
acta physica slovaca vol. 48 No. 3, 185 { 190 June 1998RECONSTRUCTION OF PHOTON DISTRIBUTIONWITH POSITIVITY CONSTRAINTS1K. Banaszek2Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Ho_za 69,PL{00{681 Warszawa, PolandReceived 21 April 1998, accepted 6 May 1998An iterative algorithm for reconstructing the photon distribution from the randomphase homodyne statistics is discussed. This method, derived from the maximum-likelihood approach, yields a positive de�nite estimate for the photon distributionwith bounded statistical errors even if numerical compensation for the detectorimperfection is applied.A fascinating topic studied extensively in quantum optics over past several yearsis the measurement of the quantum state of simple physical systems [1]. The centralquestion is how to reconstruct a family of observables characterizing the quantum statefrom data that can be obtained using a feasible experimental scheme [2]. Most of theinitial work on this topic was based on considerations of ideal, noise-free distributionsof quantum observables that can be obtained only in the limit of an in�nite numberof measurements. However, any realistic experiment yields only a �nite sample ofdata. Recognition of the full importance of this fact has led to the development ofreconstruction techniques speci�cally designed to deal with �nite ensembles of physicalsystems [3{6]. The main motivation for these developments is to optimize the amountof information on the quantum state that can be gained from a realistic measurement,and to distinguish clearly between the actual data obtained from an experiment and apriori assumptions used in the reconstruction scheme.One of ideas that have proved to be fruitful in the �eld of quantum state mea-surement is the principle of maximum-likelihood estimation. In particular, it has beenrecently applied to the reconstruction of the photon distribution from the random phasehomodyne statistics [7]. The essential advantage of the maximum-likelihood techniqueis that physical constraints on the quantities to be determined can be consistently builtinto the reconstruction scheme. This reduces the overall statistical error, and auto-matically suppresses unphysical artifacts generated by standard linear reconstructiontechniques [8], such as negative occupation probabilities of Fock states. However, this isachieved at a signi�cantly higher numerical cost than that required by linear techniques.1Special Issue on Quantum Optics and Quantum Information2E-mail address: Konrad.Banaszek@fuw.edu.pl0323-0465/96 c
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186 K. BanaszekBefore we pass to the detailed discussion of the maximum-likelihood method, letus demonstrate its capability to improve the accuracy of the reconstruction. Fig. 1depicts the �nal result of processing Monte Carlo simulated homodyne data for a co-herent state and a squeezed vacuum state; both states have the average photon numberequal to one. We have assumed imperfect photodetection characterized by a quantume�ciency � = 85%, which is numerically compensated in the reconstruction scheme.It is seen that the maximum-likelihood estimate, marked with dots, is much closer tothe exact distribution than probabilities obtained using the standard linear method ofpattern functions. Moreover, purely arti�cial nonzero values for large photon numberscompletely disappear when the maximum-likelihood method is applied.So, how does the maximum-likelihood method work, and what algorithm providesthe bounded, positive de�nite estimate for the photon distribution? Let us start thediscussion from considering the raw data recorded in an experiment. A single experi-mental run of a random phase homodyne setup yields a certain value of the quadratureobservable q. This data, after an appropriate discretization, is recorded as an event ina �th bin. The probability of this event p� depends linearly on the photon distributionf%ng: p�(f%ng) =Xn A�n%n: (1)For a �xed n, the set of coe�cients A�n describes the homodyne statistics for the nthFock state.Repeating the measurement N times yields a frequency histogram fkng specifyingin how many runs the outcome was found in a �th bin. These incomplete, �nite dataare the source of information on the photon distribution. The question is, how thisinformation can be retrieved. The answer given by the maximum-likelihood estimationmethod is to pick up the photon distribution for which it was the most likely to obtainthe actual result of the performed series of measurements. Mathematically, this is doneby the maximization of the log-likelihood function [7]:L(f%ng) =X� k� ln p�(f%ng) �NXn %n; (2)where N = P� k� is the total number of experimental runs. In the above formula, themethod of Lagrange multipliers has been used to satisfy the condition that the sum of allprobabilities is equal to one. As the estimate for f%ng is supposed to describe a possiblephysical situation, the search for the maximum likelihood is a priori restricted to themanifold of real probability distributions. Geometrically, this manifold is a simplexde�ned by the set of inequalities:%n � 0; n = 0; 1; 2; : : :Xn %n = 1:Thus, the physical constraints on the reconstructed quantities are naturally incorpo-rated in the maximum-likelihood reconstruction scheme.
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Fig. 1. Reconstruction of the photon distribution from Monte Carlo homodyne data. The barsdepict exact photon distributions for a coherent state (top) and a squeezed vacuum state (bot-tom), both the states with the average photon number equal to one. For each of these states,N = 105 homodyne events were simulated. The events were divided into 100 bins covering theinterval �5 � q � 5. The simulated data were used to reconstruct the photon distributionsusing the maximum-likelihood method (�) and the linear pattern function technique (}). Inthe latter case, some of reconstructed %n's are beyond the scale of the graphs. Note that forsmall n, Fock state occupation probabilities reconstructed using both the methods are veryclose, and the symbols � and } overlap. The maximum-likelihood estimates were obtainedfrom 8000 iterations of the EM algorithm, starting from a uniform distribution for 0 � n � 20.



188 K. BanaszekThe reconstruction of the photon distribution formulated in the maximum-likelihoodapproach belongs a very wide class of linear inverse problems with positivity con-straints [9]. This class encompasses a variety of problems appearing in as diverse �elds asmedical imaging and �nancial markets. As discussed by Vardi and Lee [9], a straight-forward method for solving these problems is provided by the so-called expectation-maximization (EM) algorithm. In the following, we will present a heuristic derivationof this algorithm applied the reconstruction of the photon distribution.Let us consider the necessary condition for the maximum of the function L(f%ng).The partial derivatives of the log-likelihood function are given by:@L@%m = X� k� A�mp�(f%ng) �N (3)For each m, the partial derivative @L=@%m must vanish unless the maximum is locatedon a face of the simplex for which %m = 0. Thus we have that either @L=@%m = 0 or%m = 0. These two possibilities can be written jointly as%m X� k� A�mp�(f%ng) �N! = 0; m = 0; 1; 2; : : : : (4)It is convenient to rearrange this condition to the form which de�nes the maximum-likelihood estimate as a �xed point of a certain nonlinear transformation. Such a formimmediately suggests an iterative procedure for �nding the �xed point by a multipleapplication of the derived transformation:%(i+1)m = %(i)m X� k�N A�mp�(f%(i)n g) ; m = 0; 1; 2; : : : (5)where upper indices in parentheses denote consecutive approximations for the photondistribution.In fact, Eq. (5) provides a ready-to-use iterative method for reconstructing thephoton distribution, which is a special case of the EM algorithm [9]. Given an approxi-mation of the photon distribution f%(i)n g, the next one is simply evaluated according tothe right hand side of Eq. (5). When su�cient mathematical conditions are ful�lled,this procedure converges to the maximum-likelihood solution. Thus, the complex prob-lem of constrained multidimensional optimization is e�ectively solved with the help of asimple iterative algorithm. The maximum-likelihood estimates depicted in Fig. 1 wereobtained from 8000 iterations of this algorithm. The initial distributions were assumedto be uniform for photon numbers n � 20 and equal to zero above this cut-o� value.An essential yet delicate matter in quantum state measurements is the role played bythe detection e�ciency. The impact of imperfect detection on the maximum-likelihoodreconstruction scheme can be understood using a simple intuitive argument. Accord-ing to Eq. (1), the homodyne statistics is a sum of components generated by the Fockstates jni, with the weights given by the appropriate occupation probabilities %n. Theshape of each component is described by the set of coe�cients A�n, with n treated as
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Fig. 2. Components of the random phase homodyne statistics generated by di�erent Fockstates, for decreasing e�ciency � of the homodyne detector. The homodyne statistics of anarbitrary quantum state is a sum of these components with weights de�ned by the photondistribution f%ng.a �xed parameter. Fig. 2 depicts several of these components for di�erent values of thedetector e�ciency �. In the case of unit e�ciency, the contribution originating fromthe Fock state jni is given by the squared modulus of the nth energy eigenfunctionin the position representation, and exhibits characteristic oscillations. The importantpoint is that each of these contributions has a unique location of maxima and minima.Thus, each number state leaves a speci�c, easily distinguishable trace in the homodynestatistics. Roughly speaking, this is what allows the maximum-likelihood method toresolve clearly the contributions from di�erent number states. When the detection isimperfect, homodyne statistics generated by Fock states become blurred, and oscilla-tions disappear. This makes the shape of the contributions from higher Fock states quitesimilar. Consequently, it becomes more di�cult for the maximum-likelihood methodto resolve components generated by di�erent number states. Of course, this intuitive



190 K. Banaszekargument should be supported by quantitative considerations. Mathematically, the ef-fect of imperfect detection is re
ected by the shape of the log-likelihood function L.For low detection e�ciency, it becomes 
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