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We consider micromaser fields which after interaction with one atom produce
disentangled atom-field states. We find a special solution for which interaction
with the atom has the effect of flipping the sign of the electric field. We also
consider the general case and derive conditions which the field must satisfy. An
example of the general solution is presented in the case that there is a trapping
state at n = 6.

1. Introduction

While the dynamics of a micromaser with atoms injected in their upper states has
been studied extensively, the situation in which the atoms enter the cavity in a coherent
superposition of their upper and lower states has not. The major contribution in this
area was made by Slosser and Meystre who found field states, which they called tangent
and cotangent states, which are preserved when at atom traverses the cavity [1, 2]. In
the absence of damping tangent and cotangent states are steady states of the micromaser
field. These states can only exist if the micromaser has trapping states which separate
the photon Fock space into noninteracting blocks. It is possible to create period-two
steady states by putting tangent and cotangent states in adjacent blocks [2, 3].

In a somewhat different vein Julio Gea-Banacloche has considered a single two-level
atom interacting with a single-mode cavity field, the Jaynes-Cummings model, and
found atom-field states which remain approximately in product form for long periods of
time [4]. That is, these states, which he called quasiclassical states, are initially products
of atom and field states, and, even though the state changes with time, it remains, to
good approximation, the product of an atomic and a field state. The atomic states in
the quasiclassical states are, it should be noted, coherent superpositions of the upper
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and lower states. Because of their simple time evolution these states are useful in
understanding and clarifying the dynamics of the Jaynes-Cummings model.

In this paper we combine some of the aspects of both of these perspectives. We
consider a micromaser cavity with an initial field state and an atom in a coherent
superposition state. We are interested in finding field states which, after interacting
with one atom, yield a total atom-field state which is a product. Clearly the tangent
and cotangent states are special cases of these states and have the additional property
that the field state is unchanged by the passage of the atom. For other states of this
type the field state will be different before and after interaction with the atom. One
special case, which will be discussed in Section 2, is a state which has the sign of the
expectation value of its electric field flipped by the atom. Other examples are discussed
in Section 3.

2. Solution causing phase change of the cavity field

We begin by briefly reviewing some aspects of the Jaynes-Cummings model. The
atom has states |a), with energy w (we are using units with & = 1), and |b), with energy
0. The Hamiltonian describing the atom-field system is

1
H = wa'a + 5&)(0’3 + 1) +glato™ +ac™). (1)

If the atom is initially injected in the state
(Wat) = ala) + Blb), (2)

and the field is initially in the state

1) =" duln), (3)

then after a time 7 the state of the combined system will be
/)@ (ala) +8b)) = Y du(acata|n) —iBsa|n —1))]a)
n=0

+ Y dn(Benln) — iasni1|n + 1))[b), (4)

where s, = sin(gry/n) and ¢, = cos(gry/n). Note that this state is in general an
entangled state of the atom and the field. In order for it to be a product the coefficients
d,, must satisfy some special conditions.

Rather than find the most general conditions which the d,, should satisfy, let us
first look at a special case. Taking a hint from the tangent and cotangent states let us
try to find field states which are rotated in phase space by their interaction with the
atom (the tangent and cotangent states are rotated by an angle of zero). Note that the
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effect of such an interaction is to conserve the magnitude of d,, but to change its phase.
Therefore, we want to find cavity field states, |f), such that

) ® (ala) + BIb)) = 77| f) @ (o']a) + B'[b)), (5)

where 71 denotes the number operator ata. If we employ Eq. (4) on the left hand side of
Eq. (5) and then equate the coefficients of the vectors |a) and |b) separately, we obtain
two reccurence relations for coefficients d,, of the cavity field

1,—ifn _
dpir = iwdn (6)
Sn+1
. QSp41
i1 = lﬂcn+1 — Ble—if(n+1) (7)

These relations must be the same for any n in order to satisfy Eq. (5) which gives in
turn

a',@efigncng _ a/ﬁle—i€(2n+l) + aﬁle—ia(n+l)cn+] _ 04,3 —0. (8)

As one can see Eq. (8) is fulfilled for any n only if # = 0 or § = 7. Let us take a closer
look at the cavity fields in these two cases.

2.1. Solutions corresponding to 6 = 0.
Substituting 6 = 0 into Eq. (8) we find
o' Bepgr —a' B +afcp —af =0, 9)
which can be solved for o’ and 3’ in two ways, each providing a different cavity field.

The first solution of Eq. (9) is @' = a and ' = —f3. The reccurence relations in
Egs. (6) and (7) then yield the well known tangent state

.o vn+1
dn+] = i—tan (%) dn (10)
For the second solution we find that ' = —a and 8’ = 8 which after using the
reccurence relations gives us the cotangent state
.o vn+1
dn+] = —15 cot (%) dn (11)

The cotangent and tangent states have been studied thoroughly and their properties are
well understood [1, 2]. We merely note that they can exist only when trapping states
are present and the parity of the trapping states determines which of the two kinds
of states is physically possible in a given subregion of Fock space. Later we provide a
specific example which illustrates the case.
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Fig. 1. Initial states. Probability P, = d,d, versus number state n is plotted for the case
a=0.8,3=06and g = 4.40 x 10'Hz with a 7 trapping state at |6).

2.2. Solutions corresponding to 6§ = 7.
Substituting # = 7 into Eq. (8) we find
e ™Be, —a' B +afle ™, —aB =0 (12)
which we can again solve in two different ways.
If o' = a and B’ = 3 the reccurence relations give

" —¢,
dpir = igMdn, (13)
ﬁ Sn+1

which takes two different forms depending on the parity of n

i) for even n we have

(14)

1
o =i tan (2L g,
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ii) for odd n we get

dpt1 = —i% cot <@) dy,. (15)
If o/ = —a and ' = —f3 we have

Ayt = igi(l);:c“ldn (16)
which also takes two different forms depending on the parity of n
i) for even n it reads

dns1 = —i%cot (@) dn (17)
ii) for odd n it reads

dpt1 = i% tan <%\/m> dy,. (18)

It is clear from the analytic properties of the cotangent and tangent functions that
these states are normalizeable only in the presence of trapping states. The position
and the parity of the trapping states are crucial in determining the physical existence
of the solutions. In particular, if we want the solution to start at n = 0, then we find
the second solution is ruled out. A close examination reveals that if Eq. (5) is satisfied
when a = —a', 8 = =3, and n = 0, then we must have that —dyg = codg = dy. This
implies that dy = 0, which means that the entire solution vanishes.

The effect of the interaction with an atom on these field states is simply to multiply
the field expansion coefficients, d,,, by (—1)™. This has the effect of flipping the sign
of the expectation value of any operator, such as the annihilation operator, which only
has nonzero matrix elements between successive number states. In particular, this will
happen to the electric field (it is proportional to a 4+ a'). Note that this is true even
when the field state has a large number of photons, so that interaction with a single
atom could have a macroscopic effect.

Another interesting feature of these solutions shows up if we suppose that the field
interacts with atoms which alternate their states between «|a) + 3|b) and ala) — 5|b).
Then the field |f") after two interactions is given by |f") =" (—1)"d,|n), where d,
is the field component left after the first atom. This means that after two atoms the
field has returned to its original state, and that the sign of the electric field will flip
back and forth as the atoms are injected.

3. General solution

Here we shall again seek states of the micromaser which yield output states which
can be written as product of field and atomic states,

1) @ (ala) + BIb) = |f) @ () + B|D)). (19)
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However, we will now not limit ourselves to the special case considered in the previous
section, but will seek to find a general solution.
The right hand side of Eq. (19) can be expressed using the Eq. (4) giving

Yo dy(@lay+B10)n) = > {(adncars —iBdniisnir)la) +
n=0 n=0

(Bdncn — iad,—18,)|b)} n). (20)

This equation will be satisfied if the field state multiplying the atomic state |a) is the
same as that multiplying the atomic state |b) up to a constant factor, i. e. if

adpCny1 — 10dpt18n+1 = 2(Bdnen — iadn,, sn), (21)

where z is a complex number. If there exists a z for which the Eq. (21) is satisfied for
all n then our objective is met. The values of z can, in fact, be found from the system
of linear homogeneous equations which result from Eq. (21) for all different values of n.
A nontrivial solution for the field components d,, exists only when the determinant of
the matrix of the system is equal to zero

zBco — acq iBs, 0 0 0
—izas; zBe1 — aes iBss 0 0 ...
0 —izasy zBes — aesy i3s3 0 .. =0. (22)
0 0 —izass zfBcs — acy  ifsy

Eq. (22) then, determines the values of the variable z. Once z is known it can be
substituted into the Eq. (21) which can then be used to find the components of the
initial cavity field. The most difficult part of the problem is solving Eq. (22); it is very
hard to find analytical solutions for a general order of the determinant. We shall discuss
a simplified case having only a limited number of non-zero field components.

4. An example

As an example we chose to have a 7 trapping state at |6) i.e. the atom-field inter-
action time 7 satisfies g7v/6 = 7, and we limited nonzero field components to those be-
tween states |0) and |5). We assumed in our numerical simulations that « = 0.8, 8 = 0.6
and g = 4.40 x 10*Hz. The trapping condition then implies that 7 = 2.91 x 107°s. We
found the general solutions of which there are six. Among them, two correspond to the
case considered in Section 2.

We first solved Eq. (22) numerically, and then Eq. (21) was employed to find the
field components dy, dy, .. ., ds for each value of the parameter z. There are six different
values of z, two of them yielding cavity fields that were identified as solutions of Eq. (5).
The first one corresponds to z; = —a/f and is the cotangent state given by Eq. (11).
The second corresponds to zo = «/8, and is identical to the state defined by Eq. (13).
The probability P, = d}d, versus photon number, n, of the resulting fields has been
plotted in Fig. 1.
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Fig. 2. Final states. Probability P, = d,d, versus number state n is plotted for the same
parameters as in Fig. 1. Both states corresponding to z; and z» are left unchanged whereas
that is not true for the others.

Y

The final field states were also calculated, i.e. we let the initial states interact with
one atom during a time interval 7. Probabilities P,, versus n of the cavity field states are
shown in Fig. 2. As one would expect the magnitudes of the two fields corresponding
to z; and z, are left unchanged since only the phase of the field changes according
Eq. (5). If we compare the fields belonging to z3, ..., 2¢ to those in Fig. 1, we see that
the interaction with the atom does change these fields. Clearly, the solutions of Eq. (5)
are a subset of the more general set which satisfy Eq. (19).

5. Conclusions

We have studied states of the micromaser field which, upon interaction with one
atom yield atom-field states which are disentangled. This means that when the atom
leaves the cavity the field is in a pure rather than a mixed state. There is a large set
of such states, and we have given a general method for finding them as well several
explicit examples.
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There are other questions which can be raised in regard to these states. Can one
design a sequence of atoms which will cause the micromaser to cycle among these states,
always leaving the cavity field in a pure state between atoms? Can one find states which
are disentangled after the passage of two atoms? We plan to examine some of these
issues in the future.
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