
acta physica slovaca vol. 48 No. 3, 239 { 246 June 1998DISENTANGLEMENT-PRESERVING STATES IN MICROMASER 1M. Hillery2, J. �Skvar�cek3Department of Physics and AstronomyHunter College of City University of New York695 Park Avenue, New York, 10021 NY, USAReceived 14 May 1998, accepted 26 May 1998We consider micromaser �elds which after interaction with one atom producedisentangled atom-�eld states. We �nd a special solution for which interactionwith the atom has the e�ect of 
ipping the sign of the electric �eld. We alsoconsider the general case and derive conditions which the �eld must satisfy. Anexample of the general solution is presented in the case that there is a trappingstate at n = 6. 1. IntroductionWhile the dynamics of a micromaser with atoms injected in their upper states hasbeen studied extensively, the situation in which the atoms enter the cavity in a coherentsuperposition of their upper and lower states has not. The major contribution in thisarea was made by Slosser and Meystre who found �eld states, which they called tangentand cotangent states, which are preserved when at atom traverses the cavity [1, 2]. Inthe absence of damping tangent and cotangent states are steady states of the micromaser�eld. These states can only exist if the micromaser has trapping states which separatethe photon Fock space into noninteracting blocks. It is possible to create period-twosteady states by putting tangent and cotangent states in adjacent blocks [2, 3].In a somewhat di�erent vein Julio Gea-Banacloche has considered a single two-levelatom interacting with a single-mode cavity �eld, the Jaynes-Cummings model, andfound atom-�eld states which remain approximately in product form for long periods oftime [4]. That is, these states, which he called quasiclassical states, are initially productsof atom and �eld states, and, even though the state changes with time, it remains, togood approximation, the product of an atomic and a �eld state. The atomic states inthe quasiclassical states are, it should be noted, coherent superpositions of the upper1Special Issue on Quantum Optics and Quantum Information2E-mail address: mhillery@shiva.hunter.cuny.edu3E-mail address: jozef@fatra.ph.hunter.cuny.edu0323-0465/96 c
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240 M. Hillery, J. �Skvar�cekand lower states. Because of their simple time evolution these states are useful inunderstanding and clarifying the dynamics of the Jaynes-Cummings model.In this paper we combine some of the aspects of both of these perspectives. Weconsider a micromaser cavity with an initial �eld state and an atom in a coherentsuperposition state. We are interested in �nding �eld states which, after interactingwith one atom, yield a total atom-�eld state which is a product. Clearly the tangentand cotangent states are special cases of these states and have the additional propertythat the �eld state is unchanged by the passage of the atom. For other states of thistype the �eld state will be di�erent before and after interaction with the atom. Onespecial case, which will be discussed in Section 2, is a state which has the sign of theexpectation value of its electric �eld 
ipped by the atom. Other examples are discussedin Section 3. 2. Solution causing phase change of the cavity �eldWe begin by brie
y reviewing some aspects of the Jaynes-Cummings model. Theatom has states jai, with energy ! (we are using units with �h = 1), and jbi, with energy0. The Hamiltonian describing the atom-�eld system isH = !aya+ 12!(�3 + I) + g(ay�� + a�+): (1)If the atom is initially injected in the statej	ati = �jai+ �jbi; (2)and the �eld is initially in the statejfi = 1Xn=0 dnjni; (3)then after a time � the state of the combined system will bejfi 
 (�jai+ �jbi) ! 1Xn=0 dn(�cn+1jni � i�snjn� 1i)jai+ 1Xn=0 dn(�cnjni � i�sn+1jn+ 1i)jbi; (4)where sn = sin(g�pn) and cn = cos(g�pn). Note that this state is in general anentangled state of the atom and the �eld. In order for it to be a product the coe�cientsdn must satisfy some special conditions.Rather than �nd the most general conditions which the dn should satisfy, let us�rst look at a special case. Taking a hint from the tangent and cotangent states let ustry to �nd �eld states which are rotated in phase space by their interaction with theatom (the tangent and cotangent states are rotated by an angle of zero). Note that the



Disentanglement-preserving states in micromaser 241e�ect of such an interaction is to conserve the magnitude of dn but to change its phase.Therefore, we want to �nd cavity �eld states, jfi, such thatjfi 
 (�jai+ �jbi)! e�i�n̂jfi 
 (�0jai+ �0jbi); (5)where n̂ denotes the number operator aya. If we employ Eq. (4) on the left hand side ofEq. (5) and then equate the coe�cients of the vectors jai and jbi separately, we obtaintwo reccurence relations for coe�cients dn of the cavity �elddn+1 = i�0e�i�n � �cn+1�sn+1 dn (6)dn+1 = i �sn+1�cn+1 � �0e�i�(n+1) dn: (7)These relations must be the same for any n in order to satisfy Eq. (5) which gives inturn �0�e�i�ncn+1 � �0�0e�i�(2n+1) + ��0e�i�(n+1)cn+1 � �� = 0: (8)As one can see Eq. (8) is ful�lled for any n only if � = 0 or � = �. Let us take a closerlook at the cavity �elds in these two cases.2.1. Solutions corresponding to � = 0.Substituting � = 0 into Eq. (8) we �nd�0�cn+1 � �0�0 + ��0cn+1 � �� = 0; (9)which can be solved for �0 and �0 in two ways, each providing a di�erent cavity �eld.The �rst solution of Eq. (9) is �0 = � and �0 = ��. The reccurence relations inEqs. (6) and (7) then yield the well known tangent statedn+1 = i�� tan�g�pn+ 12 � dn: (10)For the second solution we �nd that �0 = �� and �0 = � which after using thereccurence relations gives us the cotangent statedn+1 = �i�� cot�g�pn+ 12 � dn: (11)The cotangent and tangent states have been studied thoroughly and their properties arewell understood [1, 2]. We merely note that they can exist only when trapping statesare present and the parity of the trapping states determines which of the two kindsof states is physically possible in a given subregion of Fock space. Later we provide aspeci�c example which illustrates the case.
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00:20:40:60:81 0 1 2 3 4 5Pn z1 = ��=�
00:20:40:60:81 0 1 2 3 4 5Pn z2 = �=�
00:20:40:60:81 0 1 2 3 4 5Pn z3
00:20:40:60:81 0 1 2 3 4 5Pn z4
00:20:40:60:81 0 1 2 3 4 5Pn z5
00:20:40:60:81 0 1 2 3 4 5Pn z6Fig. 1. Initial states. Probability Pn = d�ndn versus number state n is plotted for the case� = 0:8, � = 0:6 and g = 4:40� 104Hz with a � trapping state at j6i.2.2. Solutions corresponding to � = �.Substituting � = � into Eq. (8) we �nd�0e�i�n�cn+1 � �0�0 + ��0e�i�ncn+1 � �� = 0 (12)which we can again solve in two di�erent ways.If �0 = � and �0 = � the reccurence relations givedn+1 = i�� (�1)n � cn+1sn+1 dn; (13)which takes two di�erent forms depending on the parity of ni) for even n we have dn+1 = i�� tan�g�pn+ 12 � dn (14)



Disentanglement-preserving states in micromaser 243ii) for odd n we get dn+1 = �i�� cot�g�pn+ 12 � dn: (15)If �0 = �� and �0 = �� we havedn+1 = �i�� (�1)n + cn+1sn+1 dn (16)which also takes two di�erent forms depending on the parity of ni) for even n it reads dn+1 = �i�� cot�g�pn+ 12 � dn (17)ii) for odd n it reads dn+1 = i�� tan�g�pn+ 12 � dn: (18)It is clear from the analytic properties of the cotangent and tangent functions thatthese states are normalizeable only in the presence of trapping states. The positionand the parity of the trapping states are crucial in determining the physical existenceof the solutions. In particular, if we want the solution to start at n = 0, then we �ndthe second solution is ruled out. A close examination reveals that if Eq. (5) is satis�edwhen � = ��0, � = ��0, and n = 0, then we must have that �d0 = c0d0 = d0. Thisimplies that d0 = 0, which means that the entire solution vanishes.The e�ect of the interaction with an atom on these �eld states is simply to multiplythe �eld expansion coe�cients, dn, by (�1)n. This has the e�ect of 
ipping the signof the expectation value of any operator, such as the annihilation operator, which onlyhas nonzero matrix elements between successive number states. In particular, this willhappen to the electric �eld (it is proportional to a + ay). Note that this is true evenwhen the �eld state has a large number of photons, so that interaction with a singleatom could have a macroscopic e�ect.Another interesting feature of these solutions shows up if we suppose that the �eldinteracts with atoms which alternate their states between �jai + �jbi and �jai � �jbi.Then the �eld jf 00i after two interactions is given by jf 00i =Pn(�1)nd0njni, where d0nis the �eld component left after the �rst atom. This means that after two atoms the�eld has returned to its original state, and that the sign of the electric �eld will 
ipback and forth as the atoms are injected.3. General solutionHere we shall again seek states of the micromaser which yield output states whichcan be written as product of �eld and atomic states,jfi 
 (�jai + �jbi)! jf 0i 
 (�0jai+ �0jbi): (19)



244 M. Hillery, J. �Skvar�cekHowever, we will now not limit ourselves to the special case considered in the previoussection, but will seek to �nd a general solution.The right hand side of Eq. (19) can be expressed using the Eq. (4) giving1Xn=0 d0n(�0jai+ �0jbi)jni = 1Xn=0 f(�dncn+1 � i�dn+1sn+1)jai +(�dncn � i�dn�1sn)jbig jni: (20)This equation will be satis�ed if the �eld state multiplying the atomic state jai is thesame as that multiplying the atomic state jbi up to a constant factor, i. e. if�dncn+1 � i�dn+1sn+1 = z(�dncn � i�dn1sn); (21)where z is a complex number. If there exists a z for which the Eq. (21) is satis�ed forall n then our objective is met. The values of z can, in fact, be found from the systemof linear homogeneous equations which result from Eq. (21) for all di�erent values of n.A nontrivial solution for the �eld components dn exists only when the determinant ofthe matrix of the system is equal to zero���������� z�c0 � �c1 i�s1 0 0 0 : : :�iz�s1 z�c1 � �c2 i�s2 0 0 : : :0 �iz�s2 z�c2 � �c3 i�s3 0 : : :0 0 �iz�s3 z�c3 � �c4 i�s4 : : :: : : ���������� = 0: (22)Eq. (22) then, determines the values of the variable z. Once z is known it can besubstituted into the Eq. (21) which can then be used to �nd the components of theinitial cavity �eld. The most di�cult part of the problem is solving Eq. (22); it is veryhard to �nd analytical solutions for a general order of the determinant. We shall discussa simpli�ed case having only a limited number of non-zero �eld components.4. An exampleAs an example we chose to have a � trapping state at j6i i.e. the atom-�eld inter-action time � satis�es g�p6 = �, and we limited nonzero �eld components to those be-tween states j0i and j5i. We assumed in our numerical simulations that � = 0:8, � = 0:6and g = 4:40� 104Hz. The trapping condition then implies that � = 2:91� 10�5s. Wefound the general solutions of which there are six. Among them, two correspond to thecase considered in Section 2.We �rst solved Eq. (22) numerically, and then Eq. (21) was employed to �nd the�eld components d0; d1; : : : ; d5 for each value of the parameter z. There are six di�erentvalues of z, two of them yielding cavity �elds that were identi�ed as solutions of Eq. (5).The �rst one corresponds to z1 = ��=� and is the cotangent state given by Eq. (11).The second corresponds to z2 = �=�, and is identical to the state de�ned by Eq. (13).The probability Pn = d�ndn versus photon number, n, of the resulting �elds has beenplotted in Fig. 1.
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00:20:40:60:81 0 1 2 3 4 5Pn z1 = ��=�
00:20:40:60:81 0 1 2 3 4 5Pn z2 = �=�
00:20:40:60:81 0 1 2 3 4 5Pn z3
00:20:40:60:81 0 1 2 3 4 5Pn z4
00:20:40:60:81 0 1 2 3 4 5Pn z5
00:20:40:60:81 0 1 2 3 4 5Pn z6Fig. 2. Final states. Probability Pn = d�ndn versus number state n is plotted for the sameparameters as in Fig. 1. Both states corresponding to z1 and z2 are left unchanged whereasthat is not true for the others.The �nal �eld states were also calculated, i.e. we let the initial states interact withone atom during a time interval � . Probabilities Pn versus n of the cavity �eld states areshown in Fig. 2. As one would expect the magnitudes of the two �elds correspondingto z1 and z2 are left unchanged since only the phase of the �eld changes accordingEq. (5). If we compare the �elds belonging to z3; : : : ; z6 to those in Fig. 1, we see thatthe interaction with the atom does change these �elds. Clearly, the solutions of Eq. (5)are a subset of the more general set which satisfy Eq. (19).5. ConclusionsWe have studied states of the micromaser �eld which, upon interaction with oneatom yield atom-�eld states which are disentangled. This means that when the atomleaves the cavity the �eld is in a pure rather than a mixed state. There is a large setof such states, and we have given a general method for �nding them as well severalexplicit examples.



246 M. Hillery, J. �Skvar�cekThere are other questions which can be raised in regard to these states. Can onedesign a sequence of atoms which will cause the micromaser to cycle among these states,always leaving the cavity �eld in a pure state between atoms? Can one �nd states whichare disentangled after the passage of two atoms? We plan to examine some of theseissues in the future. References[1] J. J. Slosser, P. Meystre, S. L. Braunstein: Phys. Rev. Lett. 63 (1989) 934[2] J. J. Slosser, P. Meystre: Phys. Rev. A 41 (1990) 3867[3] M. Hillery, J. �Skvar�cek: \Field oscillations in a micromaser with injected atomic coher-ence", J. Mod. Opt., in print[4] J. Gea-Banacloche: Phys. Rev. A 44 (1991) 5913


