
acta physica slovaca vol. 48 No. 3, 157 { 162 June 1998REMARKS ON SEARCH ALGORITHMS AND NONLINEARITY1M. CzachorKatedra Fizyki Teoretycznej i Metod MatematycznychPolitechnika Gda�nska, ul. Narutowicza 11/12, 80-952 Gda�nsk, PolandReceived 12 May 1998, accepted 20 May 1998Nonlinear data search algorithms proposed recently by Abrams and Lloyd [3] arefast but make an explicit use of an arbitrarily fast unphysical transfer of informa-tion within a quantum computer. It is shown that the algorithms can be describedalso in a fully local formalism. 1. IntroductionNonlinearly evolving quantum computer is a device which, in spite of its purelyhypothetical status, is quite interesting for many reasons. First of all, if human or ani-mal brains make use of some sort of quantum computation, a possibility mentioned byPenrose [1] and considered implicitly in the rarely mentioned but pioneering works ofOrlov [2], it cannot be excluded that acts of self-observation lead to nonlinear feedback-type e�ects. Second, the domain of quantum algorithms is an interesting laboratoryfor testing the concepts and methods developed for the purposes of nonlinear quantummechanics. The problem which is particularly relevant in this context is the questionof how to deal with nonlinearly evolving subsystems of a quantum computer. Quan-tum computers cannot work without entanglement. To combine entanglement withnonlinear evolution one has to proceed very carefully since it is very easy to produceunphysical e�ects if one does it wrong. There exists a kind of canonical approach tononlinearly evolving entangled states but the subject does not seem to be well known tothe general audience. The purpose of this paper is to discuss from this perspective twodata search algorithms proposed by Abrams and Lloyd [3]. The original version of thealgorithms assumed that nonlinear evolution is applied locally to a single-qubit system,but the approach used by the Authors is known to generate unphysical nonlocal e�ects.The version I will describe is free of unphysical inuences between di�erent parts of thecomputer but maintains the essential properties of the algorithms. To make the discus-sion concrete I use simple albeit somewhat arti�cial examples of nonlinear Schr�odingerequations.1Special Issue on Quantum Optics and Quantum Information0323-0465/96 c Institute of Physics, SAS, Bratislava, Slovakia 157



158 M. Czachor2. First algorithmTo make the paper self-contained I will �rst outline the algorithms. Consider a set Xcontaining 2n elements. We are interested in �nding out whether there exist elementsx 2 X which possess some given property. This is equivalent to de�ning a functionf : X ! f0; 1g and checking whether there exist x 2 X satisfying f(x) = 1.Step 1. We begin with the state j [0]i = j01; : : : ; 0nij0i; where the �rst n qubitscorrespond to the input and the (n+ 1)-th \ag" qubit represents the output, and theunitary transformationU j0i = 1p2�j0i+ j1i�; U j1i = 1p2�� j0i+ j1i�:Step 2. j [1]i = U 
 : : :
 U| {z }n 
1j [0]i = 1p2n 1Xi1:::in=0 ji1; : : : ; inij0i:The input consists now of a uniform superposition of all the numbers 0 � x � 2n � 1.Step 3. j [2]i = F j [1] = 1p2n 1Xi1:::in=0 ji1; : : : ; inijf(i1; : : : ; in)i (1)where F is some unitary transformation (an oracle) that transforms the input into anoutput; f(i1; : : : ; in) equals 1 or 0.Step 4. Denote by s the number of occurrences of f(i1; : : : ; in) = 1.j [3]i = U�1 
 : : :
 U�1| {z }n 
1j [2]i = j01; : : : ; 0ni�2n � s2n j0i+ s2n j1i� (2)+ 12n Xfj1:::jng6=f01:::0ng 1Xi1:::in=0(�1)(i1+1)j1+:::+(in+1)jn jj1; : : : ; jnijf(i1; : : : ; in)i:The probability of �nding the input in the state j01; : : : ; 0ni is P (s) = �(2n � s)2 +s2�=22n: P (s) has a minimum in s = 2n�1. The minimal probability of �nding theinput qubits in j01; : : : ; 0ni is therefore P (2n�1) = 1=2 and it occurs if s is exactlyone-half of 2n. Probability of �nding f(i1; : : : ; in) = 1 is s=2n.Step 5. We want to distinguish between the cases s = 0 and s > 0 for small s. To doso we are going to use a nonlinear dynamics that does not change the \North Pole" j0ibut any superposition of j0i with j1i drags to the \South". The e�ect is called, afterMielnik [4], the mobility phenomenon.3. Mobility frequencyAbrams and Lloyd assume that the nonlinear evolution is applied only to the agqubit and therefore let us �rst concentrate on a single-qubit system. We shall experi-ment with di�erent nonlinear equations in order to get some feeling of possible scalesof the e�ects. The �rst natural try is the equationij _ i = ��h jAj ih j i � h0jAj0i�Aj i (3)



Nonlinear data search algorithms . . . 159with A = ��j0ih0j � j1ih1j�+p1� �2�j0ih1j+ j1ih0j� and � small but nonzero. Thesolution of (3) for normalized j 0i isj ti = 1 cos h��h 0jAj 0i � h0jAj0i�tij 0i � iA sin h��h 0jAj 0i � h0jAj0i�tij 0i:Assume j 0i = 2n � sp(2n � s)2 + s2 j0i+ sp(2n � s)2 + s2 j1i:The corresponding mobility frequency is!� = ��2s2� + 2(2n � s)sp1� �2(2n � s)2 + s2 ;which for 2n � s gives approximately !� � �s=2n�1: This makes the algorithm expo-nentially slow.Let us try therefore another nonlinearity:ij _ i = � tanh� h j ih jAj i � 1h0jAj0i�Aj i: (4)We �nd!0� = � tanh h 2�s2 � 2(2n � s)sp1� �2(2n � s)2�2 � s2�2 + (2n � s)s�p1� �2 i � �� tanh h s2n�1�2 i:For � of the order of 1=2(n�1)=2 one can obtain a reasonable mobility frequency but thisrequires an exponentially precise control over h0jAj0i.4. Evolution of the entire quantum computerThe discussion given above applies to a single-qubit (ag) subsystem. The entiresystem that is involved consists of n+1 systems and therefore we arrive at the delicateproblem of extending a one-particle nonlinear dynamics to more particles.The description chosen by Abrams and Lloyd uses the Weinberg prescription. Sev-eral comments are in place here. First, it is known that the Weinberg formulationimplies a \faster-than-light telegraph". The version of the telegraph especially relevantin this context is the one that is based on the mobility e�ect [5]. It is therefore not cleara priori to what extent the fact that the algorithm is fast depends on the presence offaster than light e�ects. Second, the Weinberg prescription is meant to describe systemsthat do not interact. We have two options now. Either we indeed want to keep theag qubit noninteracting with the input (during the nonlinear evolution) or we allow anonlinear evolution which involves the entire quantum computer. If we decide on the�rst option we should use the Polchinski-type description which eliminates the unphys-ical nonlocal inuences, but the nonlinear evolution of the ag qubit is determined byits reduced density matrix [6 - 11]. This is the reduced density matrix obtained by the



160 M. Czachorreduction over all 2n states of the input subsystem. Physically this kind of evolutionoccurs if the nonlinearity is active independently of the state of the n input qubits.But the very idea of the algorithm is to take advantage of the fact that probabilityof �nding the entire input in the ground state exceeds 1/2. It is also assumed thatone can turn the nonlinearity on and o�. It is legitimate, therefore, to contemplatethe situation where the nonlinearity is turned on only provided all the input detectorssignal 0.At this point one might be tempted to act as follows: Take as an initial condition forour nonlinear evolution the product state obtained by projecting the entire entangledstate on j01; : : : ; 0ni. The problem with this kind of approach is that the \projectionpostulate" of linear quantum mechanics does not have an immediate extension to anonlinear dynamics. There are many reasons for this and the problem is discussed indetail elsewhere [10, 12]. At this moment it is su�cient to know that it is safer to avoidarguments based on the projection postulate if nonlinearity is involved.I propose an alternative formulation. Assume that indeed the nonlinearity is acti-vated only if the input is in the ground state. In principle there is no problem with thisbecause all the di�erent combinations of 0's and 1's correspond to orthogonal vectors inthe 2n-dimensional Hilbert space of the input and there exists, in principle, an analyzerthat separates the beam of input particles into several di�erent sub-beams. We canplace our hypothetical nonlinear medium in front of this output of the analyzer thatcorresponds to the qubinary zero.Let us introduce two projectors:P (n) = j01; : : : ; 0nih01; : : : ; 0nj 
 1; P = 1(n) 
 j0ih0j:Denote by j	i the state of the entire quantum computer, B = 1(n) 
 A, and considerthe following nonlinear equationij _	i = � tanh� h	jP (n)j	ih	jP (n)Bj	i � h	jP (n)P j	ih	jP (n)PBP j	i�P (n)Bj	i: (5)(5) can be regarded as an appropriate modi�cation of (4). Both expressions occurringunder tanh are time-independent. We know that 	01:::0n0 = (2n � s)=2n, 	01:::0n1 =s=2n and therefore the mobility frequency is identical to the one obtained for a singlequbit description. The explicit evolution of the entire entangled state of the quantumcomputer is �nallyj	ti = �1� P (n) + P (n) cos!0�t� iP (n)B sin!0�t�j	0i:The dependence on P (n) reects our experimental con�guration: By changing the pro-jector we change the dynamics since we simply put the nonlinear device in a di�erentposition with respect to the �rst analyzer.It may be instructive to discuss what would have happened if we had not assumedthat the nonlinearity is somehow activated in a state dependent way. We thereforeassume that, during the nonlinear evolution, the ag system does not interact with the



Nonlinear data search algorithms . . . 161input one. For this reason we cannot have any dependence on a choice of basis madein the input subsystem, and we use the Polchinski-type extension of (4):ij _	i = � tanh� h	j	ih	jBj	i � h	jP j	ih	jPBP j	i�Bj	i:The solution for the entangled state of our quantum computer is nowj	ti = �1(n+1) cos ~!�t� iB sin ~!�t�j	0i;where ~!� has to be determined. To do so we �rst note that the reduced density matrixof the ag subsystem isTr1:::nj	ih	j = 2n � s2n j0ih0j+ s2n j1ih1j: (6)The ag subsystem is therefore in a fully mixed state and~!� = � tanh� s(2n�1 � s)�� � � tanh� s2n�1��� !0�so that the algorithm is slower than our previous try.Returning to the question of exponential precision we should note that the nonlin-earity we have chosen leads to periodic dynamics and for this reason has a vanishingLyapunov exponent. One could invent a nonlinear equation for a two-dimensional dy-namics with a positive exponent (cf. [13, 14]) but calculations might be less trivial.5. Second algorithmWe will not follow the original Abrams-Lloyd version but directly describe the mod-i�cation we have proposed in [15]. The �rst three steps of the algorithm are identical tothe previous ones but in the fourth step we shall use the nonlinear Schr�odinger equationij _ i = � tanh��h jA � �1j i�Aj i;where � is very large (say, � � 2n), and �, A are as before. For j i = j0i the expressionunder tanh vanishes. For a small admixture of j1i and su�ciently large � the mobilitywith a nonzero frequency begins and an arbitrarily small amount of j1i can be su�cientlyampli�ed. The Polchinski-type local extension of the dynamics to the entire quantumcomputer is ij _	i = � tanh��h	j1(n) 
 (A� �1)j	i�1(n) 
Aj	i:The (n+ 1)-particle solution isj	ti = �1(n+1) cos!t� i1(n) 
A sin!t�j	0i;



162 M. Czachorwith ! = � tanh��Tr�(A� �1)� = � tanh� ��s2n�1�:Here � given by (6) is the reduced density matrix of the ag system after the �rst threesteps of the original Abrams-Lloyd algorithm.The average of �3 = j0ih0j � j1ih1j at the ag subsystem ish�3i = h	tj1(n) 
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