
acta physica slovaca vol. 48 No. 3, 281 { 292 June 1998SECOND-ORDER COLLAPSES AND REVIVALS1M. Kozierowski2Institute of Physics, A. Mickiewicz University, 61-614 Pozna�n, Umultowska 85, PolandReceived 12 May 1998, accepted 26 May 1998Second-order collapses and revivals caused by the photon-number mechanism inthe Jaynes-Cummings model with a nonlinear Kerr medium and those in the Dickemodel related to the collective mechanism are reviewed. The revival period of theoscillations is dependent on whether the initial mean photon-number �n is integeror non-integer in the �rst case, and strongly related to the parity of either n (thephoton number) if n<A or A (the number of atoms) if A<n in the latter.1. IntroductionThe Jaynes-Cummings model (JCM), describing the interaction of a two-level atomwith a single-mode �eld, is one of the most intensively studied models in quantumoptics. The rotating-wave approximation Hamiltonian of this exactly solvable modelreads (�h=1) H = !aya+ !atSz + g �ayS� + aS+� : (1)S+; S� and Sz are pseudo-spin raising, lowering and inversion operators, respectivelyand g is the atom-�eld coupling. The symbols ay and a are the photon creation andannihilation operators and ! denotes the frequency of the �eld mode while !at is theatomic transition frequency.In the case of exact resonance (! = !at) and an initially excited atom, the Rabifrequency of the oscillations of the JCM is: 
n = 2gpn+ 1. The spectrum of the Rabifrequencies is nonlinear in n. Let us treat this frequency as a continuous quantity andexpand the dispersion curve 
n around the point �n
n = 
�n+
(1)�n (n� �n) + 
(2)�n (n� �n)2 + : : : ; 
(r)�n = 1k! d k
n=dn k��n=�n : (2)The �rst term of the above expansion is responsible for rapid oscillations of the modelwhile the remaining terms are responsible for their envelope. In general, if only the �rst-order derivative of such an expansion were di�erent from zero, the collapses and revivals1Special Issue on Quantum Optics and Quantum Information2E-mail address: mackoz@amu.edu.pl0323-0465/96 c Institute of Physics, SAS, Bratislava, Slovakia 281



282 M. Kozierowskiof the oscillations would be perfectly periodic (linear or harmonic approximation). Sucha situation takes place in the generalized model proposed by Buck and Sukumar[1].If higher-order terms in Eq. (2) are nonzero, but the nonlinearity of the frequencyspectrum is slight, they spread the revivals arising from the linear expansion and, inparticular, lead to their incompleteness, overlapping and a ringing structure [2, 3]. Theyare also the source of well pronounced fractional revivals as in the JCM coupled to asub-Poissonian �eld [4].Although the harmonic approximation
n = 
�n+
(1)�n (n� �n) (3)does not describe revivals in quantitative detail, i.e., their structure, nonetheless therevival period estimated from this approximation is satisfactorily good. This approxi-mation is also su�cient to describe correctly the initial collapse.With respect to the linear dependence of the frequency (3) on the photon number,there are no terms oscillating with the same frequency during the whole evolution ofthe model. The revival of the oscillations occurs if, at least the terms oscillating withthe greatest weights acquire a phase di�erence of 2�: For a coherent �eld these termscorrespond to n=�n and n=�n�1TR = 2�=(
�n+1 �
�n) = 2�=(
�n �
�n�1) = 2�=
(1)�n = (2�=g)p�n+ 1 : (4)In fact, in the pure linear approximation all terms become phased at this time in-stant. This revival period is valid for integer as well as non-integer initial mean photonnumbers.The on-resonant Rabi frequency is but slightly nonlinear if a given photon numberdistribution Pn is localized beyond the region of small n's. For a coherent �eld thistakes place for su�ciently \large" mean photon numbers [5] and a sequence of collapsesand revivals of the oscillations has been revealed [6, 7]. The same situation occursfor initially squeezed coherent states with an appropriate magnitude of the coherentexcitation [2, 3]. Then, additionally, a ringing structure of the revivals, connected withthe oscillatory photon number distribution, appears.In turn, if the inuence of the higher-order terms in (2) is signi�cant, it may totallywash out collapses and revivals of the model. In particular, if the intensity of thecoherent �eld is small or if the initial �eld is in a thermal or squeezed vacuum state, theterms connected with small n's contribute to the evolution with the greatest statisticalweights. Hence, the temporal behaviour of the resonant thermal [8] or squeezed vacuumand squeezed coherent JCM with a small addition of the coherent part [9] is irregular.G�ora and Jedrzejek [10] showed that the spectrum of the Rabi frequencies of theJCM may be \linearized" for small �n by detuning � = !at � !. In this way thepossibility of regular dynamics of the o�-resonant JCM appears for �elds for which theresonant model reveals irregularity in its time evolution [11]. In particular, since thephoton number distribution for a squeezed vacuum �eld contains only contributionsfrom even n's, such �elds accelerate twice the emergence of revivals when compared toother �elds of the same intensity, to states of which both odd and even n's contribute



Second-order collapses and revivals 283[11]. As in the resonant case the o�-resonant Rabi frequency is a monotonic functionof n. 2. The Jaynes-Cummings model with a Kerr mediumMany di�erent extensions of the JCM have been proposed, among others the oneincluding the e�ect of a Kerr-like medium on the dynamics of the model [12]-[16]. Therotating-wave approximation Hamiltonian of this system is as follows:H = !aya+ !atSz + g �ayS� + aS+�+ �ay2a2 : (5)The symbol � is the third-order susceptibility representing the dispersive part of thethird-order nonlinearity of a Kerr medium, modeled here as an anharmonic oscillator.For �=0 the Hamiltonian (1) is recovered.The oscillation Rabi frequency of such a system has the form
n = 2s�n�� �2 �2 + (n+1)g2; (6)and the atomic inversion hSz(t)i evolves according to the formulahSz(t)i = 12 "1�Xn=0 4(n+ 1)g2
2n Pn (1� cos
nt)# : (7)At a special choice of the detuning � the Rabi frequency (6) can have a minimumat �n. Then the situation becomes especially interesting. Namely, instead of the \usual"revivals resembling those manifested by the standard JCM, the nonlinear JCM with aninitially coherent �eld exhibits superstructures [17]. This occurs for � = 2�n� + g2=�and the Rabi frequency in such a case reads
n = 2s�(n� �n)�� g22��2 + (n+ 1)g2 : (8)In the following, we shall consider in detail just this case only. As previously, let usexpand this dispersion curve around the point �n
n = 
�n+
(2)�n (n� �n)2 + : : : ; 
�n = 2gs g24�2 + (�n+ 1); 
(2)�n = 2�2
�n : (9)In fact, this expansion contains only even powers of n��n. As in Eq. (2), the �rst term ofthe above expansion is responsible for rapid oscillations of the model while the remainingterms are responsible for their envelope. If we used in the series (7) the expanded Rabifrequency (9), collapses and revivals of the oscillations would be perfectly periodic.Since the �rst nonvanishing derivative of the frequency is the second-order one, we cannow speak of the second-order revivals or the revivals of the second kind, to distinguish



284 M. Kozierowskithem distinctly from the revivals exhibited by the standard JCM or by the nonlinearJCM if the condition � = 2�n�+g2=� is not satis�ed. Some interesting aspects of theserevivals at an initially strongly squeezed �eld have recently been considered by Du etal. [18]. 2.1. Second-order revivals: photon mechanismAs in the case of the �rst-order revivals, the second-order revival occurs if at leastthe most heavily weighted terms of the series (7) acquire the phase di�erence equal to2� (subsequent revivals occur at the phase di�erences being multiplicities of 2�).Let us consider �rst an integer �n. With respect to the symmetry properties of theexpanded frequency (9) the cosines in the series (7), corresponding to n = �n�I andn=�n+I (I - an arbitrary integer), are always in phase which is readily seen in the lowergraph of Fig. 1. In fact, in this �gure the exact Rabi frequencies (8) are presented;

Fig. 1. Poissonian distribution Pn and the Rabi frequency (11) for �n = 8 (lower graph) and�n=8:5 (upper graph).for the photon-number assumed no di�erence between (8) and (9) would be seen in thescale of the graphs within the interval of e�ective summation over n. The revival periodmay be simply estimated as(
�n�1 �
�n)TR = (
�n+1 �
�n)TR � 
(2)�n TR = 2� (10)and reads [17] T integerR = 2�
(2)�n = ��2
�n = 2�g�2 s g24�2 + �n+ 1 : (11)However, the above estimation of the revival period is not valid for a non-integer �n[19]. In particular, if �n is a half-integer the terms corresponding to �n�(2k + 1)=2 and



Second-order collapses and revivals 285�n+(2k+1)=2; (k = 0; 1 : : :) are always in phase (upper graph of Fig. 1) and the revivalperiod is calculated as follows:�
�n� 32 �
�n� 12�TR = �
�n+ 32 �
�n+ 12 �TR � 2
(2)�n TR = 2� : (12)Hence, the general form of the revival period for a half-integer �n is half of that for aninteger �n T half�integerR = �
(2)�n = �g�2s g24�2 + �n+ 1 : (13)The time evolution of the atomic inversion for �n = 8 and 8:5 is presented in the lower twographs in Fig. 2 (� = 0:1g). The time is scaled by the quantity TR= 2�g�2 � g24�2 +�n+1�1=2:Therefore the �rst revival for the half-integer �n occurs at t=TR=0:5.Let now �n = I+f ; f 2 (0; 1), but f 6= 1=2. There are no couples of terms oscillating inphase during the whole evolution. In comparison with the nearest neighbouring integeror half-integer �n, twice the number of terms have to reach a phase di�erence 2� andthe revival period is expected to be longer. The terms corresponding to �n�f�1; �n�fand �n� f +1 have the greatest weights. The �rst two of them become phased atT (1)R = 2�=
(2)�n (1 + 2f), while the latter at T (2)R = 2�=
(2)�n j1 � 2f j. To have only oneformula valid either for f < 1=2 or f > 1=2, the absolute value of the denominator forf > 1=2 has been introduced. Both times are equal for f = 0, i.e., if �n is an integer,which case has been discussed earlier. For a fractional f (but, obviously, f 6= 1=2), the�rst revival will occur at TR = T (1)R � I1 = T (2)R � I2, where I1;2 are mutually primeintegers. As a consequence, we obtain the following condition I1=I2 = 1 + 2f=j1� 2f j.For f=0:1; 0:3; 0:7 and 0:9 (�n = I+f) the above condition leads toTR = 5�g�2 s g24�2 + �n+ 1 : (14)Its general form is multiplied by 2:5 in comparison with that for �n=I .In turn, for f=0:2; 0:4; 0:6 and 0:8 one �nds thatTR = 10�g�2 s g24�2 + �n+ 1 : (15)In other words, this time is multiplied by �ve in comparison with that for �n=I . Sincethe revival periods are longer, the pictures of the superstructures are more complicated(two upper graphs in Fig. 2). In fact, as the number of digits after the decimal pointgrows in �n, the revivals periods grows as well; the superstructures get increasinglycomplex and become more and more blurred to some extent. The formulas (14) and(15) are also valid for �n = f < 1 except �n = 0:1 and 0:2. Then one has to considerquantum beats between the two meaningful terms only: n=0 and n=1, and for these�n's the revival period is multiplied by 5=4 and 5=3, respectively in comparison withthat for �n=I: In all cases the collapse times are equal to one half of the correspondingrevival times.
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Fig. 2. Time evolution of the atomic inversion (9) for �n = 8; 8:5; 8:1 and 8:2 from the bottomto the top of the �gure, respectively. The time is scaled by the quantity TR=2�g�g2=(4�2) +�n + 1�1=2�2; �=0:1g. 3. The Dicke modelSince the paper of Dicke [20] a considerable amount of attention has been devotedto the interaction of a radiation �eld with a small sample of A two-level atoms locatedwithin a distance much smaller than the wavelength of the radiation. Thus, all theatoms are treated as being in equivalent-mode positions. However, the wave functionsof the atoms are assumed not to overlap. The collectivity of the system is then due toindirect atom-atom coupling via the �eld-mode. Such a system is commonly termed theDicke model (DM). The interaction of a group of two-level atoms with a single-modecavity �eld has been considered by Tavis and Cummings [21] and this particular type



Second-order collapses and revivals 287of the Dicke model is sometimes referred to as the Tavis-Cummings model. The latteris mathematically equivalent to the trilinear Hamiltonian describing processes of para-metric conversion as well as Raman and Brillouin scattering [22] and its Hamiltonianin the rotating-wave approximation reads (�h=1)H = !aya+ !atSz + g �ayS� + aS+� : (16)S�;z = PAj=1 S(j)�;z are collective pseudospin raising, lowering and inversion operators,respectively. In what follows, we assume exact resonance: ! = !at. In the small sampleapproximation the coupling coe�cient g is the same for all the atoms.The total excitation number N (the number of photons plus the number of excitedatoms) N = aay + Sz +A=2 (17)is an integral of motion.If the �eld is taken initially in a Fock state with the photon number n and theatomic system is in its ground state, then a single subspace with N = n contributesto the evolution. Unlike the JCM, the general exact analytical solution for the Dickemodel is not known. Although the formal solution can be written by means of theBethe ansatz this has not led up to now to a convenient form of the solution, since theproblem is reduced to an algebraic equation equivalent to the initial one. In particular,in the rotating wave approximation, the DM is exactly solvable for N�8. Among thesesolutions the cases N=1; 2 (A arbitrary) and A=1; 2 (N arbitrary) are characterizedby equidistant eigenvalues spectra and the time behaviour of such systems is strictlyperiodic [23]-[25]. The system with N = A = 3 [26]-[30] is the �rst in the hierarchyof those having unequidistant spectra of the eigenvalues. This anharmonicity of theeigenvalues spectrum leads to distinct collective collapses and revivals of the oscillationsof the model if 3�N<A or 3�A<N .For N � A collective collapses and revivals are not so well pronounced [31, 32].Walls and Barakat [22] showed numerically that there are two limits when the eigen-values spectrum of such systems may still be supposed to be approximately equidistantand, consequently, their evolution considered as periodic. The �rst case occurs if theexcitation number is very much smaller than the number of atoms (N � A) and theother is the opposite of the former (N�A). It is reasonable to call them \weak" and\strong" �eld limits, respectively. If weaker inequalities N<A and A>N are satis�edwe may speak of \weak" and \strong-�eld" domains, correspondingly. Obviously, theabove determinations have nothing in common with the absolute intensity of the �eld;only the relation between the photon number and the number of atoms of the sampleis taken into account in the above de�nition.3.1. Weak-�eld domainIn this section we consider the time evolution of the DM for an initially Fock �eld.We assume that there are n photons and no excited atoms in the initial state. We startwith the weak-�eld domain. The inversion of the atomic energy hS(t)i for the group of



288 M. Kozierowskin atoms is related with the inversion of the atomic energy for the whole system by thefollowing relation [27]: hS(t)i = (A� n)=2 + hSz(t)i. At the initial conditions assumedhSz(0)i = �A=2, i.e., hS(0)i = �n=2.We have constructed a perturbation approach to the problem in question in termsof the SU(2) group representations [28, 33, 34]. In the second-order approximation forthe eigenvalues and in the �rst-order approximation for the eigenvectors (subscript 21),with respect to the integral of motion (17) and the result for the expectation value ofthe photon number [30], hS(t)i is found to evolve according to the formulahS(t)i(w)21 = �wn(n� 1)16 � nXp=1Cnp cos
(w)p t� �w8 nXp=1Cnp n�(n�2p)2�2p+1�cos
(w)p t+ 2(p� 1) cos ~
(w)p to : (18)It may reach the value n=2; the approximate solution permits total energy transfer tothe atomic subsystem. In the exact solution this inversion does not reach n=2 (e.g. forn=3 [28]).Here the principal term corresponds to the zeroth-order approximation for the eigen-vectors but contains the second-order Dicke frequencies
(w)p = 
(w)n �1+3�2w16 [5(p�1)(p�n) + (n�1)(n�2)]� ; (19)where the carrying Rabi frequency 
(w)n reads
(w)n = 2gpA� n=2 + 1=2 ; (20)and the expansion parameter �w is �w = (A� n=2 + 1=2)�1.The frequencies inside the spread are marked by the parameter p; 1 � p � N ; (recallthat N=n for an initially unexcited atomic system).Cnp = p2n�np� = n2n�n� 1p� 1� (21)is the binomial distribution multiplied by the factor n=2. In the zeroth-order approx-imation for the eigenvectors, Eq. (18) contains only the frequencies (19) related withthe transitions between two neighbouring levels (p and p�1) of the Hamiltonian (16).From Eqs. (18) and (21) it is obvious that in the evolution of the system the mostsigni�cant role is played by the terms with p close to n=2, i.e., by the eigenvectors withthe smallest absolute values of the eigenfrequencies [35, 36].In the �rst-order approximation for the eigenvectors (the terms proportional to �w)new transition frequencies ~
p related with the transitions between the levels p and p�2appear.



Second-order collapses and revivals 2893.2. Strong-�eld domainThe appropriate formula for the time evolution of hSz(t)i is directly obtainable fromthat for a weak �eld (18) after interchanging n and A:hSz(t)i(s)21 = �sA(A � 1)16 � AXp=1CAp cos
(s)p t� �s8 AXp=1CAp n�(A�2p)2�2p+1�cos
(s)p t+ 2(p� 1) cos ~
(s)p to ; (22)where
(s)p =
(s)n �1+3�2s16 [5(p�1)(p�A) + (A�1)(A�2)]� ; 
(s)n =2gpn�A=2+1=2 ; (23)and �s = (n�A=2 + 1=2)�1.In this regime the oscillation amplitudes in Eq. (22) depend on n via the smallparameter �s only. In general, however, the time behaviour of the model resembles thatfor an initially weak Fock �eld.3.3. Second-order revivals: collective mechanismThe spreads of the Dicke frequencies (19) and (23) are responsible for the �ne collec-tive phenomena inherent in the model. The mechanism of this spread is now di�erentfrom the photon number mechanism; this is due to the summation over p and has apurely cooperative origin. It is the consequence of the unequidistancy of the eigenfre-quency spectrum. Due to the spread of the frequencies the oscillations dephase andrephase (collapse and revive).If the Dicke frequency is considered as a continuous function, in the weak-�elddomain it has its minimum at �p= (n+1)=2 which simply means vanishing of its �rst-order derivative in this point. Since the weight function (21) (considered as a continuousfunction) reaches its maximum just in the same point �p we expand the Dicke frequency(19) around this point,
(w)p = 
(w)�p + 
(w)00�p (p� �p)2; 
(w)00 = 15g4=
(w)3�p : (24)Since the linear term in this expansion vanishes, the appearance of revivals has tobe attributed to the second-order derivative 
(w)00�p . In fact, all higher-order derivativesof the Dicke frequency (19) are equal to zero in the approximation considered and wedeal here with purely second-order revivals.To calculate the revival time we may neglect in Eq. (18) the contributions propor-tional to �w, and take into account only the terms proportional to cos
(w)p t. Due tothe parabolic form of the frequency function (19) the pairs of the cosines with the fre-quencies 
(w)p and 
(w)n+1�p always oscillate in phase. Moreover, each constituent of thepair contributes to the evolution with the same weight.



290 M. KozierowskiThe cases of odd and even n have to be treated separately. We start with odd n's.Then �p is an integer number. As mentioned, the contributions with p=�p�1 are alwaysin phase. Therefore we are interested in the phasing of those with 
(w)�p+1 and 
(w)�p . Theyare phased if h
(w)�p+1�
(w)�p iT (w)R odd n = 
(w)00�p T (w)R odd n = 2� : (25)If the above condition is satis�ed then, in fact, all terms engaged in the evolution acquirea common phase at this time and completeness of the revivals is expected, attributableto the vanishing of all higher-order derivatives. From (25) the revival time readsT (w)R odd n = 16�15g (A� n=2 + 1=2)3=2: (26)

Fig. 3. Superstructures in the Dicke model in the weak-�led domain: A= 200, n= 61 (uppergraph) and n=60 (lower graph). Time is scaled by the quantity TR = 16�15g (A� n=2 + 1=2)3=2:For even n, the point �p=(n+1)=2 in which the Dicke frequency, treated as a con-tinuous function, takes its extremum is a half-integer. The two most heavily weightedterms, p=�p�1=2, are always in phase, and in order to estimate the revival time onehas to discuss the contributions related with p=�p+1=2 and p=�p+3=2. Hece we �ndT (w)R even n = 8�15g (A� n=2 + 1=2)3=2: (27)It is easily veri�ed that also in this case all terms are in phase at this time instant.An intriguing feature of the model is apparent: for a given A and for the two nearestneighbouring n the revival time is almost twice shorter for even n.



Second-order collapses and revivals 291In both cases of odd and even n the collapse times are equal to one half of the corre-sponding revival times. Collapses and revivals recur periodically in the approximation(21) discussed. For odd n's the collapse of cos
(w)p t is total and residual oscillations inthe quiescent period are related with the �rst-order term (proportional to �w) (uppergraph of Fig. 3). The latter term contains the oscillations at frequency ~
(w)p and evolvesalmost twice faster compared to the zeroth-order term. When the zeroth-order oscil-lations cos
(w)p t collapse, the �rst-order oscillations cos ~
(w)p t revive [30]. In turn, foreven n's the collapse of the principal cosines is not total. However, this is only visiblefor small numbers of photons n [30].The weak-�eld domain has its counterpart in the spontaneous emission of a partiallyinverted atomic system.The discussion of the revival and collapse times for the strong-�eld domain followsthe same lines as for the weak-�eld one. The revival time of the main term cos
(s)p t ishere also related with the parity, but now, of A. For a given n and for the two nearestneighbouring A the revival period is almost twice shorter for an even number of atomsthan for an odd one.The revival time of the oscillations for odd and even A are, respectivelyT (s)R odd A = 16�15g (n�A=2+1=2)3=2; T (s)R even A = 8�15g (n�A=2+1=2)3=2: (28)As previously, the collapses and revivals will periodically recur in the approximationdiscussed. 4. ConclusionsThe nonlinear Jaynes-Cummings model with a Kerr medium at a special choice ofthe detuning starts to exhibit the revivals of the second-order. As we have shown therevival period strongly depends on whether the initial mean number of coherent photonsis integer or non-integer.In turn, the Dicke model of an assemblage of A two-level atoms, coupled in an idealcavity to a single-mode Fock �eld, also exhibits second-order revivals [30]. Contrary tothe photon distribution mechanism, the origin of superstructures in the Dicke modelis related to the collectivity of the system. The revival period of these pure collectiverevivals is strongly related to the parity of n in the weak-�eld domain (n<A), and tothe parity of A in the strong-�eld domain (A<n).The mechanisms of the second-order collapses and revivals in both models are dif-ferent. However, one factor connects these phenomena | discreteness of the systems.Acknowledgements This work was sponsored by the program 2 P03B 73 13 of thePolish Committee for Scienti�c Research.
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