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uorescence spectrum and the photon-photon correlation of such an atom,emitted from the cavity, are strongly dependent upon the cavity resonance fre-quency and squeezing parameters. The enhancement and suppression of the 
u-orescence intensity and spectral peaks, spectral-line narrowing, and antibunchingin 
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222 Peng Zhou, S. Swainof the coherent driving|for example, dynamical suppression of the spontaneous emis-sion rate [4, 5], population inversion in both bare and dressed state bases [5, 6], distortionand narrowing [4, 5, 6] of the Mollow triplet and multipeaked spectral pro�les [6, 7].All these features are very sensitive to the cavity resonant frequency. Recently, Langeand Walther [8] have observed the dynamical suppression of spontaneous emission in amicrowave cavity. In the optical-frequency regimes, Zhu et al. [9] have also reportedexperimental studies of the e�ects of the cavity detuning on the radiative properties ofa coherently driven two-level atom. They have shown that the atomic 
uorescence of astrongly driven two-level atom is enhanced when the cavity frequency is tuned to oneof the sidebands of the Mollow 
uorescence triplet, whereas it is inhibited by tuning tothe other sideband. The enhancement of atomic 
uorescence at one sideband is a directdemonstration of population inversion.As many authors have stated [10{15], the cavity is the best candidate, from theexperimental point of view, to investigate the interaction of atoms with nonclassicallight. Since the atom interacts strongly only with the privileged cavity mode, only themodes within a small solid angle about this cavity mode need be squeezed, unlike in freespace, where the squeezed modes must occupy the whole 4� solid angle of space. Anexception is the linear dependence of the two-photon excitation probability for a threelevel ladder atom excited by the squeezed vacuum. This provided the �rst experimentalstudy of atom/squeezed-light interactions, and was carried out in a con�ned magnetic-optical trap [16], which may be well modelled as a bad cavity [17].For a cavity with a �xed resonance-frequency, Rice et al. [12] considered a weaklydriven two-level atom (
 � �) interacting with a squeezed vacuum injected via theinput-output mirror of the cavity in the bad cavity limit, and found that the evolutionof the atom is formally same as the one in free space, but with a renormalized decayconstant (
 + 
c). All the squeezing-induced e�ects predicted in free space, such as thephase-sensitive Mollow triplet [11], anomalous spectral features | hole-burning anddispersive pro�les at line centre [18] and gain without population inversion [19], canthus be carried over to the cavity con�guration [12]. For a strongly driven (
 � �)two-level atom coupled to such a cavity, Cirac [13], predicted a squeezing-enhancedpopulation inversion and a phase-sensitive Mollow spectrum with intensity-dependentlinewidths. In the current paper we extend these studies to a strongly driven atomcoupled to a frequency-tunable cavity mode damped by a squeezed vacuum. We shallsee that a variety of novel features will be displayed by appropriately tuning the cavityfrequency.This paper is organized as follows: In Sec. 2 we derive, in the bad cavity limit,an e�ective master equation of the reduced density matrix operator for the stronglydriven atom placed inside a frequency-tunable cavity which is damped by a broadbandsqueezed vacuum. It exhibits resonance properties when the cavity frequency is tunedto the centre and sidebands of the standard Mollow triplet. In Sec. 3 we report themodi�cation of the resonance 
uorescence of the atom emitted from the side of thecavity, in terms of the intensity spectrum and intensity-intensity correlation, which arefound to depend strongly on the cavity resonance frequency. The �nal section containsa summary.



Resonance 
uorescence of driven two-level atom ... 2232. The modelWe consider a single two-level atom with transition frequency !A coupled to a single-mode cavity �eld of frequency !C . The atom is driven by a coherent laser of frequency!L. The cavity is damped, via the input-output mirror, by a broadband squeezedvacuum with carrier frequency !s which is locked to the laser frequency !L for simplicity.The cavity mode is described by annihilation and creation operators a and ay, whilethe atom is represented by the usual Pauli spin- 12 operators �+, ��, which satisfy thecommutation relations [�+; ��] = �z and [�z; ��] = �2��. In a frame rotating at thefrequency !L the master equation of the density matrix operator � for the combinedatom-cavity system is [12, 13, 14, 15]_� = �i [HA +HC +HI ; �] + LA�+ LC�; (1)where HA = �2 �z + 
2 (�+ + ��); (2)HC = � aya; (3)HI = ig ���ay � �+a� ; (4)LA� = 
(2����+ � �+���� ��+��); (5)LC� = �(N + 1) �2a�ay � aya�� �aya�+ �N �2ay�a� aay�� �aay���M �ei� �2ay�ay � ay2�� �ay2�+ h:c:� ; (6)HA and HC are the unperturbed Hamiltonians for the coherently driven atom and thecavity respectively, while HI describes the interaction between the atom and the cavitymode. 
 is the Rabi frequency of the driving �eld, � = !A�!L and � = !C�!L are thedetunings of the atomic resonance frequency and of the cavity-mode frequency from thedriving �eld frequency respectively, g is the coupling constant between the atom and thecavity �eld, and � = �s � 2�L is the relative phase between the squeezed vacuum (�s)and the laser �eld (�L). (Note that we have re-de�ned the operators �+ = �+ exp(i�L)and a = a exp(�i�L) in the above equations, in order to merge the phases .) LA�and LC� respectively describe atomic damping to background modes other than theprivileged cavity mode, and damping of the cavity �eld by a broadband squeezed vacuumreservoir, with 
 and � the atomic and cavity decay constants respectively.The real parameters N and M are the photon number and the strength of thetwo-photon correlations in the broadband squeezed vacuum. They obey the relationM = �pN(N + 1), where the quantity 0 � � � 1 measures the degree of two photoncorrelations in the squeezed vacuum. We take � = 1 throughout, that is, the squeezedvacuum is injected into the cavity with the maximum two-photon correlation.In this paper we are interested in the bad cavity limit, i.e., the cavity has a low Qvalue, and the atom-cavity coupling is weak, so that � � g � 
, and the cavity �elddecay dominates. The cavity �eld response to the continuum modes is much faster thanthat produced by its interaction with the atom, so that the atom always experiences thecavity mode in the state induced by the vacuum reservoir. Thus one can adiabatically



224 Peng Zhou, S. Swaineliminate the cavity-mode variables, giving rise to a master equation for the atomicvariables only. As the procedure for eliminating the cavity mode in this paper is similarto the one in Refs.[5, 8, 13], we refer readers to these references for the details, and hereonly outline the key points.We temporarily disregard LA� in the elimination of the cavity-mode, since it un-changed by the following operations. First we perform canonical transformations onthe master equation (1): ~� = SU(t)�U y(t)Sy; (7)where U(t) = exp [i (HA +HC) t], and S is the usual squeeze operator that transformsthe annihilation operator as SaSy = �a + �ay. The right-hand side (r.h.s.) of (7)represents a sequential transform of the density operator � to the atom-cavity interactionpicture and the squeezed picture. If we take � = pN + 1 and � = pN exp[i(� + 2�)t],the master equation (1) is then transformed to_~� = �i[ ~HI(t); ~�] + Lvac~�; (8)where Lvac~� = � �2a~�ay � aya~�� ~�aya� ; (9)~HI(t) = g h ~D+(t)ae�i�t + h:c:i ; (10)with ~D+(t) = i hpNe�i�~��(t)�pN + 1~�+(t)i ;~��(t) = eiHAt��e�iHAt: (11)~HI(t) now indicates the e�ective atom-cavity coupling, whilst Lvac~� describes the cavityloss due to its coupling to an electromagnetic reservoir in a vacuum state. That isthe transformed cavity mode is damped by a standard vacuum, and the e�ect of thesqueezed reservoir is transferred to the e�ective atom-cavity interaction.We next introduce the operator � [5, 8, 13, 20]� = e�Lvact~�; (12)which, according to Eq. (8), obeys the equation_�(t) = �ige�tf[ay; ~D�(t)�(t)]ei�t + [a; �(t) ~D+(t)]e�i�tg�ige��tf[ ~D�(t); �(t)ay]ei�t + [ ~D+(t); a�(t)]e�i�tg: (13)Only the atom-cavity interaction is involved. Due to the smallness of the couplingconstant g, we can perform a second-order perturbation calculation with respect to gby means of standard projection operator techniques. Noting that TrC�(t) � TrC ~�(t) �~�A(t), we can trace out the cavity variables to obtain the master equation for the reduced



Resonance 
uorescence of driven two-level atom ... 225density matrix operator ~�A of the atom. Under the Born-Markovian approximation,the resulting master equation is~�A(t) = �g2 Z 10 ne�(��i�)� [~�A(t) ~D+(t� �) ~D�(t)� ~D�(t)~�A(t) ~D+(t� �)] + h:c:o d�:(14)Finally transforming ~�A back to the original picture via �A = exp(�iHAt)~�A exp(iHAt)and Eq. (11), and restoring the LA�A contribution, one �nds the atomic master equa-tion to be _�A = �i [HA; �A]+
c(N + 1) (���AA+ � �AA+�� +B��A�+ � �+B��A)+
cN (�+�AA� � �AA��+ +B+�A�� � ��B+�A)�
cMei� (�+�AA+ � �AA+�+ +B+�A�+ � �+B+�A)�
cMe�i� (���AA� � �AA��� +B��A�� � ��B��A)+
(2���A�+ � �+���A � �A�+��): (15)The �rst term on the r.h.s. of the master equation describes the coherent evolution ofthe driven atom, whereas the following four terms represent the cavity-induced atomicdecay into the cavity-mode with the rate 
c = g2=�. The last term shows the atomicdecay into the background modes with the rate 
. The other parameters in Eq. (15)are de�ned asA+ = (B�)y = � Z 10 d� e�(��i�)� ~�+(��) = �0�z + �1�� + �2�+;A� = (B+)y = � Z 10 d� e�(��i�)� ~��(��) = �0�z + �1�+ + �2�� (16)with �0 = �
4�
2 � 2��� i� � �
 +��� i(� � �
) + �
���� i(� + �
)� ;�0 = �
4�
2 � 2��� i� � �
 +��� i(� + �
) + �
���� i(� � �
)� ;�1 = �1 = �
24�
2 � 2�� i� � 1�� i(� � �
) � 1�� i(� + �
)� ;�2 = �4�
2 � 2
2�� i� + (�
 +�)2�� i(� � �
) + (�
��)2�� i(� + �
)� ;�2 = �4�
2 � 2
2�� i� + (�
 +�)2�� i(� + �
) + (�
��)2�� i(� � �
)� ; (17)where �
 = p
2 +�2 is a generalized Rabi frequency. Obviously, the coe�cientsA0; A1; A2 are Rabi-frequency-dependent, and resonant when the cavity frequency istuned to � = 0; ��
, which is reminiscent of the Mollow triplet in free space [21]. The



226 Peng Zhou, S. Swainresonance property re
ects the fact that when the atom is strongly driven by a laserbeam, the atom-laser interaction forms a `dressed' atom [22] whose energy-level struc-ture is intensity-dependent and whose spontaneous emission dominates at the threefrequencies !L; and !L� �
. Therefore, when the cavity is tuned to these three frequen-cies, atomic transitions are enhanced.From the master equation (15), one obtains the optical Bloch equations, in termsof the in-phase and out-of-phase quadrature amplitudes of the atomic polarization,h�xi = h��i + h�+i and h�yi = i(h��i � h�+)i, and the atomic population di�erenceh�zi, to be h _�xi = �
xh�xi ��yh�yi+
1;h _�yi = �
yh�yi+�xh�xi �
h�zi �
2;h _�zi = �
zh�zi+
xh�xi+ 
yh�yi � �0; (18)where
x = 
 � 
cRe �(�1 � �2) �N + 1 +Mei��+ (�1 � �2) �N +Me�i��� ;
y = 
 + 
cRe �(�1 + �2) �N + 1�Mei��+ (�1 + �2) �N �Me�i��� ;
z = 
x + 
y;�x = �+ 
c Im �(�1 � �2) �N + 1�Mei��� (�1 � �2) �N �Me�i��� ;�y = �� 
c Im �(�1 + �2) �N + 1 +Mei��� (�1 + �2) �N +Me�i��� ;
x = 2
cRe ��0 �N + 1�Mei��+ �0 �N �Me�i��� ;
y = 
+ 2
c Im ��0 �N + 1 +Mei��� �0 �N +Me�i��� ;
1 = 2
cRe ��0 �N + 1 +Mei��� �0 �N +Me�i��� ;
2 = �2
c Im ��0 �N + 1�Mei��+ �0 �N �Me�i��� ;�0 = 2
 + 2
cRe ��2(N + 1)� �2N + �1Mei� � �1Me�i�� ; (19)and 
x; 
y and 
z are the relaxation rates of the phase quadratures of the atomic polar-ization and of the population di�erence respectively. As in the case of free space [10],the relaxation rates of the polarization quadratures are unequal and phase-sensitive. Onthe other hand, the rates are also resonant at di�erent cavity frequencies. For example,for � = 0, the rates become
x = 
 + 
c2 � �2�2 + (� �
)2 + �2�2 + (� +
)2 � (2N + 1 + 2M cos�);
y = 
 + 
c �2�2 + �2 (2N + 1� 2M cos�): (20)The �rst is resonant with the cavity frequency tuned to the Rabi sidebands, � = �
,whilst the resonance in 
y takes place at the cavity frequency � = !C � !L = 0. Withincreasing Rabi frequency, the decay rate 
x of the in-phase dipole quadrature can besigni�cantly suppressed at the cavity frequency � = 0.



Resonance 
uorescence of driven two-level atom ... 227It is not di�erent to show that the Bloch equations (18) reduce to Cirac's case, i.e.Eqs. (3.2) and (3.3) in Ref. [13], when the cavity and driving frequencies are same:� = 0. When the atom, driving laser and cavity mode are all in resonance (� = � = 0)and the Rabi frequency is much less than the cavity linewidth (
 � �), the equations(18) become the ones obtained by Rice et al. [12], which are formally similar to thosein free space, but with the renormalized decay rate 
 + 
c. In the present paper weshall mainly focus on the e�ect of the cavity frequency on the resonance 
uorescenceof a strongly driven two-level atom (
 � �). As we shall see, the 
uorescent emissionfrom such an atom can be dramatically modi�ed by tuning the frequency of the cavityto the centre or sidebands of the Mollow triplet.3. Resonance 
uorescence3.1. The IntensityOne of the observables of interest is the steady-state 
uorescence intensity of theatom emitted from the side of the cavity, which is proportional to the steady-statepopulation in the excited state:Is / h�11is = 
1 (
x
y +�x
y) + (
2 �
) (
x�y � 
x
y) + (
z � �0) (
x
y +�x�y)2 [(
x
y +�x�y) 
z +
(
x
y �
x�y)] :(21)We plot the intensity against the cavity frequency (detuning) in Figs. 1 and 2, wherethe former corresponds to the situation where the driving laser is resonant with the atom(� = 0), while the latter is for the laser detuned from the atom (� = 100). The solid,dashed and dot-dashed curves in these two �gures are for � = 0; �=2 and � respectively,whereas the other parameters are (a) 
 = 100; N = 0:5; (b) 
 = 100; N = 2; (c)
 = 500; N = 0:5 and (d) 
 = 500; N = 2. In this paper we work in the bad cavitylimit, so we set � = 100; g = 30; 
 = 1 throughout the following graphics. (Note thatall parameters are scaled in the unit of 
 = 1.)These �gures show clearly that the atomic 
uorescence intensity emitted out thecavity walls varies dramatically with the cavity and driving laser frequencies, the laserintensity and the squeezing phase (the e�ect of the two-photon correlations [15]). Whenthe laser �eld is resonant with the atom, shown in Fig. 1, the intensity for the squeezingphase � = 0 is resonantly enhanced at the cavity frequency tuned to the frequency ofthe driving laser, i.e., � = 0. However, for the squeezing phase � = �, the intensity issuppressed at � = 0, while it may be resonantly enhanced at the cavity frequency tunedclose to the Rabi sideband, � � �
. The resonance pro�le at the central frequency isa Lorentzian lineshape, whereas it is a Rayleigh-wing lineshape at the Rabi sidebands.For certain laser intensities and squeezing photon numbers, the resonance pro�le at thesidebands may so very weak as to be invisible { see for instance, Fig. 1b. For othersqueezing phases, say � = �=2, the intensity is asymmetric around the cavity detuning� = 0. Speci�cally, the 
uorescence emission of the atom out of the cavity is enhancedfor � > 0, and suppressed for � < 0.
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δFig. 1. The steady-state 
uorescence intensity Is as a function of the cavity detuning �, for theparameters: � = 100; g = 30; 
 = 1; � = 0, and (a): 
 = 100; N = 0:5, (b): 
 = 100; N = 2,(c): 
 = 500; N = 0:5, (d): 
 = 500; N = 2. In these frames the solid, dashed and dot-dashedcurves are respectively for � = 0; �=2 and �. (All parameters are set in the unit of 
 = 1throughout the graphs in this paper.)When the laser �eld is detuned from the atomic transition frequency, the 
uorescenceintensity, depicted in Fig. 2 for � = 100, is asymmetric about � = 0 for all squeezingphases. The intensity is remarkably enhanced when the cavity frequency is tuned to thelower-frequency Rabi sideband, � = ��
, while it is suppressed at the other sideband,� = �
. Note that the resonance pro�les are opposite to those in Fig. 1, that is, aLorentzian lineshape when the cavity frequency is tuned to the Rabi sidebands, and aRayleigh-wing shape when the cavity frequency is tuned to the central of the Mollowtriplet.The enhancement of the 
uorescence intensity is a direct consequence of the pop-ulation inversion ( h�11is > 0:5), which results from the coupling of the atom to thecavity mode [5, 9, 23]. Cirac's study [13] of a driven two-level atom coupled to a �xed-frequency cavity mode tuned to the laser frequency predicted that squeezed vacuumdamping of the cavity mode enhances the cavity-induced inversion by a tiny amount.However, we �nd that the population inversion may be signi�cantly enhanced if thecavity frequency is tuned to one of the Rabi sidebands. For example in Fig. 2b, a largeinversion (h�11is � h�00is) � 0:25 is achieved at the cavity detuning � � ��
.On the other hand, Cabrillo and Swain [15] have recently proposed detecting the
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δFig. 2. Same as Fig. 1, but with � = 100.quantum two-photon correlation in a squeezed vacuum via measuring the phase-sensitiveinternal cavity photon number. Our results show that the 
uorescence intensity of theatom emitted from the side of the cavity is also phase-dependent. Alternatively, onemay measure the quantum correlation by recording the atomic 
uorescence photonsemitted out of the cavity. 3.2. The SpectrumThe incoherent 
uorescence spectrum of the atom, emitted from the side of thecavity, can be calculated in term of the two-time correlation function limt!1h�+ (t+ �),�� (t)i by invoking the quantum regression theorem together with the optical Blochequations (18). The spectrum is of the form,�(!) = 12 Re � [(
y + z + i�x) (
z + z) + 
 (
y � i
x)]�1[(
x + z) (
y + z) + �x�y] (
z + z) + 
 [(
x + z) 
y �
x�y] (22)� [�y � i (
x + z)] [(
z + z)�2 �
�3][(
x + z) (
y + z) + �x�y] (
z + z) + 
 [(
x + z)
y �
x�y]�z=i!with �1 = 12(1 + h�zis � h�xi2s + ih�xish�yis);
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ωFig. 3. The incoherent resonance 
uorescence spectrum �(!), for � = 100; g = 30; 
 = 1; � =0; N = 0:5; 
 = 400, and (a): � = 0; � = �
, (b): � = 0; � = 0, (c): � = 0; � = 
, (d):� = �; � = �
, (e): � = �; � = 0, (f): � = �; � = 
.�2 = � i2(1 + h�zis � h�yi2s � ih�xish�yis);�3 = �12(1 + h�zis)(h�xis � ih�yis); (23)where h�iis (i = x; y; z) is the steady-state solutions of Eq. (18).Figure 3 presents the spectra for 
 = 400; � = 0; N = 0:5. In the �rst three frames,Figs. 3a-3c, � = 0, and � = �
; 0; 
, respectively, while � = � in the other frames.As in the absence of the squeezed vacuum [4, 5], the spectral linewidths and heightsare dependent on the cavity frequency. When the cavity is tuned to resonance withthe laser �eld, the 
uorescence spectrum is symmetric, whilst it is asymmetric whenthe cavity frequency is tuned to one of the Rabi sidebands. If the cavity frequencyis tuned to the lower-frequency sideband, � = �
, the higher-frequency sideband ofthe 
uorescence spectrum is enhanced, whereas the other peaks are suppressed. Theopposite occurs if the cavity frequency tuned to the higher-frequency sideband, � = 
.See, for example Figs. 3a and 3c. These �gures also show that all peaks are broadened,
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ωFig. 4. Same as Fig. 3, but with N = 5.relative to the ones for � = 0, when the cavity frequency is tuned to one of the Rabisidebands, but the sideband may be narrower than the central peak. The di�erencesfrom the standard vacuum case [4, 5] are that the spectrum is phase-sensitive. Oncomparing Figs. 3d-3f with Figs. 3a-3c, one sees that all spectral lines for the squeezingphase � = � are narrower than the corresponding spectral lines for � = 0, except forthe sidebands in the frame 3e, where the cavity is resonant with the laser �eld. Onthe other hand, Figs. 3d-3f also demonstrate that, when � = �, the linewidth of thesidebands of the 
uorescence spectrum for the cavity detuning � = �
 is signi�cantlynarrower than that for � = 0.We plot the 
uorescence spectrum for a large squeezed photon number, N = 5; inFig. 4. In addition to the spectral features shown in Fig. 3 for N = 0:5, one may seefrom Fig. 4b that if the cavity is resonant with the driving laser � = 0, the sidebandsmay be made narrower than the central component by increasing the squeezed photonnumber. On the other hand, for large photon numbers, the sidebands for � = � arenegligibly small compared to the central peak. The spectrum is almost symmetric whenthe cavity is detuned from the laser frequency, e.g., in Figs. 4d and 4f.Figure 5 displays the spectra when the driving laser is detuned from the atomic
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ωFig. 5. Same as Fig. 3, but with � = 100.transition frequency, � = 100. As for the case � = 0, the spectral lines may benarrowed as the squeezing phase � varies from 0 to �, and one of the sidebands maybe enhanced and the others suppressed if the cavity is detuned from the laser by theRabi frequency. However, the spectrum for � = 0 is, in general, asymmetric even in thecase of � = 0, as we see in Fig. 5b, and the amounts of enhancement and suppressionof the spectral lines are also di�erent when the cavity detuning is set to � = ��
. Onthe other hand, Figs. 5d and 5e show that for the squeezing phase � = �, the spectraare almost symmetric when the cavity frequency is tuned to the central and sidebandsof the Mollow triplet.We can gain a physical insight into the narrowing and asymmetries of the cavity-modi�ed Mollow spectrum by employing the semiclassical dressed states j�i; which arede�ned via HAj�i = �(�
=2)j�i. It is well known that the central spectral line resultsfrom the atomic downward transitions between the same dressed states of two adjacentdressed-state doublets. The lower-frequency sideband, however, is due to the downwardtransitions from the substate j�i of one dressed-state doublet to the substate j+i of thenext dressed-state doublet, whereas the higher-frequency sideband originates from thedownward transitions j+i ! j�i between two near-lying dressed-state doublets. There-
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uorescence of driven two-level atom ... 233fore, the central peak is proportional to the product of the two dressed populations,whilst the heights of the lower- and higher-frequency sidebands are associated with thepopulations of the dressed states j�i and j+i, respectively. The linewidths of the centreand sidebands are then determined by the decay rates of the dressed population andcoherence, respectively.We here take � = 0 as an example. Under the secular approximation (
� �), thepopulations in the dressed states j�i are respectively P� = (
x�
1)=2
x; and the decayrates of the dressed population and coherence are �pop = 
x and �coh = 12 (
y + 
z),respectively.When the cavity is resonant with the laser �eld and atomic transition, i.e. � = 0,then 
1 = 0. The spectrum is therefore symmetric, because P+ = P� = 1=2. Thelinewidths of the central peak and the sidebands are respectively determined by�pop ' 
 + 
c � �
�2 (2N + 1 + 2M cos�);�coh ' 3
2 + 
c2 � �
�2 (2N + 1 + 2M cos�) + 
c(2N + 1� 2M cos�): (24)One sees that the central peak may be narrowed while the sidebands are broadened, asthe phase varies from 0 to �. See, for example, the frames (b) and (e) of Figs. 4 and 5.On the other hand, for a squeezed vacuum with a large photon number (N � 1) andthe relative phase � = 0, (24) reduces to�pop ' 
 + 2
c � �
�2 (2N + 1);�coh ' 3
2 + 
c � �
�2 (2N + 1): (25)Therefore, the sidebands can be narrower than the central one, because 
c � 
. Forexample, in Fig. 4b, �pop � 13:3 whilst �coh � 8.When the cavity frequency is tuned to one of the Rabi sidebands, e.g. � = �
, oneobtains �pop ' 
 + 
c2 �� �2
�2 + 1� (2N + 1 + 2M cos�);�coh ' 3
2 + 
c4 � �2
�2 (34N + 17� 30M cos�) + 
c4 (2N + 1 + 2M cos�);(26)P+ ' 12�pop [
 + 
c(2N + 1 + 2M cos�)];P� ' 12�pop �
 + 
c � �2
�2 (2N + 1 + 2M cos�)� : (27)It is not di�cult to see from Eq.(26) that �pop and �coh decrease as the squeezing phasevaries from 0 to �, noting that (�=
)2 � 1. For example, in Fig. 3a, �pop(� = 0) � 17:8,and �coh(� = 0) � 10:2, while �pop(� = �) � 2:2, and �coh(� = �) � 4:2 in Fig. 4d.
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, the sidebands are narrower than the central peak for � = 0,whereas for � = �, they are wider than the central peak. On the other hand, all spectralpeaks for � = � are narrower than those for � = 0. We also �nd from Eq.(27) thatP+ > P� for all phases, and therefore the higher-frequency sideband peak is higherthan the lower-frequency one if the cavity frequency is tuned to the lower-frequencyRabi sideband. Moreover, if N � 1 and � = �, then Eq. (27) shows that P+ � P�,which means that the spectrum is approximately symmetric|see for example, Figs. 4dand 4f.
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 = 1; � = 0; N =1, and (a): 
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 = 100; � = �, (c): 
 = 200; � = 0, (d): 
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.3.3. The intensity-intensity correlationThe intensity-intensity correlation function g(2)(t) of the 
uorescence �eld is de�nedas g(2)(t) = h�+(0)�+(t)��(t)��(0)ish�+(0)��(0)i2s : (28)
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uctuations of the 
uorescence �eld, and contains infor-mation about the probability of detecting a 
uorescent photon at time t given that onewas detected at time 0.
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 = 100; � = 0,(b): 
 = 100; � = �, (c): 
 = 200; � = 0 and (d): 
 = 200; � = �, respectively. Inthis situation, the functions g(2)(t) for the cavity frequency tuned to either of the Rabisidebands are identical, and are indicated by the dot-dashed curves. The solid curves,however, are the intensity-intensity correlation g(2)(t) for the cavity tuned to resonancewith the laser �eld. Interestingly, the value of g(2)(t) varies dramatically with the cavityfrequency, as well as the squeezing phase. For � = 0 the amplitudes of the oscillationsof the second-order correlation function g(2)(t) with the cavity detuning � = 0 are largerthan those with � = �
. For � = � however, the opposite results are obtained.We plot the function g(2)(t) for di�erent cavity-laser and atom-laser detunings inFig. 7, which results in di�erent values of g(2)(t) for � = ��
: The oscillations of g(2)(t)



236 Peng Zhou, S. Swainfor � = �
 are stronger than those for the other detunings, � = 0 and ��
. The latterexhibits the photon antibunching e�ect, i.e., g(2)(t) < 1. Although the photon anti-bunching of the 
uorescence �eld was predicted and observed in free space [24], it occursfor weak Rabi frequencies (
 � 
). The photon antibunching predicted here, however,occurs at strong Rabi frequency regimes (
� 
), and depends upon the cavity resonantfrequency and squeezing phase.
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 = p
2 +�2, with the amplitudes undergoing an exponential decay at rates associ-ated with 
x; 
y and 
z. Due to the dependence of these decay rates 
x; 
y; 
z on thecavity resonant frequency, the driving laser frequency and intensity, and the squeez-ing photon number and phase, the probability, and therefore the intensity-intensitycorrelation g(2)(t), varies with these di�erent parameters.4. SummaryWe have studied the modi�cation of the resonance 
uorescence from a stronglydriven two-level atom located inside a frequency-tunable cavity which is damped by abroadband squeezed vacuum. In the bad cavity limit, we derived an e�ective masterequation for the reduced density matrix operator for this system, which exhibits reso-nance properties when the cavity frequency is tuned to the centre and sidebands of thestandard Mollow triplet. We �nd that the intensity, resonance 
uorescence spectrumand photon-photon correlation function are all strongly dependent upon the cavity res-onance frequency and squeezing phase. The 
uorescence intensity of the atom emittedfrom the side (mirror) of the cavity can be enhanced or suppressed by appropriatelytuning the cavity frequency to the central peak or Rabi sidebands of the standard Mol-low triplet, and varying the squeezing phase. The spectral lines can be also enhancedor suppressed in a prescribed manner by changing these parameters. In general, thecentral peak and one sideband of the 
uorescence spectrum are suppressed when thecavity is tuned to resonance, whilst the other sideband is enhanced. For certain pa-rameters, the sidebands may be narrower than the central peak. All spectral lines for� = 0 are broader than the ones for � = �. The 
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