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We propose an implementation of the quantum eraser, based on a recent exper-
imental scheme by Eichmann et al. [1] involving two four level atoms. In our
version a continuous broad band excitation (BBE) field drives the two trapped
atoms and information about which atom scattered the light is stored in the in-
ternal degrees of freedom of the atoms. Entanglement of the two atoms after the
detection of the photon is intimately connected to the availability of this “which
path” information. We also show that the quantum eraser can be used to measure
the decoherence time of a local measurement process.

1. Introduction

The theory of light scattering from two atoms has first been dealt with by Heitler [2]
in the context of coherent scattering. A recent paper by Eichmann et al. [1] reports on
the first observation of interference effects in the light scattered from two trapped ions.
In the experiment two '®9Hg™ ions were tapped along the axis of a linear trap [1, 3, 4].
The " Hg" ion has an interesting internal level structure with lower state 6s°s; /5 and
an excited state 6p%s; /2, both degenerate with respect to the magnetic quantum number
mj = £1/2. The internal structure has the consequence that the resonance fluorescence
contains 7— and o— polarized light (|JAm;| = 0 and |Am;| = 1), when the incident
light is linearly polarized. Because of this level structure, the interference properties
of the scattered light can be observed by polarization sensitive detection [1, 5]. The
interference pattern comes only from the coherent part of the scattered field, while the
incoherent part gives no contribution.

The explanation in Ref.[1] (see also [5]) indicates that the experiment offers the
possibility to obtain which way information by exploring the internal structure of the
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atom. This description is, however, only valid as long as the atom is not saturated. The
assumption is that only one photon was scattered at a time. This allows, in principle
(by comparing the initial internal states with the final states), to decide if interference
is possible or not. However, one must be careful with such a description. Because of the
continuous monochromatic excitation laser, the assumption of independently scattered
photons, i.e. one at a time, is not valid. For a monochromatic excitation we have a
coherent oscillation between the ground state and the excited state [6, 7, 8]. Due to the
interaction with the reservoir, after a few Rabi cycles, the atom reaches a steady state.
In this paper we want to answer the question what happens to the interference picture
when the atoms have evolved in a steady state. When is it necessary to talk about
saturated atoms or how long is the description of scattering of independent photons
valid [9, 10]? Is it possible in the long time regime, in particular, to get “which path”
information about the photon? The clarification of these problems is important for a
possible realization of the quantum eraser [11-15], which stores erasable information
about which path the particle had taken. We hope to answer these questions and give
possible schemes how the experimental arrangement of Eichmann et al. can be used to
implement a quantum eraser.

Section 2 is devoted to the dynamical behavior of a 4 level atom where the two fold
degenerate excited and ground states are driven by a near resonant linearly polarized
laser. Section 3 discusses the interference pattern of two driven 4-level atoms, especially
in the saturated or steady state regime, and clarifies whether it is still possible to obtain
which way information when there is no interference. Based on these considerations,
we show how a quantum eraser can be implemented when the two atoms are driven
continuously, as in the experiment of Ref.[1]. As it turns out, it is possible even in the
long time regime to adopt their interpretation if one uses a broad band excitation
(instead of a cw one) of the two atoms. In this case, independent excitation and
scattering events (one photon at a time) take place. In section IV we study the effect of
a broad band excitation field on the two atoms. Section 5 is devoted to the discussion
of a quantum eraser model which can be used in the experiment. Finally, in Section 6
we show how one can detect quantum coherence of mesoscopic or macroscopic systems
with a quantum eraser or, in general, in interference experiments and we propose the
quantum eraser as a tool to measure the decoherence time of a local measurement
process.

2. Dynamical behavior of a driven 4—level atom.

The dynamical equations or master equation for a driven 4 level atom were first
derived by Polder and Schurmann [7] in the context of resonance fluorescence and by
Walls et al. [8] in the context of interference in their analysis of [1]. In this section
we use the results of Polder and Schurmann [7] to derive explicitly the time depen-
dence of expectation values of the electric field components in different polarization
directions. These results are important when we consider interference effects in the
resonance fluorescence of the two atoms, especially in the steady state regime.

We consider an atom at rest, at the position r = 0, which is coupled to the electro-
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Fig. 1. Internal structure of the four-level atom with the relevant polarization sensitive tran-
sitions.

magnetic field by the interaction Hamiltonian,
H=—ji-Er=0t). (2.1)

Here ji is the dipole operator and the electric field is the sum of the classical x—polarized
field and the quantized field of the reservoir in free space. The classical field is given by

E(r,t) = 8,E,(r) cos(wt). (2.2)

We denote the two ground states with |1) (m; = —1/2) and |2) (m; = +1/2), and the
excited states with |3) (m; = —1/2) and |[4) (m; = +1/2). The frequency splitting
between the ground and the excited states is wg. We consider the reservoir to be at
zero temperature coupled to the atoms in the Markoff approximation. The interaction
with the classical field is given by,

N 1 . .
Ho = —fi+Be = — 5Bty - (A7) + oY), (2:3)

where the dipole operator, fil7), is related to the lowering operator operator as
i) = p{ RO E+2)@B) +ig (1)@ - 2)B)+2(1) 3] - 12)(4) }, @1 =i . (2.4)

The x polarized (6(=) ;) and the y polarized (¢(7) p,) scattered fields are o polarized
(JAm;| = 1), while the z polarized scattered field (0(=) ) is © polarized (|Am;| = 0)
— see Fig. 1. Only the x—polarized scattered field is coherent to the incident light,
while the y— or z—component scattered fields are not coherent. The two incoherent
parts behave in the same way (have, e. g., the same spectra) therefore it is sufficient
to consider only one incoherent component [7]. We restrict our consideration to the
coherent E, component and the incoherent E,-component. The matrix elements of
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the atomic density operator satisfy the equations,

% = (1A — 3v)p14 + iv(paa — p11),

% = (1A — 37)pag + iv(p3z — pa2),

% = dvypys + 2vpaz + iv(pa1 — P1a),

% = dvyp33 + 29pas + iv(P3z — pPo3),

% = —6ypss +iv(paz — p32),

% = —67paa +iv(p1a — par). (2.5)

Here py; = pjy, P14 = p14e’i“’t and po3 = p23e’i“’t. The equations for ps4, p13, p12 and
p34 necessary for the calculation of (E,(t)) are not needed because (E,(t)) = (E.(¢)). In
Egs. (2.5) A = wo —w is the detuning and v = ji-Eq(0)/2h is the interaction parameter.
The decay rate 2y = 4/3u*w3c¢ 3R~ is one third of the spontaneous decay rate of the
upper to lower level. We obtain the following expressions for the relevant elements of

the density operator in the weak field limit, v? < A% 4 942,

iw U(A - Si')/) - .
pult) + el = e t(972 TR 2T (=it
iwt U(A - 327) — 402+t /(972 2
pra(t) — paz(t) = ™! G aTs 21)2)6 A/ HAN [ 0) Z 11 (0)],
1 v2
) : 2.6
(1344) 2 (972 + A2 +21)2) ( )

Here ss stands for steady state. For symmetric initial conditions p;4(t) — p23(t) vanishes
for all times. It should also be noted that in this expression the longtime limit should
be taken before the weak field (v = 0) limit. The expression for the radiated field is
related to the dipole operator and is given by,

(ESH) = 0t) U (@)« (ol (1),
= O(t,)¥(F)x(pra(ts) + p23(ts)),
v(A = 3iy) o
(992 + A2 4 202)
(ESH) = 0(t) (@), (oD (1)),

= O(t)U(F)y (pralte) — pas(te)),

R 'U(A - 3i’y) fw—dy? 2 2
= Oy gmmr gy (2.7)

iwt,

Il
D
=
o~
5
N
=
=

Here t, =t — r/c is the retarded time. For the intensity we give only the steady state
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(t >~ 1) results,

with
=g w - — —
¥ (7) 70((u><r) Xr).

Egs. (2.7) show that the expectation value of the incoherent part of the electric field
vanishes in the steady state. We can only have fluctuations from this part in steady
state, and we note that the steady state is reached within a few Rabi cycles or Raman
transitions in the incoherent part of the spectrum.

3. Interference of light scattered from two independent 4-level atoms

Here we consider the question of the interference of light scattered from two in-
dependent 4 level atoms. We will consider the experimental situation of Ref.[1] and
assume the atoms are at rest at positions o and g . We will also neglect thermal
fluctuations of the center of mass of the atoms. The two atoms are driven by an x—
polarized monochromatic weak laser, so we can use the results of the previous section.
The interaction Hamiltonian is

=

Hzf(ﬁA-E(I_"A,t)-I-ﬁB- (FB,t)). (31)
For a monochromatic transition we have a coherent oscillation between the ground and
the excited states [7, 8]. This implies, if we can neglect direct interaction between the
two atoms, that each atom is driven independently. We can therefore use the equations
of Section 2 for each atom which leads to an entanglement between the two atoms after
the absorption of the photon. The initial density operator for the two independent
atoms is given by

p(t) = pa(t) @ pp(t). (3.2)

The field scattered from the two atoms has now two contributions to the resonance
fluorescence and the intensity at the detector at position ¥ is given by

(1) = (I (F 1) + (I (7 0) + {B @ fa, 0 F - p.0) +ec . (33)

The scattered fields from atoms A and B are given in terms of the lowering operators
of the two atoms as

’ C

S(4) e S F— A
By L (F — Fap,t) = Ot —ran/c)B(F)ol ) (t - M) (3.4)



200 Y. Abranyos et al.

The last two terms of Eq.(3.3) are responsible for the interference. We want to see
the effect of detecting a specific polarization direction of the scattered field, say the x—
polarization. The x—polarized part of the scattered field is responsible for the coherent
part of the spectrum [7], and therefore interference is expected in this polarization.
From Eq. (3.3) we can express these terms as

Ot —74/c)O(t — /)| ¥ (¥)*[(0

Here we have introduced the retarded time ' = ¢ — |¥ — Fa|/c and the delay time
T = (| = ra| — | — I'g|)/c. Using the results of Section 2 we find

Ot~ r4/0)0(t — 15/c) (@) [0 (o g (1 + 7)) + (ol L () B (1 +7)]
V(97" + A%)
(972 + A? + 20?)

3

= Ot —ra/c)O(t —rp/c)| ¥ (D) (3.6)

5 cos(wrT)

for the interference term. As expected, the coherent part of the spectrum gives rise to
interference.

Next, we turn our attention to the incoherent part of the scattered field and consider,
e.g., the y polarized component. The z polarized field has the same properties, so it
suffices to deal with only one of them. Treating the y component in the same fashion
as the x—component we get,

(E()(F = £, OB (F = £, 1) + huc. =

. 9~2 4 A2 Q24! 2 2
Ot —74/0)O(t — 15/0) WD) Gobghogtae S /O AT cog(wt) — 0. (3.7)
We note that the observation of an interference pattern usually requires several scat-

tered photons. On the other hand, the excitation time of an incoherent photon is related

_ (97’47
to tc = Tz,
consequence is that Eq. (3.7) goes to zero and the incoherent part does not contribute
to the interference. At this point it is worth comparing our results to the interpreta-
tion of Eichmann et al. [1]. Both considerations lead to the same conclusion, viz., the
existence of interference in the coherent part of the spectrum and no interference in the
incoherent part. There is however an important difference between the two approaches.
According to our results, the presence or lack of interference is a consequence of the
steady state behavior of the two atoms. In the interaction of a monochromatic laser
with an atom coupled to a reservoir steady state is reached in a few Rabi cycles. In the
steady state regime, however, there is no which way information any longer, and one
thus can not invoke which way arguments to explain the presence or lack of interference
[1, 5, 8].

so we must assume t > t. to have any incoherent excitation. The
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4. Interference due to the lack of “which way” information

We now look for a possible modification of the experiment of Eichmann et al. [1] to
implement a “which way” experiment. First we can not consider a continuous monochro-
matic driving field, the infinite long coherence time in such a field leads to coherent Rabi
flopping of the atoms with spontaneous decay, leading to a steady state of the two atoms
after some time. Therefore, we need laser pulses weak enough to excite only one atom
per pulse and separated well enough to complete spontaneous emission before the next
pulse arrives or, alternatively, we can use a continuous broad band incoherent excita-
tion. The interaction of a 4-level atom with a broad band excitation is discussed in
detail in Ref.[9], we therefore give only the main results. The coherence time of the
broad band field is given by 7. = 1/A where A is the bandwidth (not to be confused
with the detuning in the previous sections). We assume that 7, < v~' so we can
neglect stimulated emission by the broad band field. Furthermore, since 7, <« T}, we
can regard the broad band field as a reservoir which leads to absorption of one photon
at a time, followed by spontaneous decay. For such a system the interpretation in [1] is
applicable, and we can talk about interference effects due to the indistinguishability of
the possible paths. In other words, for such a system a which way argument is applica-
ble which is required for the implementation of a quantum eraser [12, 13, 14, 15]. We
note that a broad band excitation has the advantage over laser pulses, in that it allows
a continuous monitoring of the atoms. With a broad band excitation the atoms do not
saturate. The interaction Hamiltonian with the broad band driving field Ep is,

Hint(t) = —(ji - En(t)) = =3 - B + i) - BL)). (4.1)
For appropriate parameters Fy, satisfies the relation (see Cohen-Tannoudji [9])

- + D
(B (VER) (1) = Z76(t — 1), (4.2)
which is just the Markoff’s approximation. We take Ep to be z—polarized and obtain
the master equation,

d _
P b {oh ol e) + pt)ol o) — 2000 p(1)0)), (43)
k.,k'=A,B

and for the interaction with the vacuum we have,

d

Zo(t) =7 Y {050 pt) + o)) ol) — 2050 (1101, (4.4)

k=A,B

The interaction with Ep leads to mixed terms which connect the two atoms, while for
the vacuum we have no mixed terms. The mixed terms indicate that there is correlation
between the two atoms, while for the vacuum each atom is independently coupled to
the reservoir and there is no correlation.

In the case of a continuous broad band excitation, independent scattering events
occur for which we can apply which way arguments and a quantum eraser can be
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implemented. Unlike in the previous section, we now consider a z polarized broad
band driving field. This makes the incoherent part of the spectrum o—polarized and
the coherent part m—polarized. With the broad band excitation, we may consider a
single absorption process at a time and neglect stimulated emission since we assumed
T, < v~!. Therefore we treat a single absorption process followed by a spontaneous
emission.

We consider the initial condition for the density operator,

paB(to) = [1)aa(l]l ® [1)sr(1]. (4.5)

After the absorption of one photon at time t' of the broad band excitation field, the
density operator of the two atoms, A and B, is entangled due to the nonlocal behavior
of a single absorbed photon. The coupling to the vacuum leads to decay of the excited
states. So, immediately after the absorption of a photon at time ¢, the density operator
evolves according to a master equation which describes the interaction of an excited
atom with the vacuum and we obtain,

dpay(t
%() = —6ypaa(t),
dpar (t
j;f( ) =3vpa (1),
dp11 (t
pli]t( e 2yp33(t) + 4ypaa(t),
dpaa(t
/)27215() = 29paa(t) + 4ypas(t),
dpa (t
pj;f( ) —3pas(t),
dpas(t
pf;( ) _ —67pas(t). (4.6)
With these equations we get the following time evolution of the density matrix,
paa(t) = paa(0)e” ",
pas(t) = paz(0)e ™,
1
p1(t) = 5943(0)(676w - 1),
1 2
put) = gpaa(0)(1 - e ) + 3P (0)(1 — e "),
1 2
p2(t) = gpa(0)(1 - e ) + 3, (0)(1 -~ e "),
pa(t) = par(0)e™ = (4.7)

The other matrix elements are related so that ps3 satisfies the same equation as ps4
and psa, p42, and p3; satisfy the same equation as p41. From the previous section, the
interference is given by

B (F)2 (0 (o (1 + 1)+ ol (o (1 + 7)), (4.8)
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The coherent part is related to the z polarization or 7 — (JAm;| = 0) transition, while
the incoherent part is related to x— or y—polarization or o — (JAm; | = 1) transition.
With these equations, we obtain for the interference term in the coherent scattering the
expression,

B2 (o) ()t (¢ + 1) + 08 ) (€)' + 7))

77 77

%) 2 Tran { i (1) 10an (313)aa (1 + o5 (' + 7)[3)ms (11)ps 3]} + c.c.
= |¥()|? cos(wr)e 613 (4.9)

The coherent part of the scattered field, thus, has a coherence time of (67) 1. As we
see, for w-polarized scattering, there are two indistinguishable ways which lead to the
same final state and therefore interference takes place.

We consider now the case of g-polarized scattering. We get for the incoherent part
of the = polarized scattered light,

| (7) 2 Tean { (s (1) 1) a4 (313) aa (2105 (' + 7)(2)55 (312)m8 (3] + c.c.}
= |¥(D)[2 cos(wr)e YT Trap (|1)aa (2 1)BB (2] + [1)BB(2(1)AA(2]) = 0. (4.10)

Thus the o—polarized scattered light can not lead to interference. The reason is that the
scattering process brings one of the two atoms to a final state which is orthogonal to the
initial state. From another point of view, the scattering of a o-polarized photon leads to
two distinguishable paths for the photon, giving no interference. As emphasized above,
it is important to recognize that impossibility to observe interference and entanglement
of distinguishable states are connected by our final density operator. The entanglement
of the atomic density operator is necessary for the observation of no interference, because
it expresses the fact that, at least in principle, it is possible to obtain a which way
information. The mere availability of this information, i.e. the possibility that it is
knowable, makes the interference impossible.

5. Quantum eraser

After these preliminaries we now show that a modification of the experiment in [1]
allows one to implement, a quantum eraser with a delayed choice set up, in the sense
proposed originally [14]. The first requirement is a non—unitary time evolution to erase
the information through an irreversible process, and the second is a measurement of the
second order (or intensity) correlation function. The first condition is required because
a unitary time evolution is reversible and in any reversible process information is not
“lost” and can be recovered by an inverse transformation which is again unitary. The
second condition is required because of the orthogonality of the photon states |y4) and
|ve) of the photons scattered from atom A and B. A detection of the photons |y4)
and |yg) reduces the infinite number of possible ways they can take to one specific way,
they have actually taken.

Irreversibility is brought in by a non unitary transformation such as a decay process,
which is detected, so there is a non unitary state reduction. Because of the internal
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Fig. 2. Arrangement for the quantum eraser. S is the light source which can have different
polarization directions, o, is a o,-polarizer for the scattering photon and 7 is a 7- polarization
dependent detector for the erasing photon.

structure of the 4 level atoms, we do not need additional levels to erase the information,
the 4 level structure is enough for the realization of a quantum eraser. We use the same
experimental setup that was originally suggested by Scully and Driihl, with a slight
variation, where a w—polarization sensitive detector is placed equidistantly between
atoms A and B (Fig. 2). The detection scheme allows us to distinguish between a
m polarized erasing photon and a ¢ polarized interference photon. The erasing photon
produces a final density matrix which is entangled only between indistinguishable states
of the two atoms, and the measurement of the erasing photon is necessary to ensure the
specific final state of the two—atom density operator.

The two atom system is driven with broad band light, as in the previous section,
and T (67y) ~ 10, where T} is the travel time of the interference photon to the detector.
This sets a limitation on the experimental apparatus, since it defines the position of the
detector of the interference pattern. This arrangement is necessary because we want to
ensure that there is sufficient time for the atomic density operator to evolve into the
specific entangled density operator between distinguishable states after the scattering
of the interfering photon. In addition, we apply an intense o-polarized pulse before the
detection of the interference photon and we want to make sure that there is enough
time to observe the erasing photon before the interfering photon.

We start to drive the atoms at ¢, and after a time T + (57) ! we apply the strong

short pulse which excites only one of the atoms. After this there is sufficient time
around (5y)~!' to detect the erasing photon before detecting the interfering photon.
This ensures that we have the required final state whith entanglement only between
indistinguishable states of the two atoms.

To express the above qualitative description mathematically we consider the second
order correlation function at times ¢, and ¢, +Tp + (5y) !, that is just before applying
the second laser pulse which is assumed to be o-polarized. The second order correlation
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function is

GO 57) = Trap{plt)[(ES)7 @ t) +BL 7 0) (B (5,7) + By (7,7))]
(B () + B (7,m) (B 0) + BT @ )]} (B

where 7 denotes the m polarized photons which are used to erase the information and
o denotes o polarized scattered photons which are observed at the detector.
The interfering part of the second order correlation function is given by

Gy (7. t; 7) =
Te{p(t) {ES 7@ O{BS " (7. 1) (5,7) + B " (7 B (5, 1) JEGT7 (3 0

+B, 7@ OB (BT (5 ) + B T nES T (5 BT E 0 ) (52)

Assuming the second short pulse is a one photon process, we get for time "' = #, +
Tp + Tp, + (59) !, immediately after the excitation,

GPU(F, t:7,7) = 40(t" — (¥ /)O(t" — F5/c)O(To — /2¢))e 0 cos(K - 67). (5.3)

Here Ty = "' — (Tp + Tp, + (57) 1)) and 47 is the path difference. Immediately before
the detection of the o polarized photon we detect the m polarized photon which erases
the information since the probability of detecting the m-polarized photon in that time
is about 1 — e™® &~ 1, and the final atomic density operator is

pa(ty) = 1) aa(ll® [1)BB(L| + |2)a4(2| ® [2) BB(2|. (5.4)

Thus, the final atomic density operator contains only entanglement of the two atoms
leading to interference. The which way information is erased if we detect the m-polarized
erasing photons before the scattering or interfering photons. The detection of the

ensures the atomic system to be in the proper final state.

If we detect the m—polarized erasing photons after the scattering photons then no
interference occurs because the atomic density operator is still in an entanglement of
distinguishable states between the two atoms. Also, if we do not use a second correlation
measurement there will be no interference. This is because of the orthogonality of the
scattered m polarized erasing photons. Their detection reduces the infinitely many
possible ways to one for the scattered photons. These results were already known and
discussed in [14]. Proceeding from these it is clear that if we use a o—polarized detection
scheme for the erasing photons there is some possibility that we detect the scattering or
interfering photons at the erasing detector and therefore destroy the part which contains
the entanglement between correlations.
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6. Quantum eraser and the decoherence time of a measurement process

Finally, we show that the quantum eraser can be used to probe the decoherence
time of a measurement process[19, 20, 21]. The general quantum measurement process
has been dealt with in, e.g., [22, 23, 24] employing the following scheme. System S is
coupled to a meter M, and the meter is coupled to the environment or reservoir. The
measured system here is the Zeemann splitting of the lower two degenerate states of
atom B. The initial condition for the two atom system is

paB(0) = [N aa(l] @ [1)pp(l]- (6.1)

After the application of the BBE field and the subsequent decay of the excited states,
we have,

paB(t) = 2)4a(2] @ [1)BB(1] + [2)aa(1] ® [1)BB(2[ + 1 & 2. (6.2)
The system is coupled to the meter leading to the entanglement between S and M,

ps—m = [2)aa(2|® [1)p(1] & [m1)(m |
+ 12)4a(1] ®|1) BB 2| ® |m1)(ma| + 1 < 2. (6.3)

Here |m;) and |m») are pointer states. The meter is coupled to the environment and the
off-diagonal elements decay rapidly, with a decoherence time 71111(; of the pointer states.
As a consequence, the interference term in the second order correlation function of the
quantum eraser will decay rapidly due to the coupling to the meter. The erasing pulse,
applied at a time &t after starting the measurement process, will restore the interference
but with a reduced visibility at ¢;. The amount of reduction in fringe visibility is a
quantitative measure of the decoherence time. Due to the coupling of the meter system
to the environment, the entanglement between S and M decays very rapidly with the
same decay rate y4e.. The system-meter state which is “macroscopic” is then given by,

ps—m = [2)aa2| ®|1)pr(1] ® [my)(m|
+ e N2 44 (1 @ 1) pp(2] @ [ma) (ma| + 1 ¢ 2. (6-4)

The second order correlation function contains entanglement of correlations which are
the same as in the meter system and consequently will decay rapidly due to the mea-
surement process. The application of the erasing pulse interrupts the measurement and,
since after the pulse the states have the same magnetic quantum number, the signal
vanishes. After a §t measurement time and the erasing pulse afterwards, we get the
following for interference, at time ty,

)
(V)
—
u
~
[
>
~
N>
Il

40(t' — Tp)O(ty —ra/c)O(ty —rp/c)

x e 01t =5 (ra/emrn/0) o=yt =To) =vaecdt oK (Fy — ©p)). (6.5)

Here T, is the same as the time defined in Section 5. The implication of the above is
that the visibility is reduced by a factor, related to e~ 74=<% due to the measurement
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Fig. 3. Scheme for the local quantum measurement process.

process. Thus, the decoherence time is visualized by the reduction of the fringe visibility
and the quantum eraser can be used as a tool to study fundamental properties such as
the transition from microscopic to macroscopic systems, and the measurement process
itself.

The model for the measurement scheme is as follows. A cavity is placed around atom
B (with a quantized cavity field inside), and also around atom A since the presence of
a cavity changes the decay rate. In addition to the cavity field, which is assumed to
be in the vacuum state initially, we have a classical (coherent state E.;) driving field.
The cavity field, coupled to the atomic system, constitutes the meter. A magnetic field,
By, is applied which splits the degenerate ground states. Both the classical and the
cavity fields are strongly detuned from the transition frequencies of the atoms. The
total Hamiltonian of atom B interacting with the cavity field and the classical field is,

H H0+Hcav+Hcl7

hwoo. + hwa'a + h{gl,,0—a' + geavora} + +ihgaEa{oy —o_}. (6.6)

Here 1
0. = 5 (12)(2 — [1)(1)), (6.7)

and geq, is the coupling parameter, a! and a are the creation and annihilation operators
for the cavity field E.,, respectively and g, F,, is the Rabi frequency of the classical
driving field. The effective Hamiltonian for the system in the strong detuning limit is
given by (after adiabatically eliminating the states which are not involved),

2h - " *
Hepyp = KUZ{‘QWW‘Q(ITG + g?l|Ecl|2 + Z(gdgcm,Eda - gclgmvEclaT)}' (6-8)

Taking into account the strong detuning, guFEe/A < 1 and geay{Nean) /A <K 1, we
obtain

2
H; = haz%{(ﬂa +|Eal® —iE%a+ iEdaT}, (6.9)

where we assumed g.., = g = g. The terms o.a'a and 0.|E.|?> produce only an
overall frequency shift and can be neglected. Next, the cavity field (meter) is coupled
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to the environment as given by

Hyp =h{a?t +a'?}, (6.10)

? Zzgkbk,?Tzzgsz- (6.11)
k k

Here b and bt are reservoir annihilation and creation operators. The meter-environment
interaction determines the particular states (pointer basis) to which the meter states
will reduce (approximately coherent states). We now have a complete system—meter—
environment (atom, cavity field and all modes of the quantized field at zero temperature)
measurement, process.

The density operator for the system meter, after tracing over the environment at
zero temperature, satisfies the following equation,

where

dp 9° %av
ar = K[UZ(Ecla - E}a), p] +

We expand the density operator,

{Qapa —atap — pa a} (6.12)

=3 py @ i, (6.13)

ij=1
with the initial condition
|az)(a7\
Npm(a — 6.14
pz? a;] J <Oéy, ‘05]> ( )

The system is considered arbitrary, while the meter is in the ground state. The master
equation can be solved using the normally ordered characteristic function [23, 24]. The
density operator for the system atom + meter evolves into the following,

p(t) = |2>AA<2‘®‘1>BB<1|®%
+exp{(2a) (1 2w e_wCav_)}|2)AA(1\ ®|1)pp(2| ® %7 (6.15)

where the coherent states form the approximate pointer basis for the meter. The deco-
herence rate between two “macroscopic” states can be related to the distance between
them [23], and in this case we get

Ydec = |CM1 - a2|70av- (616)

Finally, the visibility, at time &t after the start of the measurement and a subsequent
application of the erasing pulse, is given by

V o (Y o

To obtain this expression we have assumed 7.q,0t < 1 and expanded the exponent in
the exponential of Eq. (6.15) to second order.
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7. Conclusion

The entanglement in the two atom system, as a result of the scattering of a photon,
plays a crucial role in the quantum eraser. Entanglement is connected to the nonlocal
behavior of quantum systems and, in the case of interference experiments with one
photon, to the nonlocal behavior of the photon itself. The entanglement term depends
on whether there is interference or no interference. In the case of no interference there
is an entanglement of the two atoms containing orthogonal states and therefore tracing
over the atomic density operator gives vanishing result, while in the case of interference
there is entanglement between populations of the two atoms and tracing over the atomic
density operator gives a non—vanishing result.

It should be emphasized that, since there is entanglement in both cases, we can not
use “which way” arguments for the photon. Even in the case of non interference the
detection of the photon gives no information on which path the photons has taken. If
we really knew which path the photon had taken entanglement would not take place
and the quantum eraser would never work. The detection of the photon at the photon
detector in the case of non—interference gives us only the possibility of knowing which
path the photon has taken. The quantum eraser irreversibly erases the possibility of
obtaining “which way” information. In the case of interference we have no possibility of
obtaining “which way” information, to begin with. The final atomic density operator
contains, in the “interfering part”, an entanglement between populations.

It is clear that we need the entanglement (correlations) to erase the information.
If this entanglement is not stable (e. g. finite decay rates of states |1) and [2)) the
second pulse to erase the information must be applied before the decay of correlations.
A local measurement of the state of one of the atoms, for example atom B, destroys the
correlation and therefore the entanglement. In other words a local measurement on one
atom and therefore an explicit knowledge of the way the photon has taken irreversibly
destroys the possibility to erase the information because the entanglement leading to
interference is destroyed.

To conclude, we want to point out that the quantum eraser is of fundamental interest
in quantum optics because it allows us to explore two important aspects of quantum
mechanics: complementarity and nonlocality. We have shown that the entanglement of
nonlocal superpositions in the case of non—interference and the related entanglement of
correlations in the quantum eraser can be used to measure the decoherence time of a
macroscopic or mesoscopic measurement apparatus.
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