j=a,b

where

pii 20, paa+poo =1, pab = Ppys
‘pab| = |pba‘ S \V PaaPbb;

and be injected into a lossless microwave cavity at such a rate that at most one atom at
a time is present inside the cavity. We assume that the time of the interaction of each
atom with the cavity field is much shorter than the lifetime of all the atomic levels.
Then the atomic spontaneous decay processes to other levels or other modes can be
ignored while an atom is inside of the cavity, which means that the joint evolution
of the cavity field and atoms is unitary. For simplicity, we suppose that the injected
atoms be prepared in the same superposition of their upper and lower states and have
the same velocity and, therefore, interact with the cavity field of the same interaction
time, say 7.

Moreover, since there is a free evolution of the field density matrix in the time
between the subsequent atoms entering the cavity, i.e., the matrix elements p(n,n’) ac-
quire an extra phase factor exp(i(n —n')wdt), where w is the cavity resonance frequency
and dt is the time between the arrivals of subsequent atoms, we assume here that the
time &t is chosen in such a way that wdt is equal to a multiple of 2. In this case the
extra phase factor due to the free evolution is unity and can be discarded. Otherwise
we should take it into account in the overall density matrix evolution. If the atoms
were arriving at random times they would meet the cavity field with random phases,
and the cavity field phase, which is associated with the non—diagonal elements of the
field density matrix, would necessarily become random (only diagonal elements would
survive). This assumption is a very serious restriction to the model considered here. It
means that atoms should be injected into the cavity in a well controllable way.

Assuming that this is possible, the field density matrix p evolves according to

pn = TralU(n)pa s px Ul (7)), (6)

Here pn is the density matrix of the field after N atoms have passed through the cavity,
T'r 4 stands for the trace over the atomic variables. In writing (6) we have assumed that
the state of the atom is not measured as it exits the cavity. The number of injected
atoms N is considered as a scaled evolution time of the system.

By using (6) together with the expressions (4) and (5), we can easily get for the field
density—matrix elements the recursion relation

pPN+1(n, n') = paalCnt1Cn11pN(n, n') + SnSnpn(n — 1, n' — 1)]
pob[CrnCripn (n,n') + Spi1Swripn(n + 1,0 + 1))
ipab[Crntr1Sw1pn(n,n' +1) — S,Cpipn(n — 1,n')]
— ippalSnt1Cnry1pN(n + 1:"’) — CpSupn(n, n' — 1)], (7)

_|_
_|_
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where
C,, = cos(grn), S, =sin(grn).

Given the initial state of the cavity field p(0) = pn=o = po, the recursion relation (7)
allows us to obtain the field density matrix py(n,n') for any N. It is clear from (7) that
the coupling between the off-diagonal matrix elements pn(n,n+1) = pj(n£1,n) occurs
only when the atomic coherence is present, p,, = p;, are not zero, if the micromaser
starts from the vacuum or from a thermal field and the field phase may not always be
random. The recursion relation (7) can be rewritten as

pn(n,n') = [a20n+10n’+1 + ﬁzcncn’]p/\’fl (n,n')
B?Spi1Spwripn_i(n+1,n" +1)
@?S,Spipn_1(n—1,n" —1)
iaﬂei¢0n+15nr+1p1v,1(n,, n' +1)
iafe °C,S,pn_1(n,n' —1)

— iafe®S,Chpn_1(n—1,n")

— iaBe 8, 1 Chipipy-_1(n+1,n"), (8)
where p.a = a2, py = B2, pap = @e®B, pra = ae B, o + $? = 1; with the initial
condition pny—q(n,n') = po(n,n’) here po(n,n') stands for the input field state. The

method adopted here has firstly been used by Kien et al. [2]. So, we see that it is
convenient to introduce the definition

n 'n.'
pn(n,n') = (e )" [ TI S T Sv | @™ pn(n,n'), 9)
=1 =1
where H?:1 = 1. Substituting this expression into (8), we get the recursion relation

ﬁN(n,n') = [a20n+1cn’+1+ﬂ20ncn’]ﬁN71(nanl)

+ B82Sk PN (n+1,n" +1)
+ pn—1i(n—1,n"—1)
 02BCun Shs i (1)
+ BCnpn_1(n,n' —1)
+ BCupn_1(n—1,n)
— a’BS;, Crsipn_1(n+1,n"), (10)
with the condition
. iy —1
po(n,n') = (ie” )" H S, H Sy a """ po(n,n'). (11)

=1 U'=1

Let o and S,, # 0. Note that p(n,n') can form a real symmetric matrix and it does not
depend on the phase ¢ of the initial atomic state; the dependence of the density matrix
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of the micromaser field on the phase of the initial atomic state is simply described by
the factor (iexp(—i¢))™ ~™ in (9).
Now we consider the case of weak atom—field interaction when

gt L 1, (12)

where 7 is average photon number of the cavity field, in the same time, we assume that
the variance of the photon number distribution always to be not too large for all the
time. In the first order approximation the coefficients read

Sp~grn, S2~0, C,~1,
and the recursion relation (10) becomes

ﬁN(nanl) = ﬁN*l(nanl) + ﬁN*l(n - lanl - 1)
+ ﬂ[ﬁNfl(nanlf1)+ﬁN71(n717nl)]7 (13)

with the condition (11). The solution of (13) is easily found to be,

N 1k

) = 3y At
pn(n,m') = — —
Vo o o Pk = ) = p)I(N — k= K + p)!
XﬁO(n_k7nI_kl)7 (14)

here | k =min(k, k). Because this solution is not very convenient to be used for large
N, we prefer to use the truncated form

n  lk

R , B n N!ﬁk+k'—2p
pn(n.n) = ZZZp!(kfp)!(k:’fp)!(kafk’+p)!

k=0 k’'=0 p=0

xpo(n —k,n' — k). (15)

The relation between the (p + 1)th and pth terms in the sum on the right-hand side of
(15) is

N!/Bk+k172(p+])
p+D)Ik—p— DK —p— DN —k— Kk +p+1)!

N!ﬂk+k’72p -1
X(mw—muw—muN—k—m+mﬂ>

_ (k —p)(' —p)
B2+ )N —k—k +p+1)
kk'

BN k)
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Let 8 # 0 and N > 1. As is seen from the relation (16) between the (p + 1)th term
and the pth term in the sum (15), in the region of values of n and n' such that

n + 77 + ﬁ < N (17)
the term with p = 0 in the sum on the right-hand side of (15) dominates. Keeping
only the p = O—term and using the approximation N!/(N —k — k')! ~ N***" from this
expression one finds

aﬁqu)k+k
pn ) = "'”"Z Z Kl (n = B)(n' — k")!
k=0 k=0
x (ie ") “Fpo(n — k,n' — k'), (18)

with the conditions (12) and (17). Particularly, if the micromaser starts from a pure
state |¥y), then the cavity field evolves into the pure state |¥) as follows,

Z o ko) (19)

where z = —ie’®afgrN. Further, the condition z < 1 should be valid, prior to require-
ment of completeness of the pure state, i.e., normalization coefficient of |¥) might be
close to that of |¥g). We see that our solution does not contain any information about
the normalization coefficient.

So far, we have given an analytical treatment of obtaining a weak solution of the
recursion relation (8). Note that by using direct numerical solution of (8) the proposed
solution permits us to have a good understanding of the further evolution associated
with generation of strongly evolved pure states. However, as is seen from (19), the
weak displacement z (|z| < 1) of arbitrary states takes place, fortunately, rather strong
displacement has been able to be demonstrated numerically in the WLA. For simplicity,
we suppose that the micromaser starts from the HPCS

[z0) = (1~ |20[*)"? ) =g In),
n=0
where |z < 1, then (19) becomes
(n®) =~ (1~ |20*)"2 (20 + 2)", (20)

which defines |zg + z) HPCS where |2| < 1. With the help of numerical calculations
of the field the kth order normalized factorial moments [10] which are (W*)/((W)¥k!)
with (W*) = (at*a*) and the intensity as functions of z, we can demonstrate the HPCS.

As is seen from Fig. 1, the field normalized factorial moments decrease faster with
the increase of its order. As mentioned in papers [2,5], Fig. 2 illustrates cooperative
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Fig. 1. The field normalized kth order fac-
torial moment (W*)/((W)*k!) as a function
of z = —ie®afgrN,a = g = 1/V2,¢ =
/2,97 = 107" and N = 40000 in the case
of initial vacuum. The curves a, b, c and d are
for k = 2,3,4 and 5, respectively.
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Fig. 3. The second (solid line) and the fifth

(dots) order factorial moments with the same

parameters as in Fig. 2 for curve c.
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Fig. 2. The field intensity evolution where the
parameters are the same as in Fig. 1 (curve
a), N = 15000 (curve b) and ¢ = 3¢/2, N =
60000 (curve c¢) for initial Holstein Primakoff
SU(1,1) state with mean photon number 7 =
5.
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Fig. 4. The field amplitude evolution (solid
line) described by y/n/(n + 1) and its approx-
imation to the function f(z) = z — 0.2652>
(dots).

behaviour which is provided due to the same initial atomic coherence. The curves a, b
and c are associated with superradiance [9] in the presence of HPCS, for initial atomic
phase parameters 7/2, 7/2 and 37/2 and initial field states vacuum, HPCS and HPCS
with mean photon number 1 = 5, while the atomic numbers N = 40000, 15000 and
60000, respectively (all other atomic parameters « and (3 are always assumed to be
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a = 3 = 1/4/2), with constant initial field phase 27 and interaction time gr = 107%.
Note that the case of constant initial atomic phase and different initial field phases is
the same as previous one. Apart from this, there can be perfect echo, when difference
of phases of the amplitudes zg and z is out of 7w (see curve c¢ in Fig. 2 and Fig. 3).
Fig. 4 describes deviation between the generated field amplitude which is defined by

n/(1 + ) where 7 is the field mean photon number and the analytic function f(z) =
z — 0.26522 associated with the second order approximation in z.

In conclusion, we have discussed that the Holstein—Primakoff SU(1,1) transforma-
tion can be provided in the ideal micromaser cavity which is assumed to be realized
by intensity dependent Jaynes Cummings interaction, if the cavity field starts from
arbitrary states and atoms enter the cavity in their coherent superposition of the upper
and lower states and the interaction time is short while the number of passed atoms is
large enough.
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