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294 A. Miranowicz et al.2. ModelThe parametric frequency converter (PFC) can be modelled by a process of exchang-ing photons between two optical �elds of di�erent frequencies: signal mode at frequency!1 and idler mode at frequency !2. The interaction Hamiltonian for the PFC is [1]:bHint = �h�[bay1ba2 exp(�i�!t) + ba1bay2 exp(i�!t)]; (1)where �! = ! + !2 � !1; ba1 and ba2 are the annihilation operators for the signaland idler modes, respectively, and � is the real coupling constant. Hamiltonian (1)describes a coupling of three optical modes at di�erent frequencies: signal mode atfrequency !1, idler mode at frequency !2, and pump mode at !. However, in order toderive the Hamiltonian (1) from �rst principles it is necessary to apply the parametricapproximation. This approximation e�ectively reduces a description of three-modeinteraction to a two-mode problem. The pump mode is treated classically since itsintensity can be assumed to be much greater than the intensities of the signal and idlermodes. The frequency converter (1) is formally equivalent to a beam splitter. Forsimplicity, we will analyze a resonance case (�! = 0) only. Solutions of the Heisenbergequations of motion for the signal (1) and idler (2) modes are [1]:ba1(t) = ba10 cos�t � iba20 sin�t; ba2(t) = ba20 cos�t � iba10 sin�t; (2)respectively, where ba10 = ba1(0) and ba20 = ba2(0) are the annihilation operators at initialmoment t = 0. The total number of photons is the constant of motion, bn1(t) + bn2(t) =bn1(0) + bn2(0) = const. The solutions of the classical equations of motion for the PFCare [1]:�1(�10; �20; t) = �10 cos�t� i�20 sin�t; �2(�10; �20; t) = �20 cos�t� i�10 sin�t: (3)3. Diagonalization problem: She�er polynomialsHamiltonian (1) describes a special case of Raman-type models analyzed in thesound paper of Orlov and Vedenyapin [4] on special polynomials in problems of quantumoptics. We would like to solve completely their diagonalization problem, bHintj
i = 
j
i,for the PFC model.Let us assume that the total number of photons in the signal and idler modes is N .Hamiltonian (1) in Fock basis of the idler mode isbHint � bH(N)int = 26666664 0 f0 0f0 0 f1 0. . . . . . . . .0 . . . . . . fN�1fN�1 0
37777775 ; (4)



Quasidistributions for frequency converter model 295where f (N)n = hN �n�1; n+1jba1bay2jN �n; ni =p(n+ 1)(N � n): The eigenvalues are
k � 
(N)k = 2k �N; where k = 0; :::; N . The eigenvectorsj
ki � j
(N)k i = NXn=0C(N)n (
k)jni; spanning bH(N)int = NXk=0 
kj
kih
kj; (5)can be determined from the recurrence formula
C(N)n = f (N)n�1C(N)n�1 + f (N)n C(N)n+1 (6)for n = 0; :::; N . Eq. (6) simpli�es to the recurrence formulad(N)n+1 = 
d(N)n � n(N � n+ 1)d(N)n�1; where d(N)n = C(N)n n!s�Nn �; (7)which we recognize as a de�nition of a special class of the She�er orthogonal polynomials[7]. The generating function for the She�er polynomials (7) is:1Xn=0 d(N)n (
)tn = (1 + t)(N+
)=2 (1� t)(N�
)=2 : (8)Orlov and Vedenyapin [4] found slightly modi�ed form of the generating function (8),however after normalization both functions lead to the same eigenvectors. We completethe analysis of Ref. [4] by �nding the explicit solution of the recurrence relation (7) inthe form d(N)n (
) = n! nXj=0(�1)n�j � (N + 
)=2j �� (N � 
)=2n� j � : (9)Normalization constant can be calculated from the Christo�el-Darboux identity for theorthogonal polynomials. By retaining the original coe�cients C(N)n (
k) � C(N)n;k , andputting 
k = 2k �N; we arrive at the normalized superposition coe�cients (6) in theform C(N)n;k =s2�N �Nk ��Nn ��1 nXj=0(�1)n�j �kj ��N � kn� j � : (10)Knowing the eigenvalues and eigenvectors of the Hamiltonian (4) we readily �nd thewave function of the frequency converter for initial Fock states jN � n0; n0i asj (t)i = NXn=0 b(N;n0)n (t)jN � n; ni; (11)where b(N;n0)n (t) = NXk=0 exp(�i
k�t)C(N)n0 (
k)C(N)n (
k) ; (12)



296 A. Miranowicz et al.or, explicitly,b(N;n0)n (t) =s�Nn ��Nn0�(cos�t)N�n�n0 n0Xj=0�nj ��n0j ��Nj ��1 (�i sin�t)n+n0�2j ;(13)where n0 = min(n; n0) or, equivalently, n0 = n or n0 = n0. We can rewrite the wavefunction (11) in a more compact form asj (t)i = bay1(�t)N�n0pN � n0! bay2(�t)n0pn0! j0; 0i= (bay10 cos�t + ibay20 sin�t)N�n0p(N � n0)! (bay20 cos�t + i ay10 sin�t)n0pn0! j0; 0i: (14)4. QuasidistributionsThe two-mode HusimiQ-function for arbitrary initial statistics, described byQ(�1; �2; 0)= Q0(�10; �20), can be obtained from the explicit form of b(N;n0)n (t), given by Eq.(13). With the help of the mathematical identities j�1j2 + j�2j2 = j�1(�1; �2; t)j2 +j�2(�1; �2; t)j2 and�N�n01 (�1; �2;�t) = NXn=0�N � n0n� n0 � (�1 cos�t)N�n(i�2 sin�t)n�n0 ; (15)for N � n0, we show that the following propertyh (t)j�1; �2i = hN � n0; n0j�1(�1; �2;�t);�2(�1; �2;�t)i (16)holds for any initial Fock states, j (0)i = jN � n0; n0i. By virtue of Eq. (16), we con-clude the two-mode Husimi Q-function for arbitrary initial statistics can be expressedin a compact form asQ(�1;�2; t) = Q���11 (�1; �2; t);��12 (�1; �2; t); 0	� Q f�1(�1; �2;�t);�2(�1; �2;�t); 0g ; (17)where��11 (�1; �2; t) = �1 cos�t+ i�2 sin�t; ��12 (�1; �2; t) = �2 cos�t+ i�1 sin�t (18)are the relations inverse to the classical solutions �j(�1; �2; t), given by (3). Obviously,the property holds for any s-parametrized quasidistributions, including the two-modeGlauber-Sudarshan P -function, P (�1;�2; t), as was analyzed by Mi�sta [6] for coherentinitial �elds.Eq. (17) has a clear physical interpretation: a two-mode Husimi Q-function forthe PFC remains constant along classical trajectories. If the signal and idler �elds are



Quasidistributions for frequency converter model 297initially classical, i.e., if they are described by a regular and non-negative Glauber-Sudarshan P -function, they are classical at any evolution times of the PFC. However,if the �elds are initially nonclassical (with singular and/or negative P -function) theyremain nonclassical during the evolution. It seems that Glauber [5] and Mi�sta [6] haveproved the property (17) for the model with initial coherent �elds only.In order to �nd a graphical representation of the PFC evolution is useful to calculatethe marginal 3D Q-functions. E.g., the marginal distribution for the signal mode isde�ned asQ1(�1; t) = Z Q(�1;�2; t)d2�2 = Z Q���11 (�1; �2; t);��12 (�1; �2; t); 0	 d2�2: (19)The idler-mode Husimi function Q2(�2; t) is de�ned analogously. Let us analyze indetail evolution of the PFC for three di�erent initial conditions.If the PFC is initially in a two-mode coherent state j (0)i = j�10; �20i; it remainsa coherent state at all times [5,6]. From Eq. (17) followsQ(�1; �2; t) = 1�2 Yj=1;2 exp(�j��1j (�1; �2; t)� �j0j2)= 1�2 Yj=1;2 exp(�j�j ��j(�10; �20; t)j2): (20)The single-mode marginals of Q(�1; �2; t) are simplyQj(�j ; t) = 1� exp(�j�j ��j(�10; �20; t)j2) ; (j = 1; 2): (21)Let us note that Qj(�j ; t) di�ers from 1� exp(�j��1j (�1; �2; t)� �j0j2). Eq. (21) showsthat the single-mode Husimi functions Qj(�j ; t) do not change their shape during evo-lution of initially coherent states (see Fig.1). For better comparison, we present theevolution of the signal and idler modes in the same phase space, i.e., �1 = �2: We haveanalyzed evolution of initial coherent states, with the same amplitudes j�10j = j�20j,but di�erent phases of �' = Arg(�10) and Arg(�20) = 0. If �' = 0, then both signaland idler modes evolve along the same circular trajectory given by Eq. (3) with thesame phase. However, even by changing slightly �' from, e.g., 0 to 0.1, the di�erencesin the evolution of the modes are well pronounced (see Fig.1a). If �' = �, then themodes evolve out-of-phase along the same circular trajectory (see Fig.1d). For phases�' di�erent from 0 and �, the trajectories for the signal and idler modes are di�erent(Fig. 1b,c). In particular, for �' = �=2 (Fig. 1c) and 3�=2, the elliptical trajectoriesgo over into mutually perpendicular linear trajectories.If the signal mode is initially in a single-photon Fock state and the idler mode ina vacuum state, the wave function is given by j (t)i = cos�tj1; 0i � i sin�tj0; 1i. Thetwo-mode Q-function isQ(�1; �2; t) = 1�2 exp(�j�1j2 � j�2j2)j��11 (�1; �2; t)j2: (22)
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Fig. 1. Contours of the Husimi Q-functions: Q1(Re�1; Im�1; t) for the signal mode (thick solidcircles) and Q2(Re�2; Im�2; t) for the idler mode (thick dashed circles) for initial coherentstates j (0)i = j�10;�20i with �10 = 2 exp(i�'), �20 = 2: (a) �' = 0:1, (b) �' = �4 , (c)�' = �2 and (d) �' = � at evolution times �t = 0; 1 � �4 ; 2 � �4 : Classical trajectories for thesignal mode (thin solid ellipses) and for the idler mode (thin dashed ellipses) are given byEq.(3).Its signal-mode marginal isQ1(�1; t) = 1� exp(�j�1j2) �j�1j2 cos2 �t+ sin2 �t� ; (23)whereas the idler-mode marginal Q2(�2; t) can be obtained from (23) by replacing�1 $ �2 and sin�t $ cos�t. The Fig. 2 presents the evolution of the signal-modeHusimi function Q1(�1; t) for �t = 0; �; 2�; ::: (Fig. 2a) and for �t = �=2; 3�=2; :::(Fig. 2b) or equivalently the evolution of the idler-mode Husimi function Q2(�2; t) for�t = �=2; 3�=2; ::: (Fig. 2a) and for �t = 0; �; 2�; ::: (Fig. 2b). For �t = (1 + 2n)�=4(n=0,1,...) the Husimi functions coincide, Q1(�; t) = Q2(�; t) = 1�p2 exp(�j�j2)(1 +j�j2) (by assuming the same phase space for both modes). Contrary to the evolution ofinitially coherent states presented in Fig.1, the Husimi functions Qj(�j ; t) for initiallyFock states are centered at �j = 0 for all evolution times, however they change theirshape.If the signal mode is initially in a superposition of a vacuum and single-photon Fockstate, and the idler mode is in a vacuum state, i.e., j (0)i = 1p2 (j0; 0i+ j1; 0i), the
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Fig. 2. Husimi Q-functions for initial Fock states j (0)i = j1; 0i: (a) Q1(Re�1; Im�1; n�� ) orQ2(Re�2; Im�2; (1 + 2n) �2� ), (b) Q1(Re�1; Im�1; (1 + 2n) �2� ) or Q2(Re�2; Im�2; n�� ), wheren = 0; 1; :::.two-mode Q-function isQ(�1; �2; t) = 12�2 exp(�j�1j2 � j�2j2) �1 + j��11 (�1; �2; t)j2 + 2Re��11 (�1; �2; t)� :(24)The signal-mode Husimi function isQ1(�1; t) = 12� exp(�j�1j2) �j�1j2 cos2 �t+ 2Re�1 cos�t+ 1 + sin2 �t� : (25)and the idler-mode Husimi function Q2(�2; t) comes from (25) by replacing: �1 ! �2,sin�t $ cos�t, and Re�1 ! Im�2: This evolution is ( 2�� )-periodical contrary to (�� )-periodical evolution of initially Fock states j (0) = jN � n0; n0i (see, e.g., Fig. 2).The signal-mode Husimi function Q1(�1; t) has an apple-shape contour (see Fig. 3 a,b)for �t = n� and circular contour for �t = (1 + 2n)�=2. The contour of the idler-modeHusimi function Q1(�1; t) is initially a circle and it changes into an apple-shape contourat �t = (1+2n)�=2 but rotated by �=2 in comparison to Q1(�1; 0). Contrary to formercases presented in Figs. 1 and 2, the Husimi functions Qj(�j ; t) for initial superpositionof Fock states (Fig.3) change their shape moving along trajectories.5. ConclusionGlauber [5] proved a theorem showing classical behavior of some general class ofquantum oscillator systems, including the PFC as a special case. States of the PFCwhich are initially coherent remain coherent at all times. The evolution of the systemis classical in nature for initial coherent states. The similar properties of the PFCwere discovered independently by Mi�sta [6]. He found that the Glauber-SudarshanP -function is constant along classical trajectories for initial coherent �elds.We have generalized the Glauber-Mi�sta theorem for arbitrary initial �elds. By solv-ing the Orlov-Vedenyapin [4] diagonalization problem completely, we have proved that
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