acta physica slovaca vol. 48 No. 3, 221 — 238 June 1998

RESONANCE FLUORESCENCE OF A DRIVEN TWO-LEVEL ATOM
IN A CAVITY WITH INJECTED SQUEEZED VACUUM:
EFFECT OF THE CAVITY FREQUENCY DETUNING. !

Peng Zhou?, S. Swain?
Department of Applied Mathematics and Theoretical Physics,
The Queen’s University of Belfast,
Belfast BT7 1NN, Northern Ireland, the United Kingdom.

Received 12 May 1998, accepted 26 May 1998

We derive, in the bad cavity limit, an effective master equation for the reduced
density matrix operator of a strongly driven atom coupled to a frequency-tunable
cavity and damped by a squeezed vacuum. We find that the intensity, the reso-
nance fluorescence spectrum and the photon-photon correlation of such an atom,
emitted from the cavity, are strongly dependent upon the cavity resonance fre-
quency and squeezing parameters. The enhancement and suppression of the flu-
orescence intensity and spectral peaks, spectral-line narrowing, and antibunching
in fluorescence can be achieved in a prescribed manner by tuning the cavity and
laser frequency, and by adjusting the squeezed photon number and phase.

1. Introduction

It is well-known that the radiative properties of atoms placed inside a cavity differ
qualitatively from those in free space because of the modification of the surrounding
electromagnetic modes, which are concentrated around the cavity resonant frequency
[1]. For an excited atom located inside such a cavity, the cavity mode is the only one
available to the atom for emission. The spontaneous emission rate into the particu-
lar cavity mode can be enhanced or inhibited [2] by tuning the cavity into or out-of
resonance with the radiative atom. Cavity-enhanced and cavity-inhibited spontaneous
emission, resulting in a broadening or narrowing of the spectrum, has been observed by
several groups [3].

For a two-level atom placed inside a cavity and strongly driven by a coherent field,
theoretical studies have predicted a phenomenological richness not found in the absence
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of the coherent driving for example, dynamical suppression of the spontaneous emis-
sion rate [4, 5], population inversion in both bare and dressed state bases [5, 6], distortion
and narrowing [4, 5, 6] of the Mollow triplet and multipeaked spectral profiles [6, 7].
All these features are very sensitive to the cavity resonant frequency. Recently, Lange
and Walther [8] have observed the dynamical suppression of spontaneous emission in a
microwave cavity. In the optical-frequency regimes, Zhu et al. [9] have also reported
experimental studies of the effects of the cavity detuning on the radiative properties of
a coherently driven two-level atom. They have shown that the atomic fluorescence of a
strongly driven two-level atom is enhanced when the cavity frequency is tuned to one
of the sidebands of the Mollow fluorescence triplet, whereas it is inhibited by tuning to
the other sideband. The enhancement of atomic fluorescence at one sideband is a direct
demonstration of population inversion.

As many authors have stated [10 15], the cavity is the best candidate, from the
experimental point of view, to investigate the interaction of atoms with nonclassical
light. Since the atom interacts strongly only with the privileged cavity mode, only the
modes within a small solid angle about this cavity mode need be squeezed, unlike in free
space, where the squeezed modes must occupy the whole 47 solid angle of space. An
exception is the linear dependence of the two-photon excitation probability for a three
level ladder atom excited by the squeezed vacuum. This provided the first experimental
study of atom/squeezed-light interactions, and was carried out in a confined magnetic-

optical trap [16], which may be well modelled as a bad cavity [17].

For a cavity with a fixed resonance-frequency, Rice et al. [12] considered a weakly
driven two-level atom (Q < k) interacting with a squeezed vacuum injected via the
input-output mirror of the cavity in the bad cavity limit, and found that the evolution
of the atom is formally same as the one in free space, but with a renormalized decay
constant (y+1.). All the squeezing-induced effects predicted in free space, such as the
phase-sensitive Mollow triplet [11], anomalous spectral features — hole-burning and
dispersive profiles at line centre [18] and gain without population inversion [19], can
thus be carried over to the cavity configuration [12]. For a strongly driven (Q > k)
two-level atom coupled to such a cavity, Cirac [13], predicted a squeezing-enhanced
population inversion and a phase-sensitive Mollow spectrum with intensity-dependent
linewidths. In the current paper we extend these studies to a strongly driven atom
coupled to a frequency-tunable cavity mode damped by a squeezed vacuum. We shall
see that a variety of novel features will be displayed by appropriately tuning the cavity
frequency.

This paper is organized as follows: In Sec. 2 we derive, in the bad cavity limit,
an effective master equation of the reduced density matrix operator for the strongly
driven atom placed inside a frequency-tunable cavity which is damped by a broadband
squeezed vacuum. It exhibits resonance properties when the cavity frequency is tuned
to the centre and sidebands of the standard Mollow triplet. In Sec. 3 we report the
modification of the resonance fluorescence of the atom emitted from the side of the
cavity, in terms of the intensity spectrum and intensity-intensity correlation, which are
found to depend strongly on the cavity resonance frequency. The final section contains
a summary.
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2. The model

We consider a single two-level atom with transition frequency w4 coupled to a single-
mode cavity field of frequency we. The atom is driven by a coherent laser of frequency
wr,. The cavity is damped, via the input-output mirror, by a broadband squeezed
vacuum with carrier frequency w,s which is locked to the laser frequency wy, for simplicity.
The cavity mode is described by annihilation and creation operators a and a', while
the atom is represented by the usual Pauli spin—% operators o, o_, which satisfy the
commutation relations [0y, 0_] = 0, and [0, 04+] = £204. In a frame rotating at the
frequency wy, the master equation of the density matrix operator p for the combined
atom-cavity system is [12, 13, 14, 15]

p=—i[Ha+ Hc+ Hy, p|+ Lap+ Lop, (1)
where
A Q

HA = E(Tz+5(0'++0',), (2)
He = ddla, (3)
H;, = ig (U,aJr —ota), (4)
Lap = F(20-poy —oyo_p—poio_), (5)

Lep = w(N+1) (Q(zpaJr —atap — paTa) + &N (Qana —aatp— paaT)
—kM [eid) (2aeraJr —at?p - pa”) + hel], (6)

H, and He are the unperturbed Hamiltonians for the coherently driven atom and the
cavity respectively, while H; describes the interaction between the atom and the cavity
mode. () is the Rabi frequency of the driving field, A = w4 —wy, and § = we—wy, are the
detunings of the atomic resonance frequency and of the cavity-mode frequency from the
driving field frequency respectively, g is the coupling constant between the atom and the
cavity field, and ® = ¢; — 2¢, is the relative phase between the squeezed vacuum (¢5)
and the laser field (¢1,). (Note that we have re-defined the operators o = o4 exp(i¢r.)
and a = aexp(—i¢r) in the above equations, in order to merge the phases .) Lap
and Lcp respectively describe atomic damping to background modes other than the
privileged cavity mode, and damping of the cavity field by a broadband squeezed vacuum
reservoir, with 7 and x the atomic and cavity decay constants respectively.

The real parameters N and M are the photon number and the strength of the
two-photon correlations in the broadband squeezed vacuum. They obey the relation
M = ny/N(N + 1), where the quantity 0 < 1 < 1 measures the degree of two photon
correlations in the squeezed vacuum. We take = 1 throughout, that is, the squeezed
vacuum is injected into the cavity with the maximum two-photon correlation.

In this paper we are interested in the bad cavity limit, i.e., the cavity has a low @
value, and the atom-cavity coupling is weak, so that k > g > <, and the cavity field
decay dominates. The cavity field response to the continuum modes is much faster than
that produced by its interaction with the atom, so that the atom always experiences the
cavity mode in the state induced by the vacuum reservoir. Thus one can adiabatically
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eliminate the cavity-mode variables, giving rise to a master equation for the atomic
variables only. As the procedure for eliminating the cavity mode in this paper is similar
to the one in Refs.[5, 8, 13|, we refer readers to these references for the details, and here
only outline the key points.

We temporarily disregard L£4p in the elimination of the cavity-mode, since it un-
changed by the following operations. First we perform canonical transformations on
the master equation (1):

p=SUt)pU(1)ST, (7)

where U(t) = exp[i (Ha + He) t], and S is the usual squeeze operator that transforms
the annihilation operator as SaS' = pua + va'. The right-hand side (r.h.s.) of (7)
represents a sequential transform of the density operator p to the atom-cavity interaction
picture and the squeezed picture. If we take = /N + 1 and v = v/N exp[i(® + 26)¢]
the master equation (1) is then transformed to

3

p=—ilHi(t), p] + Loach, 8)
where
Loach) = kK (Qaﬁcfr —atap - ﬁaTa) , (9)
() = g [D+(t)ae*“t + h.c.] , (10)
with

Di(t) = 7:[\/Ne*i%,(t)ﬂ/NH@(t)],

o4(t) = etHaty e iHat (11)
I:T,(t) now indicates the effective atom-cavity coupling, whilst £, ,.p describes the cavity
loss due to its coupling to an electromagnetic reservoir in a vacuum state. That is
the transformed cavity mode is damped by a standard vacuum, and the effect of the
squeezed reservoir is transferred to the effective atom-cavity interaction.

We next introduce the operator x [5, 8, 13, 20]

x = e Ererl, (12)
which, according to Eq. (8), obeys the equation

K1) = —igert{lal, D_(OX(W]e™ + [, (D (B]e )
~ige (D (1), x()a'le™ + [Dy (1), ax(B)]e ). (13)

Only the atom-cavity interaction is involved. Due to the smallness of the coupling
constant g, we can perform a second-order perturbation calculation with respect to g
by means of standard projection operator techniques. Noting that Trox (t) = Trop(t) =
p(t), we can trace out the cavity variables to obtain the master equation for the reduced
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density matrix operator p4 of the atom. Under the Born-Markovian approximation,
the resulting master equation is

palt) = —g° / {7 @Dyt =)D (1) = D_()pa(t) Dy (t = 7)] + hc. } dr.
0

(14)

Finally transforming pa back to the original picture via p4 = exp(—iH at)pa exp(iH at)

and Eq. (11), and restoring the £4p4 contribution, one finds the atomic master equa-

tion to be

—i[Ha, pa]

+Ye(N + 1) (0-pady — paAyo_ + B_paoy — 01 B_pa)
+7eN (04 paA- —paA o4 + Bipaoc- —o_Bipa)
—YeMe™® (01 paAy — paAyoy + Bipaocy — oy Bypa)
—vMe " (0_paA_ —paA_o_ +B_pao_ —o_B_pa)

pa =

+v(20_paoy —o0r0_pa—pacio). (15)

The first term on the r.h.s. of the master equation describes the coherent evolution of
the driven atom, whereas the following four terms represent the cavity-induced atomic
decay into the cavity-mode with the rate 7. = g*>/k. The last term shows the atomic
decay into the background modes with the rate «v. The other parameters in Eq. (15)
are defined as

Ay = (B,)T:K,/ dre= "0 G (—1) = ago. + a1o_ + a0y,
J0
A = (B+)T:K,/ dre 507G (—1) = Boo. + Broy + Bao (16)
J0
with
kQ [ 2A Q+A 0O-A
ag = T=3 — -+ -
402 |k —id k—i(0—Q) k—i(0+Q)
By = kQ [ 2A B QO+ A N Q-—A
CTA k-0 k—i(0+Q)  k—i(6—Q)]
Q2 [ 2 1 1
ap = = — - = = |
402 |k—id k—i(6—Q) k—i(6+Q)
k[ 202 (Q+ A)? (2 — A)?
ay = —— — — |,
PTA k-6 k—i(0—Q)  k—i(6+Q)]"
[ 20?2 O+ A)? 0 —A)?
e ()
402 |k —id  k—i(0+Q) k—i(0—Q)]

where Q = 1/Q2 + A? is a generalized Rabi frequency. Obviously, the coefficients
Ao, A1, As are Rabi-frequency-dependent, and resonant when the cavity frequency is
tuned to § = 0, £, which is reminiscent of the Mollow triplet in free space [21]. The
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resonance property reflects the fact that when the atom is strongly driven by a laser
beam, the atom-laser interaction forms a ‘dressed’ atom [22] whose energy-level struc-
ture is intensity-dependent and whose spontaneous emission dominates at the three
frequencies wy,, and wy, £ Q. Therefore, when the cavity is tuned to these three frequen-
cies, atomic transitions are enhanced.

From the master equation (15), one obtains the optical Bloch equations, in terms
of the in-phase and out-of-phase quadrature amplitudes of the atomic polarization,
(0g) = (o) + (04) and (oy) = i({o_) — (04)), and the atomic population difference
(0,), to be

(02) = —Val02) — Ay(oy) + O,
(6y) = —yy(oy) + Au(os) — Q0.) — Qa,

(62) = —72(02) + Qo) + Qy{oy) — To, (18)
where
Yo = v veRe[(ar —a2) (N+1+Me™) + (61— B2) (N + Me )],
Ywo= v+reRel(an +a) (N+1=Me™) + (B + ) (N = Me )],
Y= = Vet Yy
Ap = Asqelm[(ar = az) (N 1= Me™) = (B = By) (N = Me™™)],
Ay = A-vIm[(ar +as) (N+1+Me™®) — (B + ) (N + Me )],
Q, = 2v.Refag (N+1—Me™®) + 5y (N—Me )],
Q, = Q+2y.Im[ag (N + 1+ Me™®) — By (N + Me )],
O = 2y.Relag (N +1+ Me™®) - gy (N + Me )],
0, = —2y.Im[ag (N +1—Me™) + gy (N - Me )],
To = 2y+2v.Refas(N +1)— BN + a1 Me'® — g1 Me "], (19)

and 7y, 7y and 7. are the relaxation rates of the phase quadratures of the atomic polar-
ization and of the population difference respectively. As in the case of free space [10],
the relaxation rates of the polarization quadratures are unequal and phase-sensitive. On
the other hand, the rates are also resonant at different cavity frequencies. For example,
for A = 0, the rates become

= 4+ L " + v (2N + 1 + 2M cos )
Teo = 0T K2+ (0—Q)2 K2+ (6+Q)2 RS
2
K
Ty = 7+7cm(2N+1*2MCOS‘I)). (20)

The first is resonant with the cavity frequency tuned to the Rabi sidebands, § = £,
whilst the resonance in v, takes place at the cavity frequency § = we — wp = 0. With
increasing Rabi frequency, the decay rate -, of the in-phase dipole quadrature can be
significantly suppressed at the cavity frequency § = 0.
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It is not different to show that the Bloch equations (18) reduce to Cirac’s case, i.e.
Egs. (3.2) and (3.3) in Ref. [13], when the cavity and driving frequencies are same:
0 = 0. When the atom, driving laser and cavity mode are all in resonance (A = § = 0)
and the Rabi frequency is much less than the cavity linewidth (2 < k), the equations
(18) become the ones obtained by Rice et al. [12], which are formally similar to those
in free space, but with the renormalized decay rate v + .. In the present paper we
shall mainly focus on the effect of the cavity frequency on the resonance fluorescence
of a strongly driven two-level atom (2 > k). As we shall see, the fluorescent emission
from such an atom can be dramatically modified by tuning the frequency of the cavity

to the centre or sidebands of the Mollow triplet.

3. Resonance fluorescence

3.1. The Intensity

One of the observables of interest is the steady-state fluorescence intensity of the
atom emitted from the side of the cavity, which is proportional to the steady-state
population in the excited state:

0 (Qw’Yy + Azﬂy) + (2 — Q) (QwAy - ’Yzﬂy) + (7. — To) ('Yz’Yy + Asz)

I s =
s o (o) 2[(Vvayy + Azly) 72 + Q (129 — Q2Ay)]

(21)

We plot the intensity against the cavity frequency (detuning) in Figs. 1 and 2, where
the former corresponds to the situation where the driving laser is resonant with the atom
(A = 0), while the latter is for the laser detuned from the atom (A = 100). The solid,
dashed and dot-dashed curves in these two figures are for ® = 0, 7/2 and 7 respectively,
whereas the other parameters are (a) @ = 100, N = 0.5; (b) Q = 100, N = 2; (c)
Q =500, N =0.5 and (d) Q@ = 500, N = 2. In this paper we work in the bad cavity
limit, so we set Kk = 100, g = 30, v = 1 throughout the following graphics. (Note that
all parameters are scaled in the unit of y = 1.)

These figures show clearly that the atomic fluorescence intensity emitted out the
cavity walls varies dramatically with the cavity and driving laser frequencies, the laser
intensity and the squeezing phase (the effect of the two-photon correlations [15]). When
the laser field is resonant with the atom, shown in Fig. 1, the intensity for the squeezing
phase ® = 0 is resonantly enhanced at the cavity frequency tuned to the frequency of
the driving laser, i.e., § = 0. However, for the squeezing phase ® = 7, the intensity is
suppressed at 4 = 0, while it may be resonantly enhanced at the cavity frequency tuned
close to the Rabi sideband, § ~ +. The resonance profile at the central frequency is
a Lorentzian lineshape, whereas it is a Rayleigh-wing lineshape at the Rabi sidebands.
For certain laser intensities and squeezing photon numbers, the resonance profile at the
sidebands may so very weak as to be invisible — see for instance, Fig. 1b. For other
squeezing phases, say ® = 7/2, the intensity is asymmetric around the cavity detuning
0 = 0. Specifically, the fluorescence emission of the atom out of the cavity is enhanced
for § > 0, and suppressed for § < 0.



Pyae]

reng Zhou, 5. Swain

0.525
0.52
0.52
0.51
0.515
—9051 0.5
0'505 0.49 ‘
VL
05 0.48 ¥
0.495 0.47
Z1000 -500 0 500 1000 1000 -500 O 500 1000

0.502 0.502
0.501 0.501
_wn
0.5 0.5
0.499 0.499
-1000 -500 0 500 1000 -1000 -500 0 500 1000
o o

Fig. 1. The steady-state fluorescence intensity I as a function of the cavity detuning 4, for the
parameters: k = 100, g =30, v =1, A =0, and (a): 2 =100, N = 0.5, (b): Q =100, N =2,
(c): @ =500, N =0.5, (d): Q =500, N =2. In these frames the solid, dashed and dot-dashed
curves are respectively for ® = 0, /2 and 7. (All parameters are set in the unit of v = 1
throughout the graphs in this paper.)

When the laser field is detuned from the atomic transition frequency, the fluorescence
intensity, depicted in Fig. 2 for A = 100, is asymmetric about § = 0 for all squeezing
phases. The intensity is remarkably enhanced when the cavity frequency is tuned to the
lower-frequency Rabi sideband, § = —(, while it is suppressed at the other sideband,
§ = Q. Note that the resonance profiles are opposite to those in Fig. 1, that is, a
Lorentzian lineshape when the cavity frequency is tuned to the Rabi sidebands, and a
Rayleigh-wing shape when the cavity frequency is tuned to the central of the Mollow
triplet.

The enhancement of the fluorescence intensity is a direct consequence of the pop-
ulation inversion ( (o11)s > 0.5), which results from the coupling of the atom to the
cavity mode [5, 9, 23]. Cirac’s study [13] of a driven two-level atom coupled to a fixed-
frequency cavity mode tuned to the laser frequency predicted that squeezed vacuum
damping of the cavity mode enhances the cavity-induced inversion by a tiny amount.
However, we find that the population inversion may be significantly enhanced if the
cavity frequency is tuned to one of the Rabi sidebands. For example in Fig. 2b, a large
inversion ((o11)s — (000)s) ~ 0.25 is achieved at the cavity detuning § ~ —€Q.

On the other hand, Cabrillo and Swain [15] have recently proposed detecting the
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Fig. 2. Same as Fig. 1, but with A = 100.

quantum two-photon correlation in a squeezed vacuum via measuring the phase-sensitive
internal cavity photon number. Our results show that the fluorescence intensity of the
atom emitted from the side of the cavity is also phase-dependent. Alternatively, one
may measure the quantum correlation by recording the atomic fluorescence photons
emitted out of the cavity.

3.2. The Spectrum

The incoherent fluorescence spectrum of the atom, emitted from the side of the
cavity, can be calculated in term of the two-time correlation function lim;_, (o4 (t + 7),
o_ (t)) by invoking the quantum regression theorem together with the optical Bloch
equations (18). The spectrum is of the form,

— lRe [(yy + 2 +iA) (v +2) + Q(Q, — Q)] X
Aw)=2R {[m Ty T AN () 0+ o0, WAy
) (A, — i (30 + 2)] (3 + 2) x2 — D) }
(Ve +2) (7y +2) + DDy (v +2) + Q[(72 +2) Qy — LA S,
with

X1 = 314 (02 — (022 +i(02)s(0)s),
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Fig. 3. The incoherent resonance fluorescence spectrum A(w), for k = 100, g =30,y =1, A =
0, N =05 Q =400, and (a): ® =0,0 = —Q, (b): ®=0,0=0, (c): ®=0,0 =9, (d
d=md=-Q,(e): =7, d=0,(f): =m, d=Q.
X2 = 75(1 +(02)s — <‘7y>§ - Z<0m>8<ay>8)a
1 .
X3 = *5(14'((7:)3)(((7.1)3 *7'<”y>s)a (23)

where (0;)s (i =z, y, z) is the steady-state solutions of Eq. (18).

Figure 3 presents the spectra for 2 = 400, A = 0, N = 0.5. In the first three frames,
Figs. 3a-3c, ® = 0, and § = —(, 0, , respectively, while ® = 7 in the other frames.
As in the absence of the squeezed vacuum [4, 5], the spectral linewidths and heights
are dependent on the cavity frequency. When the cavity is tuned to resonance with
the laser field, the fluorescence spectrum is symmetric, whilst it is asymmetric when
the cavity frequency is tuned to one of the Rabi sidebands. If the cavity frequency
is tuned to the lower-frequency sideband, § = —(, the higher-frequency sideband of
the fluorescence spectrum is enhanced, whereas the other peaks are suppressed. The
opposite occurs if the cavity frequency tuned to the higher-frequency sideband, § = €.
See, for example Figs. 3a and 3c. These figures also show that all peaks are broadened,
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Fig. 4. Same as Fig. 3, but with N = 5.

relative to the ones for 6 = 0, when the cavity frequency is tuned to one of the Rabi
sidebands, but the sideband may be narrower than the central peak. The differences
from the standard vacuum case [4, 5] are that the spectrum is phase-sensitive. On
comparing Figs. 3d-3f with Figs. 3a-3c, one sees that all spectral lines for the squeezing
phase ® = 7w are narrower than the corresponding spectral lines for ® = 0, except for
the sidebands in the frame 3e, where the cavity is resonant with the laser field. On
the other hand, Figs. 3d-3f also demonstrate that, when ® = 7, the linewidth of the
sidebands of the fluorescence spectrum for the cavity detuning § = £ is significantly
narrower than that for § = 0.

We plot the fluorescence spectrum for a large squeezed photon number, N = 5, in
Fig. 4. In addition to the spectral features shown in Fig. 3 for N = 0.5, one may see
from Fig. 4b that if the cavity is resonant with the driving laser § = 0, the sidebands
may be made narrower than the central component by increasing the squeezed photon
number. On the other hand, for large photon numbers, the sidebands for ® = 7 are
negligibly small compared to the central peak. The spectrum is almost symmetric when
the cavity is detuned from the laser frequency, e.g., in Figs. 4d and 4f.

Figure 5 displays the spectra when the driving laser is detuned from the atomic
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Fig. 5. Same as Fig. 3, but with A = 100.

transition frequency, A = 100. As for the case A = 0, the spectral lines may be
narrowed as the squeezing phase ® varies from 0 to m, and one of the sidebands may
be enhanced and the others suppressed if the cavity is detuned from the laser by the
Rabi frequency. However, the spectrum for ® = 0 is, in general, asymmetric even in the
case of § = 0, as we see in Fig. 5b, and the amounts of enhancement and suppression
of the spectral lines are also different when the cavity detuning is set to § = . On
the other hand, Figs. 5d and 5e show that for the squeezing phase ® = 7, the spectra
are almost symmetric when the cavity frequency is tuned to the central and sidebands
of the Mollow triplet.

We can gain a physical insight into the narrowing and asymmetries of the cavity-
modified Mollow spectrum by employing the semiclassical dressed states |+), which are
defined via H|+) = +(Q2/2)|£). It is well known that the central spectral line results
from the atomic downward transitions between the same dressed states of two adjacent
dressed-state doublets. The lower-frequency sideband, however, is due to the downward
transitions from the substate |—) of one dressed-state doublet to the substate |+) of the
next dressed-state doublet, whereas the higher-frequency sideband originates from the
downward transitions |+) — |—) between two near-lying dressed-state doublets. There-
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fore, the central peak is proportional to the product of the two dressed populations,
whilst the heights of the lower- and higher-frequency sidebands are associated with the
populations of the dressed states |—) and |+), respectively. The linewidths of the centre
and sidebands are then determined by the decay rates of the dressed population and
coherence, respectively.

We here take A = 0 as an example. Under the secular approximation (Q > k), the
populations in the dressed states |+) are respectively Py = (7, £Q1)/27., and the decay
rates of the dressed population and coherence are T'yop = 74, and Teop = ]3(% +7.)
respectively.

When the cavity is resonant with the laser field and atomic transition, i.e. § = 0,
then Q; = 0. The spectrum is therefore symmetric, because Py = P_ = 1/2. The
linewidths of the central peak and the sidebands are respectively determined by

3

2
Lpop =7+ e (6) (2N + 1+ 2M cos @),

3 e (K2
Toon = ?7 + % (g) (2N +1+2M cos®) +7.(2N + 1 — 2M cos ®). (24)
One sees that the central peak may be narrowed while the sidebands are broadened, as
the phase varies from 0 to 7. See, for example, the frames (b) and (e) of Figs. 4 and 5.
On the other hand, for a squeezed vacuum with a large photon number (N > 1) and
the relative phase ® = 0, (24) reduces to

K 2
Tpop = 7 + 27 (ﬁ) (2N + 1),

3y K\ 2
oo~ 2L+ 7. () @N+1). 25
oh = 5 e\ (2N +1) (25)
Therefore, the sidebands can be narrower than the central one, because v, > . For
example, in Fig. 4b, I';,p, ~ 13.3 whilst I'.op ~ 8.

When the cavity frequency is tuned to one of the Rabi sidebands, e.g. § = —(2, one
obtains

2
Tpop = 7 + % [(%) + 1] (2N + 1+ 2M cos @),

37 | Ve (K Ve
Toon = 5 + 3¢ (ﬁ) (84N + 17 — 30M cos ®) + 1£(2N + 1 + 2 cos ©)(26)

[v + (2N 4+ 1 + 2M cos )],

Py

1R

20 0p
1

P- 2T

12

Ko\ 2
{’y + Ye (ﬁ) (2N +1+4+2Mcos®)| . (27)

pop

It is not difficult to see from Eq.(26) that I',,, and T'¢op decrease as the squeezing phase
varies from 0 to 7, noting that (x£/)? < 1. For example, in Fig. 3a, ['p,,(® = 0) ~ 17.8,
and Teon(® = 0) ~ 10.2, while T'p,p(® = ) ~ 2.2, and Teop (P = m) ~ 4.2 in Fig. 4d.
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That is, in the case § = —{2, the sidebands are narrower than the central peak for ® = 0,
whereas for ® = 7, they are wider than the central peak. On the other hand, all spectral
peaks for ® = 7 are narrower than those for & = 0. We also find from Eq.(27) that
Py > P_ for all phases, and therefore the higher-frequency sideband peak is higher
than the lower-frequency one if the cavity frequency is tuned to the lower-frequency
Rabi sideband. Moreover, if N > 1 and & = 7, then Eq. (27) shows that P, ~ P_,
which means that the spectrum is approximately symmetric—see for example, Figs. 4d
and 4f.

(@) (b)
15 15
"
A \
S 1 AVAYS 1 I
< \ \/
& \
0.5 0.5
0 0
0 005 01 015 02 0.25 0 005 01 015 02 0.25
(c) (d)

g9

0 0
0 005 01 015 0.2 0.25 0 005 01 015 0.2 0.25
t t
Fig. 6. The second-order intensity correlation g'?(t), for k =100, g =30,y =1, A=0, N =
1, and (a):; © =100, ® = 0, (b): Q =100, & = 7, (c): Q = 200, & = 0, (d): Q = 200, & = 7.

The solid curves are for § = 0, while the dot-dashed curves for 6 = €.

3.3. The intensity-intensity correlation

The intensity-intensity correlation function g(® (¢) of the fluorescence field is defined
as
(0+(0)o+()o_()o_(0))s (28)

(2) _
g7 () ERULRO)E
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It is related to the intensity fluctuations of the fluorescence field, and contains infor-
mation about the probability of detecting a fluorescent photon at time ¢ given that one
was detected at time 0.
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o A = AR AN
1 -\ \ T~
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0O 005 01 015 0.2 0.25 0 005 01 0415 0.2 0.25
(d)
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|
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0 0
0 005 01 015 0.2 0.25 0 005 01 0415 0.2 0.25
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Fig. 7. Same as Fig. 6, but with the parameters: x = 100, g = 30, vy =1, 2 = 100, N = 1,
and (a): A =100,& =0, (b): A =100, =7, (c): A =200,% =0, (d): A =200, = .

The solid curves are for 6 = 0, while the dashed and dot-dashed curves are for § = 2 and —£2,
respectively.

Figures 6-8 are numerical results of the intensity-intensity correlation function g(* (t)
for various parameters. In Fig. 6 we take A = 0, N = 1, and (a): Q = 100, & = 0,
(b): @ =100, ® =7, (c): 2 =200,® =0 and (d): Q =200, ® = 7, respectively. In
this situation, the functions ¢(* (t) for the cavity frequency tuned to either of the Rabi
sidebands are identical, and are indicated by the dot-dashed curves. The solid curves,
however, are the intensity-intensity correlation g(* (t) for the cavity tuned to resonance
with the laser field. Interestingly, the value of g(*) (t) varies dramatically with the cavity
frequency, as well as the squeezing phase. For ® = ( the amplitudes of the oscillations
of the second-order correlation function g(*)(t) with the cavity detuning § = 0 are larger
than those with § = +). For ® = m however, the opposite results are obtained.

We plot the function ¢(*)(t) for different cavity-laser and atom-laser detunings in
Fig. 7, which results in different values of ¢(*)(t) for § = +Q. The oscillations of g(*)(t)
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for § = ) are stronger than those for the other detunings, § = 0 and —{. The latter
exhibits the photon antibunching effect, i.e., ¢®®(t) < 1. Although the photon anti-
bunching of the fluorescence field was predicted and observed in free space [24], it occurs
for weak Rabi frequencies (2 < ). The photon antibunching predicted here, however,
occurs at strong Rabi frequency regimes (€2 > ~), and depends upon the cavity resonant
frequency and squeezing phase.
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Fig. 8. Same as Fig. 6, but with the parameters: x = 100, g = 30, vy =1, 2 = 100, N = 3,
and (a): A =0, =0, (b): A=0,®=m, (c): A=100,% =0, (d): A =100, == Al
solid curves in the frames (a)-(d) are for § = 0. The dot-dashed curves are for § = +Q in the
frames (a) and (b). Whereas, the dashed and dot-dashed curves in the frames (c) and (d) are

for § = Q and —Q, respectively.

Figure 8 is the correlation function for a large squeezing photon number, N = 3.
The amplitudes of the oscillations decrease very quickly, because of the increase of the
decay rates with large squeezed photon number.

As we know, the intensity-intensity correlation function g(*)(t) may be simply in-
terpreted as the probability for finding an initially unexcited atom in its upper state
[24]. The probability can be obtained by solving the Bloch equation (18). Qualita-
tively, we conclude that the probability oscillates at the generalized Rabi frequency
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Q) = VQ2 + A2, with the amplitudes undergoing an exponential decay at rates associ-
ated with v,, v, and 7,. Due to the dependence of these decay rates 7, v, 7. on the
cavity resonant frequency, the driving laser frequency and intensity, and the squeez-
ing photon number and phase, the probability, and therefore the intensity-intensity
correlation g(?) (), varies with these different parameters.

4. Summary

We have studied the modification of the resonance fluorescence from a strongly
driven two-level atom located inside a frequency-tunable cavity which is damped by a
broadband squeezed vacuum. In the bad cavity limit, we derived an effective master
equation for the reduced density matrix operator for this system, which exhibits reso-
nance properties when the cavity frequency is tuned to the centre and sidebands of the
standard Mollow triplet. We find that the intensity, resonance fluorescence spectrum
and photon-photon correlation function are all strongly dependent upon the cavity res-
onance frequency and squeezing phase. The fluorescence intensity of the atom emitted
from the side (mirror) of the cavity can be enhanced or suppressed by appropriately
tuning the cavity frequency to the central peak or Rabi sidebands of the standard Mol-
low triplet, and varying the squeezing phase. The spectral lines can be also enhanced
or suppressed in a prescribed manner by changing these parameters. In general, the
central peak and one sideband of the fluorescence spectrum are suppressed when the
cavity is tuned to resonance, whilst the other sideband is enhanced. For certain pa-
rameters, the sidebands may be narrower than the central peak. All spectral lines for
® = 0 are broader than the ones for ® = 7. The fluorescence field can also exhibit the
photon antibunching effect for some cavity and laser frequencies and squeezed phase in
the strong Rabi frequency regime.
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