acta physica slovaca vol. 48 No. 3, 281 — 292 June 1998

SECOND-ORDER COLLAPSES AND REVIVALS!'

M. Kozierowski?
Institute of Physics, A. Mickiewicz University, 61-614 Poznan, Umultowska 85, Poland

Received 12 May 1998, accepted 26 May 1998

Second-order collapses and revivals caused by the photon-number mechanism in
the Jaynes-Cummings model with a nonlinear Kerr medium and those in the Dicke
model related to the collective mechanism are reviewed. The revival period of the
oscillations is dependent on whether the initial mean photon-number 7 is integer
or non-integer in the first case, and strongly related to the parity of either n (the
photon number) if n< A or A (the number of atoms) if A<n in the latter.

1. Introduction

The Jaynes-Cummings model (JCM), describing the interaction of a two-level atom
with a single-mode field, is one of the most intensively studied models in quantum
optics. The rotating-wave approximation Hamiltonian of this exactly solvable model
reads (h=1)

H=wa'a+wyS, +g(a'S_ +aS;) . (1)

S4,S_ and S, are pseudo-spin raising, lowering and inversion operators, respectively
and g is the atom-field coupling. The symbols a' and a are the photon creation and
annihilation operators and w denotes the frequency of the field mode while w,¢ is the
atomic transition frequency.

In the case of exact resonance (w = wyt) and an initially excited atom, the Rabi
frequency of the oscillations of the JCM is: Q,, = 2gy/n + 1. The spectrum of the Rabi
frequencies is nonlinear in n. Let us treat this frequency as a continuous quantity and
expand the dispersion curve (2, around the point n

: 1
Q=0+ 0 (n—) + 00 -0+, 0f =

no= d*Qy, fdn*| . (2)

The first term of the above expansion is responsible for rapid oscillations of the model
while the remaining terms are responsible for their envelope. In general, if only the first-
order derivative of such an expansion were different from zero, the collapses and revivals
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of the oscillations would be perfectly periodic (linear or harmonic approximation). Such
a situation takes place in the generalized model proposed by Buck and Sukumar[1].
If higher-order terms in Eq. (2) are nonzero, but the nonlinearity of the frequency
spectrum is slight, they spread the revivals arising from the linear expansion and, in
particular, lead to their incompleteness, overlapping and a ringing structure [2, 3]. They
are also the source of well pronounced fractional revivals as in the JCM coupled to a
sub-Poissonian field [4].
Although the harmonic approximation

0, = 0+ V) (n —n) (3)

does not describe revivals in quantitative detail, i.e., their structure, nonetheless the
revival period estimated from this approximation is satisfactorily good. This approxi-
mation is also sufficient to describe correctly the initial collapse.

With respect to the linear dependence of the frequency (3) on the photon number,
there are no terms oscillating with the same frequency during the whole evolution of
the model. The revival of the oscillations occurs if, at least the terms oscillating with
the greatest weights acquire a phase difference of 27. For a coherent field these terms
correspond to n=n and n=n+1

Tr =21/ (Qag1 — Q) = 27/ (U — Qn 1) = 20/Q0) = 27 /g)vVn + 1. (4)

In fact, in the pure linear approximation all terms become phased at this time in-
stant. This revival period is valid for integer as well as non-integer initial mean photon
numbers.

The on-resonant Rabi frequency is but slightly nonlinear if a given photon number
distribution P, is localized beyond the region of small n’s. For a coherent field this
takes place for sufficiently “large” mean photon numbers [5] and a sequence of collapses
and revivals of the oscillations has been revealed [6, 7]. The same situation occurs
for initially squeezed coherent states with an appropriate magnitude of the coherent
excitation [2, 3]. Then, additionally, a ringing structure of the revivals, connected with
the oscillatory photon number distribution, appears.

In turn, if the influence of the higher-order terms in (2) is significant, it may totally
wash out collapses and revivals of the model. In particular, if the intensity of the
coherent field is small or if the initial field is in a thermal or squeezed vacuum state, the
terms connected with small n’s contribute to the evolution with the greatest statistical
weights. Hence, the temporal behaviour of the resonant thermal [8] or squeezed vacuum
and squeezed coherent JCM with a small addition of the coherent part [9] is irregular.

Géra and Jedrzejek [10] showed that the spectrum of the Rabi frequencies of the
JCM may be “linearized” for small n by detuning A = w,; — w. In this way the
possibility of regular dynamics of the off-resonant JCM appears for fields for which the
resonant model reveals irregularity in its time evolution [11]. In particular, since the
photon number distribution for a squeezed vacuum field contains only contributions
from even n’s, such fields accelerate twice the emergence of revivals when compared to
other fields of the same intensity, to states of which both odd and even n’s contribute
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[11]. As in the resonant case the off-resonant Rabi frequency is a monotonic function
of n.

2. The Jaynes-Cummings model with a Kerr medium

Many different extensions of the JCM have been proposed, among others the one
including the effect of a Kerr-like medium on the dynamics of the model [12]-[16]. The
rotating-wave approximation Hamiltonian of this system is as follows:

H=wa'a+wyS.+g (aTS, + aS+) + ya?a?. (5)

The symbol x is the third-order susceptibility representing the dispersive part of the
third-order nonlinearity of a Kerr medium, modeled here as an anharmonic oscillator.
For x =0 the Hamiltonian (1) is recovered.

The oscillation Rabi frequency of such a system has the form

Q, = 2\/<nx — %)2 + (n+1)g2, (6)

and the atomic inversion (S, (t)) evolves according to the formula

2 02 ’ @

n

(S.(0) = 2 [1 Sy DS b 4 cos

n=0

At a special choice of the detuning A the Rabi frequency (6) can have a minimum
at n. Then the situation becomes especially interesting. Namely, instead of the “usual”
revivals resembling those manifested by the standard JCM, the nonlinear JCM with an
initially coherent field exhibits superstructures [17]. This occurs for A = 2nx + ¢g2/x
and the Rabi frequency in such a case reads

Q, =2 (n—ﬁ)x—£2+(n+l)92. (8)
\/[ QX}

In the following, we shall consider in detail just this case only. As previously, let us
expand this dispersion curve around the point n

In fact, this expansion contains only even powers of n—7. Asin Eq. (2), the first term of
the above expansion is responsible for rapid oscillations of the model while the remaining
terms are responsible for their envelope. If we used in the series (7) the expanded Rabi
frequency (9), collapses and revivals of the oscillations would be perfectly periodic.
Since the first nonvanishing derivative of the frequency is the second-order one, we can
now speak of the second-order revivals or the revivals of the second kind, to distinguish
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them distinctly from the revivals exhibited by the standard JCM or by the nonlinear
JCM if the condition A = 2ny + g/ is not satisfied. Some interesting aspects of these
revivals at an initially strongly squeezed field have recently been considered by Du et
al. [18].

2.1. Second-order revivals: photon mechanism

As in the case of the first-order revivals, the second-order revival occurs if at least
the most heavily weighted terms of the series (7) acquire the phase difference equal to
27 (subsequent revivals occur at the phase differences being multiplicities of 2m).

Let us consider first an integer n. With respect to the symmetry properties of the
expanded frequency (9) the cosines in the series (7), corresponding to n =n—1 and
n=n+I (I - an arbitrary integer), are always in phase which is readily seen in the lower
graph of Fig. 1. In fact, in this figure the exact Rabi frequencies (8) are presented;

Fig. 1. Poissonian distribution P, and the Rabi frequency (11) for n =8 (lower graph) and
n=38.5 (upper graph).

for the photon-number assumed no difference between (8) and (9) would be seen in the
scale of the graphs within the interval of effective summation over n. The revival period
may be simply estimated as

(U1 — Q) Tr = Vg1 — ) Th ~ QD T =27 (10)
and reads [17]
integer 2m m 27Tg g2 _
= gm et = e )

However, the above estimation of the revival period is not valid for a non-integer n
[19]. In particular, if 7 is a half-integer the terms corresponding to i —(2k + 1)/2 and
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n+(2k+1)/2, (k=0,1...) are always in phase (upper graph of Fig. 1) and the revival
period is calculated as follows:

0

(Qﬁ,.ﬁ - Qﬁ,%) Tp = (Qn+_ - QM%) Tp ~ 202 Ty =27 (12)

Hence, the general form of the revival period for a half-integer 7 is half of that for an

integer 7
half—integer _ 7 79 92 _
Ty 7@—@”@*‘71-%1. (13)
n ' g

The time evolution of the atomic inversion for n = 8 and 8.5 is presented in the lower two

graphs in Fig. 2 (x = 0.1g). The time is scaled by the quantity Tr = ZXLQ"’ (% +ﬁ—|—1)]/2.
Therefore the first revival for the half-integer @ occurs at ¢/Tr=0.5.
Let now n = I4+f; f € (0,1), but f # 1/2. There are no couples of terms oscillating in
phase during the whole evolution. In comparison with the nearest neighbouring integer
or half-integer n, twice the number of terms have to reach a phase difference 27 and
the revival period is expected to be longer. The terms corresponding to n—f—1, n— f
and n— f+ 1 have the greatest weights. The first two of them become phased at
TI(;) = 27r/Q£32)(1 + 2f), while the latter at TI(%2) = 27r/Q£32)|1 — 2f]. To have only one
formula valid either for f < 1/2 or f > 1/2, the absolute value of the denominator for
f > 1/2 has been introduced. Both times are equal for f = 0, i.e., if @ is an integer,
which case has been discussed earlier. For a fractional f (but, obviously, f # 1/2), the
first revival will occur at T = Tz({l) x I = 1(?2) x I, where I » are mutually prime
integers. As a consequence, we obtain the following condition I /I, =1+ 2f/|1 — 2f].
For f=0.1,0.3,0.7 and 0.9 (n = I+ f) the above condition leads to
_omg | g2

T J
R 2\ 42

+n+1. (14)
Its general form is multiplied by 2.5 in comparison with that for n=1.
In turn, for f=0.2,0.4,0.6 and 0.8 one finds that

10mg | g2 _
T = g L+ 1. 1
R ° \/ e +n+ (15)

In other words, this time is multiplied by five in comparison with that for n=1. Since
the revival periods are longer, the pictures of the superstructures are more complicated
(two upper graphs in Fig. 2). In fact, as the number of digits after the decimal point
grows in n, the revivals periods grows as well; the superstructures get increasingly
complex and become more and more blurred to some extent. The formulas (14) and
(15) are also valid for n = f < 1 except n = 0.1 and 0.2. Then one has to consider
quantum beats between the two meaningful terms only: n=0 and n=1, and for these
7’s the revival period is multiplied by 5/4 and 5/3, respectively in comparison with
that for n=1. In all cases the collapse times are equal to one half of the corresponding
revival times.
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n==8.2

n=8.1

0.0 0.5 1.0 1.5 2.0
t/Txr

Fig. 2. Time evolution of the atomic inversion (9) for 7 = 8, 8.5, 8.1 and 8.2 from the bottom
to the top of the figure, respectively. The time is scaled by the quantity Tk =2mg [g2/(4x2) +

7+ 1] Y22 v =0.1g.

3. The Dicke model

Since the paper of Dicke [20] a considerable amount of attention has been devoted
to the interaction of a radiation field with a small sample of A two-level atoms located
within a distance much smaller than the wavelength of the radiation. Thus, all the
atoms are treated as being in equivalent-mode positions. However, the wave functions
of the atoms are assumed not to overlap. The collectivity of the system is then due to
indirect atom-atom coupling via the field-mode. Such a system is commonly termed the
Dicke model (DM). The interaction of a group of two-level atoms with a single-mode
cavity field has been considered by Tavis and Cummings [21] and this particular type
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of the Dicke model is sometimes referred to as the Tavis-Cummings model. The latter
is mathematically equivalent to the trilinear Hamiltonian describing processes of para-
metric conversion as well as Raman and Brillouin scattering [22] and its Hamiltonian
in the rotating-wave approximation reads (h=1)

H =wa'a+waS. + g [aTS, +aSy] . (16)

St = Z?:] S(i]?z are collective pseudospin raising, lowering and inversion operators,
respectively. In what follows, we assume exact resonance: w = wq¢. In the small sample
approximation the coupling coefficient g is the same for all the atoms.

The total excitation number N (the number of photons plus the number of excited

atoms)
N =aa' + 5.+ A/2 (17)

is an integral of motion.

If the field is taken initially in a Fock state with the photon number n and the
atomic system is in its ground state, then a single subspace with N = n contributes
to the evolution. Unlike the JCM, the general exact analytical solution for the Dicke
model is not known. Although the formal solution can be written by means of the
Bethe ansatz this has not led up to now to a convenient form of the solution, since the
problem is reduced to an algebraic equation equivalent to the initial one. In particular,
in the rotating wave approximation, the DM is exactly solvable for NV <8. Among these
solutions the cases N =1, 2 (A arbitrary) and A=1, 2 (N arbitrary) are characterized
by equidistant eigenvalues spectra and the time behaviour of such systems is strictly
periodic [23]-[25]. The system with N = A = 3 [26]-[30] is the first in the hierarchy
of those having unequidistant spectra of the eigenvalues. This anharmonicity of the
eigenvalues spectrum leads to distinct collective collapses and revivals of the oscillations
of the model if 3< N< A or 3<A<N.

For N ~ A collective collapses and revivals are not so well pronounced [31, 32].
Walls and Barakat [22] showed numerically that there are two limits when the eigen-
values spectrum of such systems may still be supposed to be approximately equidistant
and, consequently, their evolution considered as periodic. The first case occurs if the
excitation number is very much smaller than the number of atoms (N < A) and the
other is the opposite of the former (N> A). It is reasonable to call them “weak” and
“strong” field limits, respectively. If weaker inequalities N < A and A> N are satisfied
we may speak of “weak” and “strong-field” domains, correspondingly. Obviously, the
above determinations have nothing in common with the absolute intensity of the field;
only the relation between the photon number and the number of atoms of the sample
is taken into account in the above definition.

3.1. Weak-field domain

In this section we consider the time evolution of the DM for an initially Fock field.
We assume that there are n photons and no excited atoms in the initial state. We start
with the weak-field domain. The inversion of the atomic energy (S(t)) for the group of
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n atoms is related with the inversion of the atomic energy for the whole system by the
following relation [27]: (S(t)) = (A —n)/2 + (S.(t)). At the initial conditions assumed
(S:(0))y = —A/2,ie., (S(0)) = —n/2.

We have constructed a perturbation approach to the problem in question in terms
of the SU(2) group representations [28, 33, 34]. In the second-order approximation for
the eigenvalues and in the first-order approximation for the eigenvectors (subscript 21),
with respect to the integral of motion (17) and the result for the expectation value of
the photon number [30], (S(¢)) is found to evolve according to the formula

ewn(n

w n-— 1) - n w
(SN = e DOy cos
p=1
€w - n : w N (w
- 3 ZC’p {[(n—?p)z—Qp—l—l] cosQé It +2(p — l)cosQé )t} . (18)
p=1

It may reach the value n/2; the approximate solution permits total energy transfer to
the atomic subsystem. In the exact solution this inversion does not reach n/2 (e.g. for
n=3 [28]).

Here the principal term corresponds to the zeroth-order approximation for the eigen-
vectors but contains the second-order Dicke frequencies

o) = Q%‘”){H%b(p—l)(p—”) + (”_1)(n_2)]} ’ o

where the carrying Rabi frequency QE,’”) reads

QW) =29 /A —n/2+1/2, (20)

and the expansion parameter €, is €, = (A —n/2+1/2)"".
The frequencies inside the spread are marked by the parameter p, 1 < p < N; (recall
that N =n for an initially unexcited atomic system).

=) =5(-) .

is the binomial distribution multiplied by the factor n/2. In the zeroth-order approx-
imation for the eigenvectors, Eq. (18) contains only the frequencies (19) related with
the transitions between two neighbouring levels (p and p—1) of the Hamiltonian (16).
From Egs. (18) and (21) it is obvious that in the evolution of the system the most
significant role is played by the terms with p close to n/2, i.e., by the eigenvectors with
the smallest absolute values of the eigenfrequencies [35, 36].

In the first-order approximation for the eigenvectors (the terms proportional to €,,)
new transition frequencies Qp related with the transitions between the levels p and p—2
appear.
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3.2. Strong-field domain

The appropriate formula for the time evolution of (S, (t)) is directly obtainable from
that for a weak field (18) after interchanging n and A:

A
(s) _  €A(A-1) A s
(S:(t))y = 16 7};01) COSQ;)t
A
€s s (s
- 3 ZC’;‘ {[(A—2p)2—2p—|—1] cos Q; )t +2(p —1) cos Qé )t} , (22)
p=1
where
3 2
Q§f>:ﬂ£f>{1+ fg [5(p1)(pA)+(A1)(A2)]}, 0 =29\/n—A/2+1/2, (23)

and e, = (n — A/2+1/2)" L.

In this regime the oscillation amplitudes in Eq. (22) depend on n via the small
parameter €4 only. In general, however, the time behaviour of the model resembles that
for an initially weak Fock field.

3.3. Second-order revivals: collective mechanism

The spreads of the Dicke frequencies (19) and (23) are responsible for the fine collec-
tive phenomena inherent in the model. The mechanism of this spread is now different
from the photon number mechanism; this is due to the summation over p and has a
purely cooperative origin. It is the consequence of the unequidistancy of the eigenfre-
quency spectrum. Due to the spread of the frequencies the oscillations dephase and
rephase (collapse and revive).

If the Dicke frequency is considered as a continuous function, in the weak-field
domain it has its minimum at p=(n+1)/2 which simply means vanishing of its first-
order derivative in this point. Since the weight function (21) (considered as a continuous
function) reaches its maximum just in the same point p we expand the Dicke frequency
(19) around this point,

Q(U}) _ an) + qu)” (p _ :5)2: Q(w)” _ 1594/02103 . (24)

p

Since the linear term in this expansion vanishes, the appearance of revivals has to
be attributed to the second-order derivative Qéw)”. In fact, all higher-order derivatives
of the Dicke frequency (19) are equal to zero in the approximation considered and we
deal here with purely second-order revivals.

To calculate the revival time we may neglect in Eq. (18) the contributions propor-

tional to €,, and take into account only the terms proportional to cos Q;w)t. Due to

the parabolic form of the frequency function (19) the pairs of the cosines with the fre-

quencies Qéw) and Qg;j-)kp always oscillate in phase. Moreover, each constituent of the

pair contributes to the evolution with the same weight.
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The cases of odd and even n have to be treated separately. We start with odd n’s.
Then p is an integer number. As mentioned, the contributions with p=p+1 are always
in phase. Therefore we are interested in the phasing of those with Qgﬂ and Qéw). They
are phased if

"

(w) (w) | (w) _ )" m(w) _

QplL — 0 TR'oaan =M% Thogan =27 (25)
If the above condition is satisfied then, in fact, all terms engaged in the evolution acquire
a common phase at this time and completeness of the revivals is expected, attributable
to the vanishing of all higher-order derivatives. From (25) the revival time reads

w 167 .
Woaan = 5, (A —n/2+1/2)" (26)

30.5

A=200, n=61

<S(tp>

0.0 0.5 1.0

A=200, n=60

0.0 0.5 1.0
t/Tg

Fig. 3. Superstructures in the Dicke model in the weak-filed domain: A =200, n=61 (upper
graph) and n=60 (lower graph). Time is scaled by the quantity Tr = %(A —n/24+1/2)%2

For even n, the point p=(n+1)/2 in which the Dicke frequency, treated as a con-
tinuous function, takes its extremum is a half-integer. The two most heavily weighted
terms, p=p=+1/2, are always in phase, and in order to estimate the revival time one
has to discuss the contributions related with p=p+1/2 and p=5+3/2. Hece we find

w 8 .
W oven = 5, (A = /24 1/2)°* (27)

It is easily verified that also in this case all terms are in phase at this time instant.
An intriguing feature of the model is apparent: for a given A and for the two nearest
neighbouring n the revival time is almost twice shorter for even n.
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In both cases of odd and even n the collapse times are equal to one half of the corre-
sponding revival times. Collapses and revivals recur periodically in the approximation
(21) discussed. For odd n’s the collapse of cos Qéw)t is total and residual oscillations in
the quiescent period are related with the first-order term (proportional to €,) (upper
graph of Fig. 3). The latter term contains the oscillations at frequency Q;w) and evolves
almost twice faster compared to the zeroth-order term. When the zeroth-order oscil-
lations cos qu)t collapse, the first-order oscillations cos ngﬂ)t revive [30]. In turn, for
even n’s the collapse of the principal cosines is not total. However, this is only visible
for small numbers of photons n [30].

The weak-field domain has its counterpart in the spontaneous emission of a partially
inverted atomic system.

The discussion of the revival and collapse times for the strong-field domain follows
the same lines as for the weak-field one. The revival time of the main term cos Qés)t is
here also related with the parity, but now, of A. For a given n and for the two nearest
neighbouring A the revival period is almost twice shorter for an even number of atoms
than for an odd one.

The revival time of the oscillations for odd and even A are, respectively

167
T

even A T

_ (s) 8w

a4 = Tap (1 A/, T A2+ ()
As previously, the collapses and revivals will periodically recur in the approximation
discussed.

4. Conclusions

The nonlinear Jaynes-Cummings model with a Kerr medium at a special choice of
the detuning starts to exhibit the revivals of the second-order. As we have shown the
revival period strongly depends on whether the initial mean number of coherent photons
is integer or non-integer.

In turn, the Dicke model of an assemblage of A two-level atoms, coupled in an ideal
cavity to a single-mode Fock field, also exhibits second-order revivals [30]. Contrary to
the photon distribution mechanism, the origin of superstructures in the Dicke model
is related to the collectivity of the system. The revival period of these pure collective
revivals is strongly related to the parity of n in the weak-field domain (n < A), and to
the parity of A in the strong-field domain (A <n).

The mechanisms of the second-order collapses and revivals in both models are dif-
ferent. However, one factor connects these phenomena  discreteness of the systems.
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