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Tomographic measurement of observables is revisited, and an adaptive optimiza-
tion of the kernel functions suggested. The method is based on the existence of a
class of null functions, which have zero tomographic average for any state of radia-
tion. The general procedure is illustrated, and application to relevant observables
analyzed in details for coherent, squeezed and ”cat” states.

1. Introduction

Quantum tomography of a single-mode radiation field consists in a set of repeated
measurements of the field-quadrature Z4, = 3(ae™'® + a'e’?) at different values of the
reference phase ¢. The expectation value of a generic operator can be expressed in
terms of the tomographic probability p(x, ¢) as

©) =1 {20} = /‘fr—¢ /Zd o, 8) RIO)(, 6) , (1)

R[O](m @) being the tomographic kernel function for the operator 0, whose definition
reads as follows [1]

RIO](z, 6) ——%Tr{OPm} , (2)

P denoting the Cauchy principal value. Any physical property of the radiation field is
the expectation value of some operator. By virtue of Eq. (1), the generic quantity of
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interest, (O) =Tr {@ O} can be obtained as a simple average over the set of tomographic
data [2]

N

<O> O %Z O T1:¢1 ’ (3)

N being the total number of measurements. The precision of the tomographic mea-
surement in Eq. (3) can be easily evaluated provided that the corresponding kernel
function satisfies the hypothesis of the central limit theorem [3], which assures that
the partial average over a block of N, data is always Gaussian distributed around the
global average over all blocks. Thus, one evaluates the tomographic precision by divid-
ing the ensemble of data into subensembles, and then calculates the r.m.s. deviation
of subensemble averages with respect to the global one. The estimated value of such a
confidence interval is given by

1 1/2

50 = - {AR?[O]} , (4)

where ARQ[O] is the variance of the kernel over the tomographic probability, that is

AR[0] = /”¢/(hp QWNm@{Ag?/ZMmeR@Nm@F-(a

Following this scheme, the tomographic precision in determining matrix elements has
been discussed in [2,4], whereas the measurements of relevant observables have been
analyzed in [5], also in comparison with the corresponding direct detection.

For O not of trace-class the crude definition (2) of kernel function leads to singular
expressions, and needs a regularization procedure. Tomographic kernels for the matrix
elements in the Fock basis have been firstly calculated in [2], whereas an extension to
data coming from inefficient detectors has been presented in [6]. A factorization method
has been subsequently suggested in [7]. Tomographic kernels for the normally ordered
moments have been evaluated in [8,14], and application to intensity [9] and phase [10]
detection has been analyzed.

Indeed, the tomographic kernel for a given operator O is not unique, as there exist a
large class of null functions F'(x, $), which have zero tomographic average for any state
of radiation field, in formula

—5[%/?wmmem=0- (6)

Adding any number of null functions to a generic kernel results in a new kernel which
has the same tomographic average, and thus is equivalent in the reconstruction of the
given expectation value.

In this paper we describe a method to improve precision in the tomographic mea-
surement of observables, which is based on the existence of null functions. In fact,
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adding null functions to a tomographic kernel does not affect its average, but gener-
ally modifies its variance, which can be effectively reduced by an adaptive optimization
method.
The general procedure will be illustrated in Sec. 2, whereas its application to noise
reduction of tomographic detection of relevant observables will be analyzed in Sec. 3.
2. Adaptive Tomography

Let us consider the following class of functions
For(z,¢) = zF exp{+i (k + 2 + 2n) ¢} n,k=0,1,... (7)

The tomographic average of Fy,x(z,¢) can be written as

Fu= [ [ danta.0) Fuato.) = [ ettt gy, ®

where again (-) denotes the ensemble average Tr{¢-}. By means of the Wilcox decom-
position formula we can write

k! [[k/2]] k—2p (atsak—2p—s)

sky B i(2p+2s—k) ¢
(&a) 2k Z 2vplsl(k — 2p — s)! ¢ ’ ©)

p=0 s=0

where [[z]] denotes the integer part of . Together with the trivial integral

w 0 q even
/@e“f‘ﬁ: 1 q=0 |, (10)
Jo T 2i/q qodd

Egs. (8) and (9) prove that F,; = 0 Vn, k, namely that F,;(z,¢) in Eq. (7) are
tomographic null functions.

In order to optimize the tomographic kernels corresponding to the observables of
interest in this paper we don’t need to consider the whole class of functions, but, as
it, will be clear in the following it is enough to consider the null functions for n = 0,
namely

Fi(z,¢) =2 exp{i(k+2) ¢} k=0,1,... (11)

Let us consider a generic real kernel R[O](z, ¢). By adding M null functions with the
constraint of maintaining the kernel as real, we arrive to the new kernel

M-1 M—1
K[O](mqﬁ) = R[O](ZIZ7¢) + Z ,uka(x=¢) + Z NZFI:(:EQS) ’ (12)
k=0 k=0

where p1;, are complex coefficients. §From the definition of null function, we have K[0] =

R[O], whereas the variance of the new kernel K[O] is given by

AK?[0] = AR?[0] +2{Z,ukuleF +Z,uk]? Fk+zuk } . (13)
kl
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In deriving the above formula one considers the fact that the square of a null function
is again a null function.

The variance (13) of the modified kernel can be minimized with respect to the
coefficients uy, leading to the linear set of equations

> FyFf = ~RIOF . (14)
1

The optimization equations (14) can be written in the matrix form
Aupu=>b. (15)
A being the Hermitean M x M matrix
Ay = FRFF = ohtlexp{i(k — 1) ¢}

and b the complex vector
by = —R[O]F}
The vector b depends both on the kernel to be optimized and on the state ¢ under

examination, whereas the matrix A depends on the state only. The explicit expression
of Ay can be obtained by means of Eq.(9) as follows

min(k,l) _ _
(k+1)! (all=P gk=P)
Ay = ——+ : 1
KT Tk ,):ZO 2v pl(1 — p)!(k — p)! (1o

By substituting Eq. (14) in Eq. (12) and inverting (15) we obtain

M—1 M—1
A’[0] = AR?[0] - AK?[0] =2 > px A =2 ) b (A7), b7 (17)
kl kil

which expresses the decrease of the variance in terms of A and b.

In the case of a complex kernel R[O](x, ¢) (as for the detection of field amplitude)
the equivalence class of kernel functions can be written as

M—-1 M—-1
K[O)(z,¢) = R[O)(x,0) + Y mply(z, ¢) + Y vk (z,9) . (18)

ip and v, being two independent sets of complex coefficients. The noise-figure that we
want to optimized now is

ALK2[0] = % {K[O]‘Q - Kz—[()]r} , (19)

corresponding to the average of the noises for the real and imaginary part of K[O](m ®)
respectively, namely the trace of the covariance matrix [5]. The optimization procedure

is similar to the real case, and is reduced to solving the two linear systems

Au=>b Av=c, (20)
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where c is given by

¢, = —R[O]F, .
Finally, by inverting (20), we arrive to

M—1
A’[0] = ALR2[0] - ALK?[0] = Y [bp (A1), b+ (A7), c;] .

p,q=0

The optimization procedure for a kernel R[O](x, ¢) can be summarized as follows: after
collecting an ensemble of N tomographic data the quantities A and b (and ¢ if needed)
are evaluated as experimental averages. Then, by solving the linear systems (15) or (20)

one obtains the coefficients which are used to build the optimized kernel K[O](z, ).
At this point the same data set is used to average K[O](m ¢) and, upon dividing the
set into subensembles, to evaluate the experimental error, which now is reduced by the
quantity A2[O]/N for a real kernel and A2[O]/N for a complex kernel. In the next
section the noise reduction A2[0] or A%[0] pertaining the kernel for the tomographic
detection of intensity, quadrature and field is evaluated. A Monte Carlo simulation of

the whole optimization procedure is also reported for the case of intensity detection.

3. Noise reduction in tomographic measurements

As a starting point for the present optimization procedure we take the Richter form
of the tomographic kernel for the normally ordered moment [8]

pi(m—n)o Hyim(V21)

R[G‘Tnam](m; ¢) = \/W(n#»m) )

(22)

of intensity Eq.(22) provides the kernel

1
Rlata](z) = 227 — 3 (23)
whereas the vector b needed to optimize the kernel is given by
(al(k+2))
91+k ’

by = —R[ata]F} = 2ak+2e-i(k4+2)0 = (24)

We solved the optimization equations (15) analytically [11] for coherent states, squeezed
vacuum and the ”cat” superposition of coherent states [)) = [2(1+exp{—2|a|?)] /?(|a)+
| — a)) with M up to M = 10 null functions. For all the states here considered, it turns
out that only a single null function Fy(¢) is needed, namely one has

The corresponding reduction of variance is given by

A?fata) = 3 (a') () (26)



190 G.M. D Ariano, M.(x.A. Faris

and can compensate the leading term of the variance of the original Richter kernel [5]
1
AR?[ata] = (An?) + 3 [(a'? a®) + 2(a’a) + 1] , (27)

so that AK?2[ata] becomes much closer to the intrinsic intensity fluctuations (An?) than
the original noise AR?[ata]. In order to appreciate such noise reduction we introduce
the two noise ratios

(28)

For coherent states |a) we have

1 1 1
ong =4/2+ = 24— ) =4/24+ ——, 29
" \/+2<“ “ar) o 2

that is, from an asymptotically linearly increasing function |a| the ratio becomes a
constant dnx ~ /2. Similar expressions are obtained for squeezed vacuum and cat
states: in all cases the noise ratio saturates to a constant, which is dngx = /3/2 for
both the squeezed vacuum and the cat states.

In Fig. 1 we show the results from a Monte Carlo simulation of the tomographic
detection of intensity on coherent states: the noise reduction obtained by using modified
kernel is apparent.

We have applied the optimization procedure also to the quadrature & = %(a +ah),
namely kernel R[Z](z,¢$) = 2z cos¢, and to the field amplitude kernel R[a](z,$) =
2z¢'? | where the optimization vectors b are given by by = 27%*"1(a'**) and b, =
27 %(a'*tk) respectively. In both cases the optimization procedure shows that only the
odd-index null functions Fys11(z,¢) give a contribution to noise reduction. Actually,
the main contribution is obtained by adding the single null function F;(z, ¢), whereas
null functions of higher order only improve the variances by a few percent. The variance
reduction obtained by adding F} (z, ¢) is the same for both observables Z and a and is
given by

1

N%a] = A%fd] = 5 gy (0 (6™ + @+ 5+ Gl ) + 1]

We calculated the noise ratios dz x and da, defined analogously in Eq.(28), for coherent
states, the squeezed vacuum, and cat states, as a function of the mean photon number:
in all cases the noise ratio saturates to a constant value, whichis dax = 1, and dz g = V2
for coherent states and dax ~ \/3/2 and dzx ~ /5/4 for both the squeezed vacuum
and the cat states. Remarkably, for coherent states the heterodyne noise ration is
reached.
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Fig. 1. Tomographic detection of the intensity on coherent states. The simulated experi-
ment has been performed using 20 blocks of 20 data for 20 phases each, for a total number
of N = 8- 10* measurements. We report the tomographic determination as a function of the
actual mean number of photons of the coherent state. On the left we show R[a'a], whereas
on the right we show K[afa]. The noise reduction obtained by using the optimized kernel is
apparent.

4. Conclusions

In this paper we have presented an optimization procedure for the kernel functions
used in tomographic detection of field observables. The application to intensity detec-
tion, quadrature detection, and field amplitude detection results in a large reduction of
tomographic noise. The behaviour of noise for coherent states, squeezed vacuum, and
cat states have been analyzed in details, and the conclusion is that the ratio between
tomographic noise and intrinsic fluctuations of the considered observable saturates to
constant values for increasing energy. We can now say that quantum tomography adds
only a small amount of noise in comparison to the direct detection of a given observ-
able. Notice that in this paper we have considered the tomographic detection without
systematic errors, namely with the reference phase ¢ as a random parameter in [0, 7].
As a matter of fact, a discrete scanning by equally spaced phases will introduce sys-
tematic errors [12,13]. For such uniform scanning, the null function Fy(¢) would have
no effects on all kernels, whereas the other null functions would have reduced effect,
without eliminating the systematic errors.

A systematic application of the present method to the detection of the density matrix
and to generic kernel functions is under study and will be published elsewhere.
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