
acta physica slovaca vol. 48 No. 3, 207 { 220 June 1998GENERATING AND MONITORING SCHR�ODINGER CATS INCONDITIONAL MEASUREMENT ON A BEAM SPLITTER1M. Dakna2, J. Clausen, L. Kn�oll, D.{G. WelschFriedrich-Schiller-Universit�at Jena, Theoretisch-Physikalisches InstitutMax-Wien-Platz 1, D-07743 Jena, GermanyReceived 15 May 1998, accepted 26 May 1998Preparation of Schr�odinger-cat-like states via conditional output measurement ona beam splitter is studied. In the scheme, a mode prepared in a squeezed vacuumis mixed with a mode prepared in a Fock state and photocounting is performedin one of the output channels of the beam splitter. In this way the mode in theother output channel is prepared in a Schr�odinger-cat-like state that is either aphoton-subtracted or a photon-added Jacobi polynomial squeezed vacuum state,depending upon the di�erence between the number of photons in the input Fockstate and the number of photons in the output Fock state onto which it is pro-jected. Two possible photocounting schemes are considered, and the problem ofmonitoring cats that are \hidden" in a statistical mixture of states is studied.1. IntroductionThe interference of probability amplitudes is one of the most speci�c features ofquantum theory and it has been discussed since the early days of quantum mechan-ics. The famous Schr�odinger-cat-like states are a typical example. The cat standsfor a macroscopic object which may be in a superposition of states corresponding tomacroscopically distinguishable beings (living and dead) [1]. However the experimentaldemonstration of quantum interference e�ects for macroscopic systems is very di�cultdue to the irreversible interaction of such a system with its environment [2]. Recentexperimental progress has rendered it possible to generate Schr�odinger-cat-like stateson a mesoscopic scale, as it was successfully demonstrated in neutron interferometry [3]and atom optics in a trap [4].Despite the large body of work, Schr�odinger-cat-like states of optical �elds have notbeen observed so far. Recently a sophisticated method for demonstrating Schr�odinger-cat-like states of traveling optical �elds by inferring them from noisy data has beenproposed [5]. The method is based on the experimental scheme proposed in [6] (see1Special Issue on Quantum Optics and Quantum Information2E-mail address: dakna@tpi.uni-jena.de0323-0465/96 c
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208 M. Dakna et al.also [7]), and it uses appropriate data processing in order to calculate the intrinsic(undistorted) state from the (distorted) state actually produced and detected.Recently we have shown that Schr�odinger-cat-like states can also be produced byconditional measurement on a beam splitter. In particular, when a mode prepared ina squeezed vacuum is mixed with an ordinary vacuum and a (nonzero) photon-numbermeasurement is performed in one of the output channels of the beam splitter, thenthe mode in the other output channel is prepared in a Schr�odinger-cat-like state [8].The scheme can be extended to the more general case when the mode prepared in thesqueezed vacuum is mixed with a mode prepared in an arbitrary n-photon Fock state andthe photon-number measurement yields an arbitrary numberm. The conditional outputstates are either photon-subtracted (n<m) or photon-added (n>m) Jacobi polynomialsqueezed vacuum states, i.e., states that are obtained by (jn � mj times) repeatedapplication of either the photon destruction operator or the photon creation operator,respectively, to a Jacobi polynomial squeezed vacuum state [9]. It is worth notingthat the two classes of states { similarly to the ordinary photon-subtracted (n=0) [8]and photon-added (m=0) [10] squeezed vacuum states { represent Schr�odinger-cat-likestates.In this paper we study the properties of these classes of Schr�odinger-cat-like states,with special emphasis on the experimental conditions. In fact, due to the extremefragility of the quantum interferences the attempt to demonstrate them may fail if norigorous compensation for the detection losses is performed, at least in the conditionalmeasurement. We compare photon chopping [11] (considered in [8]) with single-detectorphotocounting (considered in [5]) and give an analysis of the corresponding data pro-cessing algorithms. Further, the e�ect of losses in homodyne detection of the statesproduced is addressed.This paper is organized as follows. In Sec. 2 we outline the basic scheme for generat-ing photon-subtracted Jacobi polynomial (PSJP) and photon-added Jacobi polynomial(PAJP) squeezed vacuum states and brie
y address their properties. In Sec. 3 wecompare the two photocounting schemes for conditional measurement and analyse thecorresponding algorithms used for processing the experimental data. Finally, in Sec. 4we give a summary and some concluding remarks.2. Basis scheme for generating the Schr�odinger-cat-like statesThe quantum description of the input{output relations of a lossless beam splitterare well known to obey the SU(2) Lie algebra [12]. In the Schr�odinger picture, theoutput-state density operator %̂out can be related to the input-state density operator%̂in as %̂out= V̂ y%̂inV̂ , where V̂ can be given by [12]V̂ = e�i('T�'R)L̂3 e�2i�L̂2 e�i('T+'R)L̂3 ; (1)with L̂2 = 12i (ây1â2 � ây2â1); L̂3 = 12 (ây1â1 � ây2â2): (2)Let us consider the experimental setup as depicted in Fig. 1. A radiation-�eld mode



Generating and monitoring Schr�odinger cats . . . 209Fig. 1. Experimental setup for gener-ating the Schr�odinger-cat-like states.A signal mode prepared in a state%̂in1 = Ŝ(�)j0ih0jŜy(�) is mixed at thebeam splitter BS with another inputmode prepared in a Fock state jni,and m photons are recorded by thedetector D in one of the output chan-nels of the beam splitter. The quan-tum state %̂out1 of the mode in theother output channel is found to be\collapsed" to either a PSJP (n<m)or a PAJP (n>m) squeezed vacuumstate.
BS%̂in1 %̂out1

jni

D

prepared in a quantum state %̂in1 is mixed at a beam splitter with another mode preparedin a Fock state jni, so that the input-state density operator reads as%̂in(n) = %̂in1 
 jni2 2hnj: (3)The output-state density operator %̂out� %̂out(n) can then be given by [9]%̂out(n) = 1jT j2n 1Xl=0 1Xm=0 nXk=0 nXj=0 (�1)l+m(R�)m+jRl+kpk!j!m!l! ��n�k+mm ��n�j+ll �� 12� ��nk��nj�� 12 T n̂1 âm1 (ây1)k%̂in1âj1(ây1)l(T �)n̂1
jn�k+mi2 2hn�j+lj: (4)From Eq. (4) we see that the output modes are prepared in a highly entangled quantumstate in general. When the photon number of the mode in the second output channelis measured and m photons are detected, then the mode in the �rst output channel isprepared in a quantum state whose density operator %̂out1(n;m) reads%̂out1(n;m) = 2hmj%̂out(n)jmi2Tr1f2hmj%̂out(n)jmi2g : (5)The probability of such an event is given byP (n;m) = Tr1f2hmj%̂out(n)jmi2g= jRj�2�n!jT j2mm! nXj=� nXk=�(�jRj2)j+k� mj���� mk��� 1Xp=� p!jT j2p(p+�)!�p+jj ��p+kk �hpĵ%in1jpi; (6)where the abbreviations� = n�m; � = max(0; �); � = �� � (7)



210 M. Dakna et al.have been used.Let us now consider the case when the �rst input mode is prepared in a squeezedvacuum state %̂in1= Ŝ(�)j0ih0jŜy(�), whereŜ(�)j0i = expn� 12 h�(ây1)2 � ��â21io j0i = (1� j�j2) 14 1Xp=0 [(2p)!]1=22p p! �pj2pi; (8)� = j�jei'� , �=�ei'� tanh j�j. Combining Eqs. (4) and (5) and using Eq. (8), we �ndthat the density operator of the output state reads [10]%̂out1(n;m)= j	n;mi
	n;mj; (9)where j	n;mi � ( âj�j P(j�j;n̂�m)n (2jT j2�1)Ŝ(�0)j0i forn<m;(ây)�P(�;n̂�m)m (2jT j2�1)Ŝ(�0)j0i forn>m (10)is a PSJP (n<m) or a PAJP (n>m) squeezed vacuum state [P(�;�)l (z), Jacobi poly-nomial; �0= j�0jei('�+2'T ); tanh j�0j= jT j2 tanh j�j]. In the photon-number basis j	n;mireads j	n;mi = N�1=2n;m nXk=� (�jRj2)k(k � �)! �nk�� 1Xp=� (p!)� 12 (p� � + k)!��p��2 + 1� 12�1+(�1)p��	 � 12�0�(p��)=2 jpi; (11)with �0 = T 2�. From Eq. (11) we easily see that when the di�erence between thenumber n of photons in the second input channel of the beam splitter and the numberm of photons detected in the second output channel, i.e., the parameter � = n�m, iseven (odd), then the mode in the �rst output channel is prepared in a PSJP or PAJPsqueezed vacuum state j	n;mi that contains only Fock states with even (odd) numbers ofphotons. Similarly to ordinary photon-subtracted and photon-added squeezed vacuumstates [8, 9], the PSJP and PAJP squeezed vacuum states are Schr�odinger-cat-like states.From Eq. (11) the normalization constant Nn;m can be calculated to beNn;m = nXk=� (�jRj2)k(k � �)! �nk� nXj=� (�jRj2)j(j � �)! �nj� 1Xp=� (2p+ k)!(2p+ j)!(p!)2(2p+ �)!4p j�0j2p; (12)where �=max(0; [(1� �)=2]), [x] being the integer part of x. Rewriting Eq. (12) asNn;m = 1j�0j� nXk=� (�jRj2)k(k � �)! �nk� nXj=� (�jRj2)j(j � �)! �nj� @j��@j�0jj�� j�0jj 1Xp=0 (2p+ k)!(p!)24p j�0j2p (13)



Generating and monitoring Schr�odinger cats . . . 211and using the doubling formula for the gamma function (2p + k)! = 22p+k �(p + k+12 )�(p+ k+22 )=p� and the de�nition of the hypergeometric function, we deriveNn;m= 1j�0j� nXk=�k!(�jRj2)k(k��)! �nk� nXj=� (�jRj2)j(j��)! �nj� @j��@j�0jj�� j�0jjF(k+12 ; k+22 ; 1; j�0j2): (14)Note that the hypergeometric function in Eq. (14) is proportional to a Legendre poly-nomial, F(k+12 ; k+12 ; 1; j�0j2)= (1�j�0j2)�(k+1)=2 Pk[(1�j�0j)�1=2], so that Eq. (14) maybe given byNn;m = nXk=� (�jRj2)k(k � �)! �nk� nXj=� j!(�jRj2)j(j � �)! �nj� j��Xl=� �j � �l � (k + 2l0)!j�0j2l022l0�l(l + �)!l0!� �(l0 + 1=2)�(2l0 � l + 1=2) 3F2(l0 + k+12 ; l0 + k+22 ; l0 + 12 ; l0 + 1; 2l0 � l + 1=2; j�0j2); (15)where l0=[(l + 1)=2]. The generalized hypergeometric function 3F2(a1; a2; a3; b1; b2; z)in Eq. (15) can be calculated using standard routines. In particular, it may be expressedin terms of the more familiar hypergeometric function 2F1(a1; a2; b1; z)�F(a1; a2; b1; z).The probability P (n;m) of producing the state j	n;mi is found from Eq. (6) to beP (n;m) = m!n! (1� j�j2)1=2jRj2� jT j2m Nn;m: (16)To illustrate the properties of j	n;mi, in Fig. 2 the quadrature-component distribu-tions and the Wigner function of a PSJP squeezed vacuum state for n= 1 and m=4(a)
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Fig. 2. Quadrature distribution (a) and the Wigner function (b) of a PSJP squeezed vacuumj	n;mi [n=1 and m=4] for �0= �0:81 [jT j2=0:9, j�j=0:9].are plotted [P (n;m) = 3:37%]. From an inspection of the �gure, the state is seen toexhibit all the typical features of a Schr�odinger-cat-like state. In particular, a more de-tailed analysis reveals that the Wigner function is a superposition of two quasi-Gaussian



212 M. Dakna et al.lobes with an interference structure between them. Since the corresponding formulasare rather lengthy, here we do without them and only give an explicit expression of theHusimi function, Q(x; y)= jh�j	n;mij2=(2�), �=2�1=2(x+ iy), which takes the formQn(x; yjm) = jRj4� jT j4m2�Nn;m j�j2�e�j�j2 expn 12 (�0��2 + �0��2)o� ����� mXk=�� nk+��� jRj2jT j2q 12�0���k Hk�q 12�0��� �����2: (17)3. N-fold photon chopping versus single-detectorphotocountingAmong the practical problems that may be encountered in an experimental gener-ation of the Schr�odinger-cat-like states, the losses associated with nonperfect photon-number measurement may be of primordial importance. For the sake of transparencylet us restrict attention to the simplest situation and assume that an ordinary vacuumenters the second input of the beam splitter [8]. In this case Eq. (11) reduces toj	0;mi � j	mi = N�1=2m 1Xn=0 Hm+n(0)pn! �� 12�0�(n+m)=2 jni; (18)with Nm = imm!j�0j � j�0j21� j�0j2�(m+1)=2 Pm �is j�0j21� j�0j2! (19)[Pn(z), Legendre Polynomial],3 and the probability P (0;m)� P (m) of producing thestate j	mi can be given byP (m) = imjRj2mj�0jmp1� j�j2jT j2m(1� j�0j2)(m+1)=2 Pm �is j�0j21� j�0j2! ; (20)which is nothing but the probability of detecting m photons in the readout mode.At present two types of highly e�cient photodetectors are available: the linear-response photodiodes suitable for measuring strong signals without single-photon res-olution and the avalanche photodiodes that may achieve single-event discriminationbut are then saturated. It has therefore been suggested to spread a �eld whose photon-number statistics is desired to be detected over an array of such highly e�cient avalanchephotodiodes, on using passive optical multiports. Following [11], we refer to this methodas photon-chopping and to the photodiodes as type I detectors. For a 2NI -port appa-ratus the probability of recording k coincident events when m photons are present isgiven by ~PNI (kjm) = 1NmI �NIk � kXl=0(�1)l�kl�(k � l)m (21)3Note that the �nite sum in [8] can be expressed in terms of Pn(z), on using the relationn!P[n=2]k=0 (2jxj)�2k(k!)�2f(n � 2k)!g�1 = in(1� jxj2)n=2 jxj�nPn(�ijxj=p1� jxj2).



Generating and monitoring Schr�odinger cats . . . 213for k � m, and ~PNI (kjm) = 0 for k > m. Note that ~PNI (kjm)! �k;m for NI !1.In Eq. (21) perfect detection is assumed. The e�ect of nonperfect detection may bemodeled by placing an absorber in front of the signal before it enters the 2NI port.This corresponds to a random process such that photons are excluded from detectionwith probability 1��I , �I being the e�ciency of the photodiodes (Note that typically�I =0:8 : : : 0:94). The probability of recording k coincident events then modi�es to~PNI ;�I (kjm) =Xl ~PNI (kjl)Ml;m(�I); (22)where the matrix Ml;m(�I ) is given byMl;m(�I) = �ml ��lI (1� �I)m�l (23)for l�m, and Ml;m(�I )=0 for l>m. Since detection of k coincident events can resultfrom various numbers m of photons, the conditional measurement yields a statisticalmixture %̂I(k) =Xm PNI ;�I (mjk) j	mih	mj (24)rather than a pure state j	mi. In Eq. (24), PNI ;�I (mjk) is the probability of m photonsbeing present under the condition that k coincident events are recorded. The conditionalprobability PNI ;�I (mjk) can be obtained using the Bayes rule,PNI ;�I (mjk) = 1~PNI ;�I (k) ~PNI ;�I (kjm)P (m): (25)Here, P (m) is the prior probability (20) of m photons being present, and accordingly,~PNI ;�I (k) is the prior probability of recording k coincident events,~PNI ;�I (k) =Xm ~PNI ;�I (kjm) P (m): (26)Let us now consider a so-called type II detector that is able to discriminate betweenzero, one and a few more photons, but with low detection e�ciency (�II � 0:3). Usingsuch a (single) detector for measuring the photon number yields%̂II(k) =Xm P�II (mjk) j	mih	mj; (27)where, according to the Bayes rule, the conditional probability P�II (mjk) is now givenby P�II (mjk) = 1P�II (k)Mk;m(�II)P (m); (28)



214 M. Dakna et al.with P�II (k) =Xm Mk;m(�II )P (m): (29)In order to compare the conditional output states that are produced in the twoschemes of photon-number measurement, we have calculated the (dimensionless) Shan-non entropy SI(II) = �Xm PI(II)(mjk) lnPI(II)(mjk) (30)of the statistical mixtures of states,%̂I(II)(k) =Xm PI(II)(mjk) j	mih	mj; (31)as given by Eqs. (24) and (27). The Shannon entropy is a measure of the spread of thedistribution PI(II)(mjk), i.e., it is a measure of the deviation of %̂I(II) from a pure state.Note that for a pure state SI(II) = 0 is valid. From Fig. 3 we see that SI can always(a)
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Fig. 3. The Shannon entropies SI and SII of the mixed states (24) and (27), respectively. In(a) it is assumed that k=3 events are recorded and the quantum e�ciencies are �I =0:85 and�II = 0:3. In (b) the parameters are k = 5 and �I = 0:5 and �II = 0:3. The calculations areperformed for �0 =�0:7 (jT j2=0:9, j�j=0:77).be reduced below SII when the number of type I detectors in the photon choppingscheme is su�ciently increased. Hence photon chopping (with type I detectors) may bemuch more suitable for preserving the quantum interference features in the conditionaloutput state than the use of a single type II detector. Photon chopping yields a mixedstate that is less spread and \more pure" than the state obtained by using a single typeII detector for photon-number measurement. Clearly, when in the photon choppingscheme type II detectors are used in order to record coincident events, then this schemeis less suitable for photon counting than a single type II detector. For �I =�II the twoschemes yield equal conditional output states only in the limit when NI!1. For �nite



Generating and monitoring Schr�odinger cats . . . 215NI there is always a nonvanishing probability that the number of recorded coincidentevents is smaller than the number of photons, Eq. (21). In particular with regard topure-state generation we havelimNI!1 lim�I!1SI = 0; lim�II!1SII = 0: (32)The conditional output states (24) and (27) can be determined using balanced ho-modyne detection and measuring the quadrature-component distributionspI(II)(x; 'jk) =Xm PI(II)(mjk) p(x; 'jm); (33)where [8]p(x; 'jm) = jhx; 'j	mij2 = j�0jm2mNmp��m+1 exp��1� j�0j2� x2� jHm(Kx)j2 ; (34)with � = 1 + j�0j2 + 2j�0j cos(2' � '�0) and K =p(��0�ei2' � j�0j2)=� . In Fig. 4we report the results of simulated measurements. In the case of a single type II de-(a)
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xFig. 4. The quadrature-component distributions pII(x; 'jk) (a) and pI(x; 'jk) (b), respectively,of the mixed states (27) (�II =0:3) and (24) (NI =20, �I = 0:9) are shown for '=0 and k=3. The theoretical distributions (34) (solid lines) are compared with the histograms obtainedfrom computer-simulations of 106 measurements. The calculations are performed for �0=�0:81(jT j2=0:9, j�j=0:9).tector, Fig. 4(a), the quantum interferences are totally smeared and non-observable.Although somewhat smeared, the quantum interferences are observable in a photon-chopping scheme with type I detectors, Fig. 4(b). The result obviously re
ects theabove mentioned fact that the conditional output state %̂II , Eq. (27), is \more mixed"than the state %̂I , Eq. (24), in general.The reconstruction of the states j	mi from the mixed state %̂II(k), Eq. (27), can beachieved using the inverse Bernoulli transform [5],j	mih	mj = 1P (m)�mII 1Xk=m� km�(1���1II )k�mP�II (j)%̂II(k): (35)
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xFig. 5. The quadrature-component distributions p(x;'jm) of j	mi reconstructed from thehomodyne data, (a,c) according to Eq. (35) (�II = 0:3) and (b,d) according to Eq. (36) (NI= 20, �I = 0:9), are shown for ' = 0 and m = 3. The theoretical distribution (34) (solidline) is compared with the distributions reconstructed from (a,b) 5 � 105 measurement, (c) 104measurements, and (d) 103 measurements. The calculations are performed for �0=�0:81 (jT j2=0:9, j�j=0:9).Similarly, inverting Eq. (24), we obtain (NI !1)j	mih	mj = 1P (m)�mI 1Xj=m� jm�(1���1I )j�m 24 1Xk=j( ~PNI )�1j;k ~PNI ;�I (k)%̂I (k)35 ; (36)where ( ~PNI )�1m;k is the inverse of the matrix ( ~PNI )k;m � ~PNI ;�I (kjm), and the followingrecursion relation is valid [11]:( ~PNI )�1n;n+k = �1( ~PNI )n+k;n+k k�1Xj=0( ~PNI )�1n;n+j( ~PNI )n+j;n+k ; k = 0; 1; 2 � � � : (37)Note that Eq. (36) reproduces the exact components j	mih	mj only for NI!1.Applying Eq. (35) and Eq. (36) (for �nite NI), the states j	mi can be reconstructedfrom the homodyne data of the measured mixed states. Examples of reconstructedquadrature-component distributions are shown in Fig. 5. From the �gure we see that



Generating and monitoring Schr�odinger cats . . . 217processing the homodyne data according to Eqs. (35) and (36) allows us to restore thequantum interferences in the quadrature-component distributions of the componentstates of the produced statistical mixtures of states. It should be noted that withincreasing number of measurements the Bernoulli inversion in Eq. (35) yields the almostperfect interference structure [Fig. 5(a)]. In order to realize (for the same number ofmeasurements) a comparable accuracy on the basis of Eq. (36), a su�ciently largenumber NI of channels (type Idetectors) in the photon-chopping scheme must be used[NI =50 in place of NI =20 used in Fig. 5(b)]. This is obviously due to the fact thatin the photon-chopping scheme the probability that a photon impinges on an alreadysaturated photodiode approaches zero only for NI !1. On the other hand, photonchopping already yields reasonable results for small amounts of data, even when thenumber of channels is reduced [Fig. 5(d)]. From Fig. 5(c) it is seen that the error inthe single-(type-II-)detector scheme drastically increases with decreasing number ofmeasurements. This result tells us that photon-chopping may be more powerful than asingle-detector scheme when the produced state tends to a macroscopical one and theamount of data needed becomes great.Finally, let us mention that with respect to the probability of producing particularlymacroscopic Schr�odinger-cat-like states the chopping scheme may be more suitable thanthe single-detector scheme. In fact, from Fig. 6 we see that the probability of recordingk > 0 clicks is always higher for the photon-chopping method as for the single-detectorscheme. This e�ect can be made a bit more pronounced choosing larger NI .Fig. 6. The prior probabilities (26)(solid bars) and (29) (dashed bars)for recording k clicks in the photon-chopping scheme (�I = 0:9, NI = 20)and the single-detector scheme (�II =0:3), respectively, are shown. The cal-culations are performed for �0=�0:81(jT j2 = 0:9, j�j = 0:9). Note that fork= 3 the type II detector only gives12% of the probability obtained byphoton chopping. 00:20:40:60:8
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kLet us brie
y comment on the use of a nonperfect homodyne detector for measuringthe quadrature-component distributions (33). Since in a realistic homodyne experimentthe quadrature components cannot be measured exactly, we may assume that insteadof pI(II)(x; 'jk) smeared distributionspI(II)(x; '; �jk) =Xm PI(II)(mjk) p(x; '; �jm) (38)are measured, wherep(x; '; �jm) = Z 1�1 dy f(x� y; �) p(y; 'jm); (39)



218 M. Dakna et al.f(x; �) being some positive single-peaked function of x, such as a Gaussian,f(x; �) = 1p2��2 exp�� x22�2� ; � = 1� �2� (40)(�, quantum e�ciency of the homodyne detector, with � � 1). Combining Eqs. (39),(34), and (40) and performing the y-integration yieldsp(x; '; �jm) = j�0jmjKj2mpm+1=2Nmp2��m+1�2 exp��1� (2p�2)�12�2 x2�� mXk=0�mk�2(m� k)!� jp�K2j2jKj2 �k �����Hk Kx2�2pp2 � pK2!�����2; (41)p=(1�j�0j2)=�+1=(2�). It can be readily seen from Eqs. (39) { (41) that p(x; '; �jm)! p(x; 'jm) for � ! 1. The notorious fragility of the interference structure may bedirectly seen by comparing the quadrature-component distributions (34) and (41). Forexample, for m=3 (i.e., a mean number of photons hn̂i=15) the interference structureis completely smeared out if � < 0:94 (Fig. 7).Fig. 7. The theoretical quadrature-component distribution (34) at thephase ' = 0 (solid line) is comparedwith the quadrature-component dis-tribution (41) obtained in nonper-fect homodyne detection for � = 0:98(dashed line) and � = 0:94 (dottedline). The calculations are performedfor �0=�0:81 (jT j2=0:9, j�j=0:9). 00:40:81:21:6
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)

xIt is well known that for compensating the losses of the homodyne detector one canmake a detour via the density matrix in the Fock representation. The density-matrixelements are reconstructed from the noisy quadrature-component distributions usingloss-compensating kernels,%̂n;n0(m) = hnj	mih	mjn0i = Z2� d' Z 1�1 d x p(x; '; �jm)Kn;n0(x; '; �); (42)Kn;n0(x; '; �) being given in [13] (note that such a compensation is possible only for �> 0:5). Alternatively one can �rst reconstruct the density-matrix elements in the Fockbasis using the kernel functions for perfect detection and then apply an inverse Bernoullitransform to reconstruct the true density-matrix elements [14].



Generating and monitoring Schr�odinger cats . . . 2194. SummaryWe have shown that quantum-state preparation via conditional output measure-ment on a beam splitter can be advantageously used for preparation of a great varietyof Schr�odinger-cat-like states. When a mode prepared in a squeezed vacuum and amode prepared in an arbitrary Fock state are superimposed by a beam splitter andan arbitrarily chosen number of photons is recorded in one of the output channels ofthe beam splitter, then the mode in the other output channel is prepared in either aphoton-subtracted or a photon-added Jacobi polynomial squeezed vacuum state, thelatter being obtained by applying an operator-valued Jacobi polynomial to a squeezedvacuum state. All the PSJP and PAJP states represent examples of Schr�odinger-cat-like states, provided that the di�erence between the number of incident photons andthe number of detected photons is nonzero.In order to project onto Fock states, we have studied two methods of direct photoncounting which may be realized with currently available techniques: single-detector pho-ton counting and N -fold photon chopping. Both methods produce statistical mixturesof Schr�odinger-cat-like states rather than pure states in general, because of nonperfectdetection. We found that photon chopping o�ers the possibility of direct observationof the quantum interferences. Moreover this method can be advantageously used toreduce the amount of data needed for reconstructing the Schr�odinger-cat-like states inthe produced mixed state, which can be measured by balanced homodyning. Whenthe number of recorded data is suitably large, then the use of a single (low-e�ciency)detector may be more advantageous. In this case the pure-state components of thestatistical mixture of states can simply be calculated from the measured data usingthe inverse Bernoulli transform. To realize the same accuracy in photon chopping, thenumber of channels and detectors must be relatively high.Acknowledgements This work was supported by the Deutsche Forschungsgemein-schaft. References[1] E. Schr�odinger: Naturwissenschaften 23 (1935) 807[2] W.H. Zurek: Phys. Today 44 (1991) 36 46 (1993) 81[3] D.L. Jacobson, S.A. Werner, H. Rauch: Phys. Rev. A 49 (1994) 3196[4] C. Monroe, D.M. Meekhof, B.E. King, D.J. Wineland: Science 272 (1996) 1131[5] G.M. D'Ariano, C. Machiavello, L. Maccone: Los Alamos e-print archive quant-ph/9804021[6] S. Song, C. M. Caves, B. Yurke: Phys. Rev. A 41 (1990) 5261[7] B. Yurke, W. Schleich and D. F. Walls: Phys. Rev. A 42 (1990) 1703[8] M. Dakna, T. Anhut, T. Opatrn�y, L. Kn�oll, D.{G. Welsch: Phys. Rev. A 55 (1997) 3184[9] M. Dakna, L. Kn�oll, D.{G. Welsch: to appear in Europ. Phys. J. D [Los Alamos e-printarchive quant-ph/9803077 ][10] M. Dakna, L. Kn�oll, D.{G. Welsch: Opt. Commun. 145 (1998) 309[11] H. Paul, P. T�orm�a, T. Kiss, I. Jex: Phys. Rev. Lett. 77 (1996) 2446
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