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192 G.M. D'Ariano, M.G.A. Parisinterest hÔi = Trn%̂ Ôo can be obtained as a simple average over the set of tomographicdata [2] hÔi = R[Ô] = 1N NXi=1 R[Ô](xi; �i) ; (3)N being the total number of measurements. The precision of the tomographic mea-surement in Eq. (3) can be easily evaluated provided that the corresponding kernelfunction satis�es the hypothesis of the central limit theorem [3], which assures thatthe partial average over a block of Nb data is always Gaussian distributed around theglobal average over all blocks. Thus, one evaluates the tomographic precision by divid-ing the ensemble of data into subensembles, and then calculates the r.m.s. deviationof subensemble averages with respect to the global one. The estimated value of such acon�dence interval is given by�O = 1pN n�R2[Ô]o1=2 ; (4)where �R2[Ô] is the variance of the kernel over the tomographic probability, that is�R2[Ô] = Z �0 d�� Z 1�1dx p(x; �) R2[Ô](x; �) ��Z �0 d�� Z 1�1dx p(x; �) R[Ô](x; �)�2 : (5)Following this scheme, the tomographic precision in determining matrix elements hasbeen discussed in [2,4], whereas the measurements of relevant observables have beenanalyzed in [5], also in comparison with the corresponding direct detection.For Ô not of trace-class the crude de�nition (2) of kernel function leads to singularexpressions, and needs a regularization procedure. Tomographic kernels for the matrixelements in the Fock basis have been �rstly calculated in [2], whereas an extension todata coming from ine�cient detectors has been presented in [6]. A factorization methodhas been subsequently suggested in [7]. Tomographic kernels for the normally orderedmoments have been evaluated in [8,14], and application to intensity [9] and phase [10]detection has been analyzed.Indeed, the tomographic kernel for a given operator Ô is not unique, as there exist alarge class of null functions F (x; �), which have zero tomographic average for any stateof radiation �eld, in formulaF = Z �0 d�� Z 1�1dx p(x; �) F (x; �) � 0 : (6)Adding any number of null functions to a generic kernel results in a new kernel whichhas the same tomographic average, and thus is equivalent in the reconstruction of thegiven expectation value.In this paper we describe a method to improve precision in the tomographic mea-surement of observables, which is based on the existence of null functions. In fact,



Optimized tomography of observables 193adding null functions to a tomographic kernel does not a�ect its average, but gener-ally modi�es its variance, which can be e�ectively reduced by an adaptive optimizationmethod.The general procedure will be illustrated in Sec. 2, whereas its application to noisereduction of tomographic detection of relevant observables will be analyzed in Sec. 3.2. Adaptive TomographyLet us consider the following class of functionsFnk(x; �) = xk expf� i (k + 2 + 2n) �g n; k = 0; 1; ::: : (7)The tomographic average of Fnk(x; �) can be written asFnk = Z �0 d�� Z 1�1dx p(x; �) Fnk(x; �) = Z �0 d�� e� i (k+2+2n) � hx̂k�i ; (8)where again h�i denotes the ensemble average Trf%̂ �g. By means of the Wilcox decom-position formula we can writehx̂k�i = k!2k [[k=2]]Xp=0 k�2pXs=0 haysak�2p�si2pp!s!(k � 2p� s)! ei (2p+2s�k) � ; (9)where [[x]] denotes the integer part of x. Together with the trivial integralZ �0 d�� ei q � = 8<: 0 q even1 q = 02i=q q odd ; (10)Eqs. (8) and (9) prove that Fnk � 0 8 n; k, namely that Fnk(x; �) in Eq. (7) aretomographic null functions.In order to optimize the tomographic kernels corresponding to the observables ofinterest in this paper we don't need to consider the whole class of functions, but, asit will be clear in the following it is enough to consider the null functions for n = 0,namely Fk(x; �) = xk expfi (k + 2) �g k = 0; 1; ::: : (11)Let us consider a generic real kernel R[Ô](x; �). By adding M null functions with theconstraint of maintaining the kernel as real, we arrive to the new kernelK[Ô](x; �) = R[Ô](x; �) +M�1Xk=0 �kFk(x; �) +M�1Xk=0 ��kF �k (x; �) ; (12)where �k are complex coe�cients. >From the de�nition of null function, we haveK[Ô] =R[Ô], whereas the variance of the new kernel K[Ô] is given by�K2[Ô] = �R2[Ô] + 2(Xkl �k��l FkF �l +Xk �kR[Ô]Fk +Xk ��kR[Ô]F �k) : (13)



194 G.M. D'Ariano, M.G.A. ParisIn deriving the above formula one considers the fact that the square of a null functionis again a null function.The variance (13) of the modi�ed kernel can be minimized with respect to thecoe�cients �k, leading to the linear set of equationsXl �l FkF �l = �R[Ô]F �k : (14)The optimization equations (14) can be written in the matrix formA � = b : (15)A being the Hermitean M �M matrixAkl = FkF �l � xk+l expfi(k � l)�gand b the complex vector bk = �R[Ô]F �kThe vector b depends both on the kernel to be optimized and on the state %̂ underexamination, whereas the matrix A depends on the state only. The explicit expressionof Akl can be obtained by means of Eq.(9) as followsAkl = (k + l)!2k+l min(k;l)Xp=0 hayl�p ak�pi2p p!(l � p)!(k � p)! : (16)By substituting Eq. (14) in Eq. (12) and inverting (15) we obtain�2[Ô] = �R2[Ô]��K2[Ô] = 2M�1Xkl �k Akl ��l = 2M�1Xkl bk �A�1�kl b�l ; (17)which expresses the decrease of the variance in terms of A and b.In the case of a complex kernel R[Ô](x; �) (as for the detection of �eld amplitude)the equivalence class of kernel functions can be written asK[Ô](x; �) = R[Ô](x; �) +M�1Xp=0 �pFp(x; �) +M�1Xp=0 �kF �p (x; �) : (18)�p and �p being two independent sets of complex coe�cients. The noise-�gure that wewant to optimized now is��K2[Ô] = 12 ����K[Ô]���2 � ���K2[Ô]���2� ; (19)corresponding to the average of the noises for the real and imaginary part of K[Ô](x; �)respectively, namely the trace of the covariance matrix [5]. The optimization procedureis similar to the real case, and is reduced to solving the two linear systemsA � = b A � = c ; (20)



Optimized tomography of observables 195where c is given by cp = �R[Ô]Fp :Finally, by inverting (20), we arrive to�2�[Ô] = ��R2[Ô]���K2[Ô] = M�1Xp;q=0 hbp �A�1�qp b�q + cp �A�1�pq c�qi : (21)The optimization procedure for a kernel R[Ô](x; �) can be summarized as follows: aftercollecting an ensemble of N tomographic data the quantities A and b (and c if needed)are evaluated as experimental averages. Then, by solving the linear systems (15) or (20)one obtains the coe�cients which are used to build the optimized kernel K[Ô](x; �).At this point the same data set is used to average K[Ô](x; �) and, upon dividing theset into subensembles, to evaluate the experimental error, which now is reduced by thequantity �2[Ô]=N for a real kernel and �2�[Ô]=N for a complex kernel. In the nextsection the noise reduction �2[Ô] or �2�[Ô] pertaining the kernel for the tomographicdetection of intensity, quadrature and �eld is evaluated. A Monte Carlo simulation ofthe whole optimization procedure is also reported for the case of intensity detection.3. Noise reduction in tomographic measurementsAs a starting point for the present optimization procedure we take the Richter formof the tomographic kernel for the normally ordered moment [8]R[aynam](x;�) = ei(m�n)� Hn+m(p2 x)p2n+m�n+mn � ; (22)Hn(x) being the Hermite polynomial of order n. In the case of tomographic detectionof intensity Eq.(22) provides the kernelR[aya](x) = 2x2 � 12 ; (23)whereas the vector b needed to optimize the kernel is given bybk = �R[aya]F �k = 2xk+2e�i(k+2)� = hay(k+2)i21+k : (24)We solved the optimization equations (15) analytically [11] for coherent states, squeezedvacuum and the "cat" superposition of coherent states j i = [2(1+expf�2j�j2)]�1=2(j�i+j��i) with M up to M = 10 null functions. For all the states here considered, it turnsout that only a single null function F0(�) is needed, namely one has�0 = b0 �k = 0 ; 8 k � 1 : (25)The corresponding reduction of variance is given by�2[aya] = 12 hay2i ha2i ; (26)



196 G.M. D'Ariano, M.G.A. Parisand can compensate the leading term of the variance of the original Richter kernel [5]�R2[aya] = hd�n2i+ 12 �hay2 a2i+ 2hayai+ 1� ; (27)so that �K2[aya] becomes much closer to the intrinsic intensity 
uctuations hd�n2i thanthe original noise �R2[aya]. In order to appreciate such noise reduction we introducethe two noise ratios�nR =vuut�R2[aya]hd�n2i �nK =vuut�K2[aya]hd�n2i : (28)For coherent states j�i we have�nR =s2 + 12 �j�j2 + 1j�j2� �nK =s2 + 12j�j2 ; (29)that is, from an asymptotically linearly increasing function j�j the ratio becomes aconstant �nK ' p2. Similar expressions are obtained for squeezed vacuum and catstates: in all cases the noise ratio saturates to a constant, which is �nK = p3=2 forboth the squeezed vacuum and the cat states.In Fig. 1 we show the results from a Monte Carlo simulation of the tomographicdetection of intensity on coherent states: the noise reduction obtained by using modi�edkernel is apparent.We have applied the optimization procedure also to the quadrature x̂ = 12 (a + ay),namely kernel R[x̂](x; �) = 2x cos�, and to the �eld amplitude kernel R[a](x; �) =2xei�, where the optimization vectors b are given by bk = 2�k�1ha1+ki and bk =2�kha1+ki respectively. In both cases the optimization procedure shows that only theodd-index null functions F2s+1(x; �) give a contribution to noise reduction. Actually,the main contribution is obtained by adding the single null function F1(x; �), whereasnull functions of higher order only improve the variances by a few percent. The variancereduction obtained by adding F1(x; �) is the same for both observables x̂ and a and isgiven by�2[x̂] = �2�[a] = 12 (1� jhaij2 + 2hayai) �jhaij2�hay2i+ hay2i+ 12 + hayai�+ jha2ij2� :We calculated the noise ratios �xK and �aK , de�ned analogously in Eq.(28), for coherentstates, the squeezed vacuum, and cat states, as a function of the mean photon number:in all cases the noise ratio saturates to a constant value, which is �aK = 1, and �xK = p2for coherent states and �aK ' p3=2 and �xK ' p5=4 for both the squeezed vacuumand the cat states. Remarkably, for coherent states the heterodyne noise ration isreached.
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Fig. 1. Tomographic detection of the intensity on coherent states. The simulated experi-ment has been performed using 20 blocks of 20 data for 20 phases each, for a total numberof N = 8 � 103 measurements. We report the tomographic determination as a function of theactual mean number of photons of the coherent state. On the left we show R[aya], whereason the right we show K[aya]. The noise reduction obtained by using the optimized kernel isapparent. 4. ConclusionsIn this paper we have presented an optimization procedure for the kernel functionsused in tomographic detection of �eld observables. The application to intensity detec-tion, quadrature detection, and �eld amplitude detection results in a large reduction oftomographic noise. The behaviour of noise for coherent states, squeezed vacuum, andcat states have been analyzed in details, and the conclusion is that the ratio betweentomographic noise and intrinsic 
uctuations of the considered observable saturates toconstant values for increasing energy. We can now say that quantum tomography addsonly a small amount of noise in comparison to the direct detection of a given observ-able. Notice that in this paper we have considered the tomographic detection withoutsystematic errors, namely with the reference phase � as a random parameter in [0; �].As a matter of fact, a discrete scanning by equally spaced phases will introduce sys-tematic errors [12,13]. For such uniform scanning, the null function F0(�) would haveno e�ects on all kernels, whereas the other null functions would have reduced e�ect,without eliminating the systematic errors.A systematic application of the present method to the detection of the density matrixand to generic kernel functions is under study and will be published elsewhere.AcknowledgementsWe would thank Dirk -G. Welsch and Mohamed Dakna for valu-able discussions and INFM (contract PRA97-CAT) for �nancial support.
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