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302 R. Tana�s, T. El-Shahatthe driving �eld. Experimental realizations of squeezed states [9, 10, 11, 12], however,indicate that the bandwidth of the squeezed light is typically of the order of the atomiclinewidth. The most popular schemes for generating squeezed light are those using aparametric oscillator operating below threshold, the output of which is a squeezed beamwith a bandwidth of the order of the cavity bandwidth [13, 14]. There are two types ofsqueezed �eld that can be generated by such a parametric oscillator. If the oscillatorworks in a degenerate regime, the squeezed �eld has the pro�le with the maximum ofsqueezing at the central frequency and a small squeezing far from the center. In thenon-degenerate regime, the pro�le has two peaks at frequencies symmetrically displacedfrom the central frequency. For strong driving �elds and �nite bandwidth of squeezingthis means that the Rabi sidebands can feel quite di�erent squeezing then the centralline. A realistic description of radiative properties of the two-level atom in such asqueezed �eld must thus take into account the �nite bandwidth of the squeezed �eld.First studies of the �nite-bandwidth e�ects have been performed by Gardiner etal. [13], Parkins and Gardiner [15] and Ritsch and Zoller [16]. The approaches werebased on stochastic methods and numerical calculations, and were applied to analyzethe narrowing of the spontaneous emission and absorption lines. The fundamental e�ectof narrowing has been con�rmed, but the e�ect of �nite bandwidth was to degradethe narrowing of the spectral lines rather than enhance it. Later, however, numericalsimulations done by Parkins [17, 18] demonstrated that for strong driving �elds a �nitebandwidth of squeezing can have positive e�ect on the narrowing of the Rabi sidebands.He has found that there is a di�erence between the two types of squeezed light generatedin either degenerate or non-degenerate regime of the parametric oscillator. In the formercase it is possible to narrow either both of the Rabi sidebands or the central peak ofthe uorescent spectrum, while in the latter case simultaneous narrowing of all threespectral peaks is possible.Yeoman and Barnett [19] have recently proposed an analytical technique for inves-tigating the behaviour of a coherently driven atom damped by a squeezed vacuum with�nite bandwidth. In the approach, they have derived a master equation and analyticexpressions for the uorescent spectrum for the simple case of a two-level atom exactlyresonant with the frequencies of both the squeezed �eld and the driving �eld. Theiranalytical results agree with that of Parkins [17, 18] and show explicitly that the widthof the central peak of the uorescent spectrum depends solely on the squeezing presentat the Rabi sideband frequencies. They have assumed that the atom is classically drivenby a resonant laser �eld for which the Rabi frequency is much larger than the bandwidthof the squeezed vacuum though this is still large compared to the natural linewidth.Unlike the conventional theory, based on uncoupled states, it is possible to obtain amaster equation consistent with the Born-Markov approximation by �rst including theinteraction of the atom with the driving �eld exactly, and then considering the couplingof this combined dressed atom system with the �nite-bandwidth squeezed vacuum. Theadvantage of this dressed atom method over the more complex treatments based on ad-joint equation or stochastic methods [17, 18, 20] is that simple analytical expressions forthe spectra can be obtained, thus displaying explicitly the factors that determine theintensities of the spectral features and their widths. The idea of Yeoman and Barnett



Analytical results for the probe absorption spectrum . . . 303has recently been extended by Ficek et al. [21] to the case of a fully quantized dressed-atom model coupled to a �nite bandwidth squeezed �eld inside an optical cavity. Theyhave studied the uorescence spectrum under the secular approximation [22] and havefound that in the presence of a single-mode cavity the e�ect of squeezing on the uo-rescence spectrum is more evident in the linewidths of the Rabi sidebands rather thanin the linewidth of the central component. In the presence of a two-mode cavity and atwo-mode squeezed vacuum the signature of squeezing is evident in the linewidths of allspectral lines. They have also established that the narrowing of the spectral lines is verysensitive to the detuning of the driving �eld from the atomic resonance. The dressedatom method,under the secular approximation, including a detuning of the driving �eldfrom the atomic resonance has also been applied to calculate the probe absorptionspectra of a driven three-level atom in a narrow bandwidth squeezed vacuum [23].Recently, Tana�s et al. [24] have extended the Yeoman and Barnett [19] technique toinclude a non-zero detuning of the driving �eld from the atomic resonance and derivedthe master equation for a two-level atom driven by a classical laser �eld and dampedby a �nite-bandwidth squeezed vacuum. In this paper, we use this master equationto study the probe absorption spectrum for the two-level atom driven by a classicalexternal �eld and damped by a squeezed vacuum with �nite bandwidth produced bya degenerate parametric oscillator (DPO). Using the quantum regression theorem, wederive analytical formulas for the probe absorption spectrum of the atom. We showthat for the �nite bandwidth squeezed vacuum the absorption spectrum is modi�ed inan essential way with respect to the spectrum for broadband squeezing.2. Master equationWe consider a two-level atom driven by a detuned monochromatic laser �eld anddamped by a squeezed vacuum with �nite bandwidth. Applying the approach of paper[24], which is based on the idea of Yeoman and Barnett [19], being in turn an extensionof the model proposed by Carmichael and Walls [25] and Cresser [26], we derive a masterequation of the system which includes squeezing bandwidth e�ects. In this approach,we �rst perform the dressing transformation to include the interaction of the atomwith the driving �eld and next we couple the resulting dressed atom to the narrowbandwidth squeezed vacuum �eld. We derive the master equation under the Markovapproximation which requires the squeezing bandwidth to be much greater than theatomic linewidth, but not necessarily greater than the Rabi frequency of the driving�eld and the detuning. For simplicity, we assume that the squeezing properties aresymmetric about the central frequency of the squeezed �eld which, in turn, is exactlyequal to the laser frequency. Our approach di�ers from that of Yeoman and Barnettin performing the Markov approximation in the time domain rather than the Laplacetransform variable domain with pole approximation, and in adding a non-zero detuning.We start from the Hamiltonian of the system which in the rotating-wave and electric-dipole approximations is given byH = HA +HR +HL +HI ; (1)



304 R. Tana�s, T. El-Shahatwhere HA = 12 �h!A �z = �12�h��z + 12�h!L �z (2)is the Hamiltonian of the atom,HR = Z 10 ! b+(!) b(!) d! (3)is the Hamiltonian of the vacuum �eld,HL = 12�h
 [�+ exp(�i!Lt) + �� exp(i!Lt) ] (4)is the interaction between the atom and the classical laser �eld, andHI = i�hZ 10 K(!) ��+ b(!)� b+(!)�� � d! (5)is the interaction of the atom with the vacuum �eld. In (2)-(5), K(!) is the couplingof the atom to the vacuum modes, � = !L � !A is the detuning of the driving laser�eld frequency !L from the atomic resonance !A, and �+, ��, and �z are the Paulipseudo-spin operators describing the two-level atom. The laser driving �eld strength isgiven by the Rabi frequency 
, while the operators b(!) and b+(!) are the annihilationand creation operators for the vacuum modes satisfying the commutation relation[b(!); b+(!0)] = �(! � !0) : (6)For simplicity, we assume that the laser �eld phase is equal to zero (�L = 0).In order to derive the master equation we perform the two-step unitary transforma-tion. In the �rst step we use the second part of the atomic Hamiltonian (2) and the free�eld Hamiltonian (3) to transform to the frame rotating with the laser frequency !L andto the interaction picture with respect to the vacuum modes. After this transformationour system is described by the HamiltonianH0 +HrI (t) ; (7)where H0 = �12�h��z + 12�h
(�+ + ��) ; (8)andHrI (t) = i�hZ 10 K(!) ��+ b(!) exp[i(!L � !) t]� b+(!)�� exp[�i(!L � !) t]�d! : (9)The second step is the unitary dressing transformation performed with the HamiltonianH0, given by (8). The transformation��(t) = exp[� i�hH0t]�� exp[ i�hH0t] (10)



Analytical results for the probe absorption spectrum . . . 305leads to the following time-dependent atomic raising and lowering operators��(t) = 12 h�a � (1� ~�)�b exp(i
0t)� (1� ~�)�c exp(�i
0t)i ; (11)where �a = ~
 h~
(�+ + ��)� ~��zi ;�b = 12 h(1� ~�)�+ � (1 + ~�)�� � ~
�zi ; (12)�c = 12 h(1 + ~�)�+ � (1� ~�)�� + ~
�zi ;are the `dressed' operators oscillating at frequencies 0, 
0 and �
0, respectively, and~
 = 

0 ; ~� = �
0 ; 
0 =p
2 +�2 : (13)For � = 0, the transformation (11) reduces to that of Yeoman and Barnett [19]. Underthe transformation (11) the interaction Hamiltonian takes the formHI(t) = i�hZ 10 K(!)h�+(t)b(!) exp[i(!L � !) t]� (14)b+(!)��(t) exp[�i(!L � !) t]id! : (15)The master equation for the reduced density operator � of the system can be derivedusing standard methods [27]. In the Born approximation the equation of motion for thereduced density operator is given by [27]@�D@t = � 1�h2 Z t0 TrR �[HI(t); [HI(t� �); �R(0)�D(t� �)]]	 d� ; (16)where the superscript D stands for the dressed picture, �R(0) is the density operator forthe �eld reservoir, TrR is the trace over the reservoir states and the Hamiltonian HI(t)is given by (15). We next make the Markov approximation [27] by replacing �D(t� �)in (16) by �D(t), substitute the Hamiltonian (15) and take the trace over the reservoirvariables. We assume that the reservoir is in a squeezed vacuum state in which theoperators b(!) and b+(!) satisfy the relations [1]TrR[�R(0) b(!)b+(!0)] = [N(!) + 1] �(! � !0) ;TrR[�R(0) b+(!)b(!0)] = N(!) �(! � !0) ; (17)TrR[�R(0) b(!) b(!0)] = M(!) �(2!L � ! � !0) ;where N(!) andM(!) are the parameters describing the squeezing and that the carrierfrequency of the squeezed �eld is equal to the laser frequency !L. In the Markov



306 R. Tana�s, T. El-Shahatapproximation we can extend the upper limit of the integration over � to in�nity andnext perform necessary integrations using the formulaZ 10 exp(�i � �) d� = � �(�)� iP 1� ; (18)where P means the Cauchy principal value. After lengthy calculations we obtain themaster equation which in the frame rotating with the laser frequency !L can be writtenas _� = 12 i  � [�z ; �]+ 12  ~N ( 2�+� �� � ���+�� � ���+)+ 12  ( ~N + 1) (2��� �+ � �+���� � �+��)�  ~M �+� �+ �  ~M� ��� ��� 12 i
 [�+ + ��; �] + 14 i (� [�+; [�z ; �]]� ��[��; [�z ; �]] ) ; (19)where  is the natural atomic linewidth,~N = N(!L +
0) + 12 (1� ~�2) Re�� ; (20)~M = M(!L +
0)� 12 (1� ~�2)�� + i ~� �M ei� ; (21)� = � � 12(1� ~�2) Im�� + ~� �N ; (22)� =  ~
 h �N + �M ei� � i ~���i ; (23)�� = N(!L)�N(!L +
0)� [jM(!L)j � jM(!L +
0)j] ei� ; (24)�N = 1�P Z 1�1 N(x)x+
0 dx ; �M = 1�P Z 1�1 jM(x)jx+
0 dx ; (25)and � is the phase of squeezing (M(!) = jM(!)j exp(i�)). In the derivation of equa-tion (19) we have assumed that the phase � does not depend on frequency [28], and wehave included the divergent frequency shifts (the Lamb shift) to the rede�nition of theatomic transition frequency [27]. Moreover, we have assumed that the squeezed vacuumis symmetric about the central frequency !L, so that N(!L�
0) = N(!L+
0), and asimilar relation holds for M(!).The master equation (19) has the standard form known from the broadband squeez-ing approaches with the new e�ective squeezing parameters ~N and ~M given by (20)and (21). There are also new terms, proportional to � which are essentially narrow



Analytical results for the probe absorption spectrum . . . 307bandwidth modi�cations to the master equation. All the narrow bandwidth modi�ca-tions are determined by the parameter �� given by (24), which represents the di�erencebetween the squeezing values at the central line and the sidebands, and the shifts �Nand �M de�ned in (25). They all become zero when the squeezing bandwidth goes toin�nity.The squeezing induced shifts �N and �M depend on the explicit form of N(!) andjM(!)j. For a degenerate parametric oscillator (DPO) the squeezing properties aredescribed by [13] N(x) = �2 � �24 � 1x2 + �2 � 1x2 + �2 � ; (26)jM(x)j = �2 � �24 � 1x2 + �2 + 1x2 + �2 � ; (27)where x = !�!L, and � and � are related to the cavity damping rate, c, and the realampli�cation constant, �, of the parametric oscillator according to� = c + � ; � = c � � :The Cauchy principal values of the integrals (25) can be evaluated using the contourintegration which gives �N = �� � �� ; �M = �� + �� ; (28)where the form of �� and �� for the degenerate parametric oscillator is given by�� = 
0 �2 � �24 1� (
02 + �2) ; �� = 
0 �2 � �24 1� (
02 + �2) : (29)From the master equation (19) we easily derive the optical Bloch equations for themean values of the atomic operatorsh _��i = � (12 + ~N � i �)h��i �  ~M h�+i+ i2
 h�zi ; (30)h _�zi = i (
 + ��)h��i � i (
 + �) h�+i �  (1 + 2 ~N) h�zi �  :The equation for h�+i is obtained as Hermitian conjugate of equation for h��i. De�ningthe Hermitian operators �x and �y as�x = 12(�� + �+) ; �y = 12i(�� � �+) ; (31)we get from (30) the following equations of motion for the atomic polarization quadra-tures h _�xi = � �12 + ~N +Re ~M� h�xi �  �Im ~M + �� h�yi ;h _�yi = � �Im ~M � �� h�xi �  �12 + ~N �Re ~M� h�yi+ 12 
 h�zi ; (32)h _�zi = 2 Im� h�xi � 2 (
 + Re�) h�yi �  (1 + 2 ~N) h�zi �  :



308 R. Tana�s, T. El-ShahatThe Bloch Eqs.(32) show clearly the two di�erent decay rates x =  � 12 + ~N +Re ~M�and y =  �12 + ~N �Re ~M� for the two quadrature components of the atomic dipoleh�xi and h�yi which are already known from the Gardiner paper [1], but now thesqueezing parameters ~N and ~M are more complicated. We can also see that the purelynarrow-bandwidth features represented by Im ~M and � introduce additional couplingsbetween the components of the Bloch vector.3. Steady-state solutionsThe Bloch equations (32) can be easily solved for the steady-state values of theatomic variables, and the result is given byh�xiss = 12  
 (Im ~M + �)d ;h�yiss = �12  
  �12 + ~N +Re ~M�d ; (33)h�ziss = � 2 � 14 + ~N( ~N + 1)� j ~M j2 + �2�d ;where d = 3 (1 + 2 ~N)�14 + ~N( ~N + 1)� j ~M j2 + �2�+ 
 ��12 + ~N +Re ~M� (
 + Re�) + Im� (Im ~M + �)� : (34)The steady-state solutions (33) exhibit a number of interesting features. It is seenthat generally all the components of the Bloch vector have nonzero steady-state values.Even for the resonant driving �eld (� = 0), we �nd from (21), (22) and (24) thatIm ~M + � = jM(!A)j sin� ; (35)indicating that even for � = 0 the h�xiss component of the Bloch vector can havea non-zero steady-state solution provided the phase � is di�erent from 0 or � andthere is a non-zero squeezing at the atomic resonance. This e�ect can lead to unequalpopulations of the dressed states of the system [29, 24]. The dressed states can be foundby diagonalizing the Hamiltonian (8), which givesj1i = s1 + ~�2 jgi+s1� ~�2 jei ; (36)j2i = �s1� ~�2 jgi+s1 + ~�2 jei ;



Analytical results for the probe absorption spectrum . . . 309where the dressed energies are: E1 = �h
0=2 and E2 = ��h
0=2, and jgi and jei are theground and the excited state of the atom, respectively. The populations of the dressedstates can be expressed in terms of the expectation values h�xiss and h�ziss as follows�11 = 12 �1� ~� h�ziss�+p1� ~�2 h�xiss ; (37)�22 = 12 �1 + ~� h�ziss��p1� ~�2 h�xiss :For a resonant driving �eld ( ~� = 0) the stationary populations of the dressed statesdepend solely on h�xiss, which, on the other hand, can be non-zero only when the phase� is di�erent from 0 and � and, simultaneously, there is a non-zero squeezing at theatomic resonance, as it is the case for the degenerate parametric ampli�er.If the laser �eld is detuned from the atomic resonance ( ~� 6= 0) the dressed statespopulations are di�erent even for the most frequently discussed cases � = 0; �, for whichwe have Im ~M + � = � + ~� (�N � �M ) ; (38)where the upper sign is for � = 0 and the lower sign for � = �. This means that theh�xiss component of the Bloch vector changes sign when � changes sign, and it is equalto zero only on resonance. 4. Absorption spectrumThe probe absorption spectrum of a two-level atom is given by the Fourier transformof the two-time atomic correlation functions as [30]A(!) = 1�Re�Z 10 h[��(�); �+(0)]iss ei(!�!L)� d�� ; (39)where Re denotes the real part of the integral. The absorption spectrum is de�nedby the di�erence of two atomic correlation functions (coming from the commutator in(39)). The evolution of such a di�erence can be found from the Bloch equations (30)by applying the quantum regression theorem [31]. The equations of motion for thedi�erence of two-time correlation functions can be written as@@� 0@ h[��(�); �+(0)]issh[�+(�); �+(0)]issh[�z(�); �+(0)]iss 1A = B0@ h[��(�); �+(0)]issh[�+(�); �+(0)]issh[�z(�); �+(0)]iss 1A (40)where B is the 3� 3 matrixB = 0@ �( 12 + ~N � i�) � ~M i2
� ~M� �( 12 + ~N + i�) � i2 
i(
 + ��) �i(
 + �) �(1 + 2 ~N) 1A ; (41)



310 R. Tana�s, T. El-Shahatand the initial values for the correlation functions areh���+iss � h�+��iss = �h�ziss ;h�+�+iss = 0 ; (42)h�z�+iss � h�+�ziss = 2 h�+iss :Taking the Laplace transform of (40) we obtain the system of algebraic equations forthe transformed variables which can be easily solved. The solution gives us the followingformula for the Laplace transform of the di�erence h��(�)�+(0)iss � h�+(0)��(�)issA(z) = 1d(z) �i h�+iss 
 �(12 + ~N + ~M + i�) + z�� h�ziss � 2(1 + 2 ~N)(12 + ~N + i�)+ 12
(
 + �) + (32 + 3 ~N + i�) z + z2�� (43)whered(z) = d+ �54 + 5 ~N( ~N + 1)� j ~M j2 + �2 + 
(
 +Re�)� z + 2(1 + 2 ~N) z2 + z3 (44)with d given by (34), andh�+iss = h�xiss � i h�yiss = i 
2d 2�12 + ~N + ~M� � i�� : (45)From the Laplace transform (43), the probe absorption spectrum de�ned by (39) isobtained as A(!) = 1� RefA(z)jz=�i(!�!L)g (46)Formulas (43)-(46) are relatively simple analytical expressions that describe theprobe absorption spectrum of the atom driven by the external �eld with the Rabi fre-quency 
, detuned by � from the atomic resonance, and damped to the �nite bandwidthsqueezed vacuum produced by degenerate parametric oscillator.Let us discuss the simplest case of resonant driving �eld, � = 0, and the squeezedvacuum phase � = 0; �. In this case ~N , ~M , and � are real, � = 0, and the denominator(44) can be factored intod(z) = �z + (12 + ~N + ~M)� �2(1 + 2 ~N)(12 + ~N � ~M) + 
(
 + �)+ (32 + 3 ~N � ~M) z + z2� : (47)Finding the roots of the polynomial d(z), we getz0 = �x ; z� = �12(y + z)� 
R ; (48)



Analytical results for the probe absorption spectrum . . . 311where x =  (12 + ~N + ~M) ; y =  (12 + ~N � ~M) ; z = x + y ; (49)
R = s����
(
 + �)� 142x���� ; (50)~N = 12 fN(!L) +N(!L +
)� (jM(!L)j � jM(!L +
)j)g ; (51)~M = � 12 f(jM(!L)j+ jM(!L +
)j)� [N(!L)�N(!L +
)]g ; (52)� = �N � �M : (53)In (51)-(53) the upper sign corresponds to � = 0 and the lower sign to � = �. Theroots (48) are all real for 
(
+�)� 2x=4 < 0, and, if 
(
+�)� 2x=4 > 0, z� becomea complex conjugate pair with 
R replaced by i
R. They de�ne the widths of thespectral lines and the e�ective Rabi frequency. It is clear that 
(
 + �) � 2x=4 = 0 isa threshold at which the character of the solution changes.Below the threshold, 
(
+�)�2x=4 < 0, and for � = 0; �, and � = 0, the spectrumtakes the formA(!) = 12� [ 
(
 + �) + yz ] � xy(! � !L)2 + 2x+ 14
R (2
2 � xy + 2
R y)�y+z2 +
R�(! � !L)2 + �y+z2 +
R�2� 14
R (2
2 � xy � 2
R y)�y+z2 �
R�(! � !L)2 + �y+z2 �
R�2 9>=>; : (54)Above the threshold, 
(
 + �)� 2x=4 > 0, the probe absorption spectrum is givenby the following formulaA(!) = 12� [ 
(
 + �) + yz ] � xy(! � !L)2 + 2x+ 14
R 
R y(y + z)� (2
2 � xy) (! � !L +
R)(! � !L +
R)2 + (y+z2 )2+ 14
R 
R y(y + z) + (2
2 � xy) (! � !L �
R)(! � !L �
R)2 + (y+z2 )2 ) : (55)Formulas (54) and (55) are analytical solutions for the probe absorption spectrum fora resonantly driven atom in the �nite bandwidth squeezed vacuum. It is clear that thespectrum is symmetric with respect to the laser frequency !L = !A. Below the thresholdit shows Lorentzian shape contributions with di�erent widths at the laser frequency, and
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Fig. 1. Absorption spectrum for �=c = 0:5 (N(!A) = 1:78, jM(!A)j = 2:22), � = 0, solid line| �nite bandwidth with c= = 10, dashed line | broadband squeezing: (a) below threshold(
 = 1), and (b) above threshold (
 = 10).above the threshold it exhibits a Lorenzian line at the laser frequency and Lorentzianas well as dispersion features at the Rabi sidebands. For �nite a bandwidth squeezedvacuum the widths and the amplitudes of the lines are de�ned by ~N , ~M , and � givenby (51)-(53). For broadband squeezing N(!) and M(!) do not depend on !, whichmeans that ~N = N and ~M = �jM j are constants describing the broadband squeezing.In this case the shifts �N and �M are zero, and consequently � = 0. The dampingparameters x and y depend on squeezing through N and M , as seen from (49). Forordinary vacuum x = y = =2 and the spectrum simpli�es to the standard form [30].Since ~N+ ~M = N(!L+
)+ jM(!L+
)j, it is clear that the width of the central lineas well as the e�ective Rabi frequency are de�ned by the squeezing properties on thesidebands only, while the widths of the sidebands depend on the squeezing properties atthe laser frequency as well as at the sidebands. This feature has been found by Yeomanand Barnett [19] who discussed the resonance uorescence spectrum.In Fig. 1 we have plotted examples of the absorption spectrum for both the belowthreshold (Fig. 1(a)) and the above threshold (Fig. 1(b)) situations. The solid linesrepresent the spectrum for the �nite bandwidth squeezed vacuum calculated accordingto our formulas, which is compared to that obtained for broadband squeezing. Theparameters we used to calculate the spectrum are: �=c = 0:5 which givesN(!A) = 1:78and jM(!A)j = 2:22, � = 0, � = 0, c= = 10 for narrow bandwidth (solid lines),c= = 100000 for broadband squeezing (dashed lines), 
 = 1 for �gure (a), and
 = 10 for �gure (b). It is evident from Fig. 1 that in real physical situation, when thebandwidth of squeezing is �nite the ampli�cation at the central line is diminished, butthe dispersion pro�les at the sidebands that appear for strong �elds become stronger.One can expect better ampli�cation at the sidebands, although in very narrow range offrequencies, if the bandwidth of the squeezed vacuum is narrow. Figure (a) shows a holeburning feature discussed for broadband squeezing by Zhou et al. [32] which exist alsofor the narrow bandwidth, but is not as deep as for the broad bandwidth. Modi�cation



Analytical results for the probe absorption spectrum . . . 313of the Rabi sidebands shown in �gure (b) agree qualitatively with that obtained byBosticky et al.[23] under the secular approximation, which requires su�ciently strongdriving �elds.In general case, the simple factorization of the denominator (44) is not possible, andthe absorption spectrum cannot be reduced to the form similar to (55). Nevertheless,our analytical formula (43) can still be used to evaluate the spectrum numerically. Fornonzero detuning and/or squeezing phase � 6= 0; �, the spectrum is no longer symmetricand exhibits a number of interesting features which appear for the driving �elds with theRabi frequencies comparable to the atomic linewidth. For broadband squeezing suchfeatures have recently been discussed by Ficek et al.[33]. For such �elds the secularapproximation is not valid, but our approach is still applicable and can be used to �ndthe modi�cations of the spectra when the bandwidth of the squeezed vacuum becomes�nite. 5. ConclusionWe have derived simple analytical formulas for the absorption spectrum of a driventwo-level atom damped to a squeezed vacuum with �nite bandwidth. The derivation isbased on the master equation which is valid for the bandwidth of the squeezed vacuummuch larger than the natural linewidth of the atom but not necessarily larger thanthe Rabi frequency of the driving �eld. This allows us to study the spectra for bothweak and strong �elds. The formulas obtained in the paper give better insight into thephysical origin of the spectral features that appear when atom is damped to a squeezedvacuum with �nite bandwidth. If the squeezing bandwidth becomes large our resultsreproduce the results known for broadband squeezing. We have shown examples ofthe absorption spectra below and above the threshold for the Rabi oscillations. Thisthreshold depends on the parameters describing squeezed vacuum.One has to remember, however, that the applicability of the approach is restrictedby the Markov approximation used to derive the master equation, which requires thebandwidth of the squeezed vacuum to be much larger than the atomic linewidth. Vio-lating this requirement can even lead to unphysical results.AcknowledgementsWe thank Dr. Z. Ficek for fruitful discussions. This research wassupported by the Polish Scienti�c Research Committee (KBN grant 2 P03B 73 13). Wealso thank Pozna�n Supercomputing and Networking Center for access to the computingfacilities. References[1] C.W. Gardiner: Phys. Rev. Lett. 56 (1986) 1917[2] A.S. Parkins: inModern Nonlinear Optics, Part 2, volume LXXXV of Advances in Chem-ical Physics, ed. M. Evans, S. Kielich (Wiley, 1993)[3] H.J. Carmichael, A.S. Lane, D.F. Walls: J. Mod. Opt. 34 (1987) 821[4] J.M. Courty, S. Reynaud: Europhys. Lett. 10 (1989) 237[5] S. Smart, S.Swain: Phys. Rev. A 45 (1992) 6863
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