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Nonlinear data search algorithms proposed recently by Abrams and Lloyd [3] are
fast but make an explicit use of an arbitrarily fast unphysical transfer of informa-
tion within a quantum computer. It is shown that the algorithms can be described
also in a fully local formalism.

1. Introduction

Nonlinearly evolving quantum computer is a device which, in spite of its purely
hypothetical status, is quite interesting for many reasons. First of all, if human or ani-
mal brains make use of some sort of quantum computation, a possibility mentioned by
Penrose [1] and considered implicitly in the rarely mentioned but pioneering works of
Orlov [2], it cannot be excluded that acts of self-observation lead to nonlinear feedback-
type effects. Second, the domain of quantum algorithms is an interesting laboratory
for testing the concepts and methods developed for the purposes of nonlinear quantum
mechanics. The problem which is particularly relevant in this context is the question
of how to deal with nonlinearly evolving subsystems of a quantum computer. Quan-
tum computers cannot work without entanglement. To combine entanglement with
nonlinear evolution one has to proceed very carefully since it is very easy to produce
unphysical effects if one does it wrong. There exists a kind of canonical approach to
nonlinearly evolving entangled states but the subject does not seem to be well known to
the general audience. The purpose of this paper is to discuss from this perspective two
data search algorithms proposed by Abrams and Lloyd [3]. The original version of the
algorithms assumed that nonlinear evolution is applied locally to a single-qubit system,
but the approach used by the Authors is known to generate unphysical nonlocal effects.
The version I will describe is free of unphysical influences between different parts of the
computer but maintains the essential properties of the algorithms. To make the discus-
sion concrete I use simple albeit somewhat artificial examples of nonlinear Schrédinger
equations.
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2. First algorithm

To make the paper self-contained I will first outline the algorithms. Consider a set X
containing 2" elements. We are interested in finding out whether there exist elements
x € X which possess some given property. This is equivalent to defining a function
f: X —{0,1} and checking whether there exist € X satisfying f(z) = 1.

Step 1. We begin with the state [¢[0]) = [01,...,0,)|0), where the first n qubits
correspond to the input and the (n + 1)-th “flag” qubit represents the output, and the
unitary transformation
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The input consists now of a uniform superposition of all the numbers 0 < z < 2" — 1.

Step 3.
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where F' is some unitary transformation (an oracle) that transforms the input into an
output; f(i1,...,i,) equals 1 or 0.

Step 4. Denote by s the number of occurrences of f(i1,...,i,) = 1.
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The probability of finding the input in the state |0y,...,0,) is P(s) = ((2" — s)* +
s?)/2*". P(s) has a minimum in s = 2"~'. The minimal probability of finding the
input qubits in |0q,...,0,) is therefore P(2"~') = 1/2 and it occurs if s is exactly
one-half of 2. Probability of finding f(i1,...,i,) = 11is s/2".

Step 5. We want to distinguish between the cases s = 0 and s > 0 for small s. To do
so we are going to use a nonlinear dynamics that does not change the “North Pole” |0)
but any superposition of |0) with |1) drags to the “South”. The effect is called, after

Mielnik [4], the mobility phenomenon.

3. Mobility frequency

Abrams and Lloyd assume that the nonlinear evolution is applied only to the flag
qubit and therefore let us first concentrate on a single-qubit system. We shall experi-
ment with different nonlinear equations in order to get some feeling of possible scales
of the effects. The first natural try is the equation
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with A = n(|0)<0\ - |1)<1\) + /I n?(\o><1| + \1><0|) and 7 small but nonzero. The

solution of (3) for normalized |i) is

) = 1 cos [¢( (ol Altro) — (0]4]0) )#] [go) — i 4 sin [¢( {shol Alho) — (0]4]0) )¢] o).
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The corresponding mobility frequency is

—252 +2(2" — 8)s/1 — 1?2
(27 —5)2 + 52 ’
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which for 2" >> s gives approximately w. ~ es/2""!. This makes the algorithm expo-
nentially slow.
Let us try therefore another nonlinearity:
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We find
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For 7 of the order of 1/2("~1)/2 one can obtain a reasonable mobility frequency but this
requires an exponentially precise control over (0|A|0).

4. Evolution of the entire quantum computer

The discussion given above applies to a single-qubit (flag) subsystem. The entire
system that is involved consists of n + 1 systems and therefore we arrive at the delicate
problem of extending a one-particle nonlinear dynamics to more particles.

The description chosen by Abrams and Lloyd uses the Weinberg prescription. Sev-
eral comments are in place here. First, it is known that the Weinberg formulation
implies a “faster-than-light telegraph”. The version of the telegraph especially relevant
in this context is the one that is based on the mobility effect [5]. It is therefore not clear
a priori to what extent the fact that the algorithm is fast depends on the presence of
faster than light effects. Second, the Weinberg prescription is meant to describe systems
that do not interact. We have two options now. Either we indeed want to keep the
flag qubit noninteracting with the input (during the nonlinear evolution) or we allow a
nonlinear evolution which involves the entire quantum computer. If we decide on the
first option we should use the Polchinski-type description which eliminates the unphys-
ical nonlocal influences, but the nonlinear evolution of the flag qubit is determined by
its reduced density matrix [6 - 11]. This is the reduced density matrix obtained by the
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reduction over all 2" states of the input subsystem. Physically this kind of evolution
occurs if the nonlinearity is active independently of the state of the n input qubits.

But the very idea of the algorithm is to take advantage of the fact that probability
of finding the entire input in the ground state exceeds 1/2. It is also assumed that
one can turn the nonlinearity on and off. It is legitimate, therefore, to contemplate
the situation where the nonlinearity is turned on only provided all the input detectors
signal 0.

At this point one might be tempted to act as follows: Take as an initial condition for
our nonlinear evolution the product state obtained by projecting the entire entangled
state on |01,...,0,). The problem with this kind of approach is that the “projection
postulate” of linear quantum mechanics does not have an immediate extension to a
nonlinear dynamics. There are many reasons for this and the problem is discussed in
detail elsewhere [10, 12]. At this moment it is sufficient to know that it is safer to avoid
arguments based on the projection postulate if nonlinearity is involved.

I propose an alternative formulation. Assume that indeed the nonlinearity is acti-
vated only if the input is in the ground state. In principle there is no problem with this
because all the different combinations of 0’s and 1’s correspond to orthogonal vectors in
the 2"-dimensional Hilbert space of the input and there exists, in principle, an analyzer
that separates the beam of input particles into several different sub-beams. We can
place our hypothetical nonlinear medium in front of this output of the analyzer that
corresponds to the qubinary zero.

Let us introduce two projectors:

PM = 10y,...,0,)(01,...,0,]®1, P =1 & |0)(0].

Denote by |¥) the state of the entire quantum computer, B = 1" & A, and consider
the following nonlinear equation

. TP ¥ ¥ p(n) p|o
z|\Il):etanh(< |(n)‘ ) _{ ‘(n) %) )P(”)B\\Il). (5)
(U|P(™B|W)  (¥|P() PBP|¥)

(5) can be regarded as an appropriate modification of (4). Both expressions occurring
under tanh are time-independent. We know that ¥y, o,0 = (2" — 5)/2", Uy,. 0,1 =
s/2™ and therefore the mobility frequency is identical to the one obtained for a single
qubit description. The explicit evolution of the entire entangled state of the quantum
computer is finally

W) = (1 ~ P 4 P cosu't — iPMB sinwgt) To).

The dependence on P(™ reflects our experimental configuration: By changing the pro-
jector we change the dynamics since we simply put the nonlinear device in a different
position with respect to the first analyzer.

It may be instructive to discuss what would have happened if we had not assumed
that the nonlinearity is somehow activated in a state dependent way. We therefore
assume that, during the nonlinear evolution, the flag system does not interact with the
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input one. For this reason we cannot have any dependence on a choice of basis made
in the input subsystem, and we use the Polchinski-type extension of (4):

(w|w) (v|P|w)

i|¥) = etanh ((\IJ|B|\I/> - (\I!\PBP\\I!))B‘\IO'

The solution for the entangled state of our quantum computer is now
w,) = (1<”+U cos Bt — iBB sinGJFt)|\Ilg>,

where @, has to be determined. To do so we first note that the reduced density matrix
of the flag subsystem is

2" — s s

S 0)(0]+ 2 [1) (1. (6)

Tre,.a[O)(0] = :

The flag subsystem is therefore in a fully mixed state and

s
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so that the algorithm is slower than our previous try.

Returning to the question of exponential precision we should note that the nonlin-
earity we have chosen leads to periodic dynamics and for this reason has a vanishing
Lyapunov exponent. One could invent a nonlinear equation for a two-dimensional dy-
namics with a positive exponent (cf. [13, 14]) but calculations might be less trivial.
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5. Second algorithm

We will not follow the original Abrams-Lloyd version but directly describe the mod-
ification we have proposed in [15]. The first three steps of the algorithm are identical to
the previous ones but in the fourth step we shall use the nonlinear Schrédinger equation

i19) = etanh (a(]A - 71/6)) Al),

where « is very large (say, a =~ 2™), and ), A are as before. For |¢)) = |0) the expression
under tanh vanishes. For a small admixture of |1) and sufficiently large a the mobility
with a nonzero frequency begins and an arbitrarily small amount of |1) can be sufficiently
amplified. The Polchinski-type local extension of the dynamics to the entire quantum
computer is

il¥) = etanh (a<xm1(”> ® (A — 7;1)\\1:))1(") ® A|).
The (n + 1)-particle solution is

Uy) = (1(”“) coswt — i1 @ Asin wt) |Uy),
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with

ans
yr)
Here p given by (6) is the reduced density matrix of the flag system after the first three
steps of the original Abrams-Lloyd algorithm.

The average of o3 = |0)(0] — |1)(1] at the flag subsystem is

w = etanh (aTrp(A - nl)) = etanh (

2n71 _ s 221171 _ s )
<(7'3> = <\Pf|1(n) ®(Tq|\Pf> = W(‘OSQW?&'{‘QT} ?Sin wt.
For s = 0 the average is constant in time and equals 1. For s = 1, n? ~ 0, and

sufficiently large a it oscillates with w = €. For t ~ m/(2¢) the average is (03) ~ —1,
which means that almost all flag 0’s in (1) have been changed to 1’s.

This kind of algorithm cannot distinguish between different nonzero values of s,
but can discriminate between s = 0 and s # 0 in a way that is insensitive to small
fluctuations of the parameters.
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