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We provide some new properties of entanglement of formation. In particular, we
obtain an additive lower bound for entanglement of formation. Subsequently we
develop the concept of local orthogonality of ensembles which leads to the mixed
states with distillable entanglement equal to entanglement of formation. Then we
consider thermodynamical analogies within the entanglement processing domain.
Especially, we exploit analogy entanglement — energy. In this scheme the total
entanglement i.e. the amount of singlet pairs needed for local preparation of a
state corresponds to internal energy while the free entanglement defined as the
number of pairs which can be recovered from the state (distillable entanglement)
is the counterpart of free energy. In particular, it leads us to the question about
“temperature” of entanglement. We also propose a scheme of the search of repre-
sentative state for given entanglement which can be viewed as an analogue of the
Jaynes maximum entropy principle.

1. Introduction

Quantum entanglement discovered by Einstein, Podolsky, Rosen (EPR) [1] and
Schrodinger [2], is one of the most interesting quantum phenomena leading to profoundly
nonclassical effects revealed by contemporary physics [4, 5, 6, 7, 8]. The entanglement
of pure quantum state of composite system is defined as impossibility of factorisation
of the state. The simplest and, at the same time, the paradigmatic example of such a
state is the singlet state of two spin—% particles labelled by A and B

. %uﬂ/‘u)n—unmm), (1)

ISpecial Issue on Quantum Optics and Quantum Information
2E-mail address: pawel@mifgate.pg.gda.pl

3E-mail address: fizrh@univ.gda.pl

4E-mail address: michalh@Qiftia.univ.gda.pl

0323-0465/96 (© Institute of Physics, SAS, Bratislava, Slovakia 141



142 I'. Horodeckl1 et al.

or any state which can be obtained from the above one by means of product unitary
transformation. The properties of the states of this kind are responsible for profoundly
nonclassical phenomena like quantum cryptography via Bell inequalities [4], quantum
dense coding [5], quantum teleportation [6], quantum computation [7] and the reduction
of communication complexity [8]. In real world we usually meet physical systems which
interact with environment getting then entangled with it. This process, changing the
state of our system from pure to mixed one, described by density matrix, decreases the
internal entanglement of the system sometimes even destroying it completely. Thus one
usually faces the following undesired process

O ) Y| — oan (2)

Some time ago it has been shown [9, 10, 11] that there are cases when the system
in a mixed state pap still possesses some residual entanglement and physical effects
connected with this fact have been discovered [10, 11, 12]. The density matrices of
systems possessing residual entanglement are called inseparable. Mathematically, the
state pap defined on the space H = Ha ® Hp is called inseparable (separable) if it
cannot (can) be represented as a convex combination of product states

K

0aB = Y pith ® 0y (3)
im1

where ¢%, and g% are states of the subsystems and ZZK:] p; = 1. If the dimensions of
the spaces H 4, Hp are finite then the states g; and p; can be taken to be pure and one
can consider only the case K < (dim H 4 dim Hg)? [13, 14].

Let us now consider the paradigmatic situation of two observers Alice and Bob
being in two distant laboratories. There is a source of pairs of particles between two
laboratories which sends one member of any pair to each of them. Alice and Bob
are allowed to perform any quantum operations on particles in their laboratories and
communicate with each other via some classical channel (say telephone). Usually they
are also allowed to discard some particles. We shall refer to all those operations as to
LQCC (local quantum operations and classical communication). As Alice and Bob can
only interact classically, then some operations are certainly unavailable for them. For
example if they share a pair of the particles which are unentangled, it is impossible to
entangle those particles with each other. Now the basic task is to find the best Alice
and Bob can do under the above restrictions to reverse somehow the process (2). This
leads to the recent idea of distillation (or purification) of noisy entanglement via LQCC
[15, 16]. In this context, there have been recently some attempts to build an appealing
analogy between the domain of entanglement processing and thermodynamics [17, 18,
14, 19]. In this paper we develop the thermodynamics-like approach to entanglement.
Especially, we exploit the analogy entanglement — energy. The paper is organized as
follows. In Sections 1 and 2 we describe entanglement measures and the process of
distillation of entanglement. In Section 3 we show that entanglement of formation may
not change under the highly irreversible twirling operation. We also show that there
exist mixed states for which the process of local preparing from singlet pairs is reversible
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i.e. the number of the used pairs can be completely recovered by means of quantum local
operations and classical communication. This involves the notion of local orthogonality.
In Section 4 we describe the analogy entanglement — energy. Then we discuss in this
context the known results on entanglement processing. In Section 5 we propose a scheme
of obtaining the representative state for given value of entanglement. The scheme can
be viewed as some analogue of the Jaynes principle of maximum entropy.

2. Entanglement measures

In this section we briefly review some of the recently introduced entanglement mea-
sures [25, 22, 14]. Namely there was a natural problem how to quantify the entanglement
of any quantum state p4p of composite system. Referring to the paradigmatic situation
of two distant laboratories, there arise natural postulates which must be satisfied by
any measure of entanglement E [22, 14, 17]

(i) E(pap) > 0 and E(oap) = 0 if pap is separable,

(ii) E(oap) is invariant under the product unitary operations Uy ® U,

(iii) E(pap) cannot be increased by any LQCC operation.

The last axiom should be understood in the stronger averaged entanglement sense
i.e. that if we have g%z being outputs of some LQCC operation of required property
with probabilities p; then Y-, p; E(0% 5) < E(0ap). We assume here that the considered
operation is trace preserving, i.e. it does not involve postselection. In fact, if Alice and
Bob selected the subensemble of pairs corresponding some given outcome, then the
density matrix of subensemble could be more entangled than the initial state. However,
the total average entanglement cannot exceed the initial one. If one adds the condition
that

(iv) entanglement of n singlet pairs (1) is equal to n, then one gets that the measure
should satisfy [17]

E(Wap)(¥ap)) = STra(¥ap)(Lapl). S(0) = ~Trologo, (4)

being then additive on pure states (in this paper we use base-2 logarithms). Here S(o)
is the von Neumann entropy. In general, if we label the Alice and Bob particles by A;,
B; then the additivity of E is defined as:

E(QA1B1 ® 0A,By ¥ ... @ QAan) = E(QA131) + E(QAQB2) + .+ E(QA"B,,,) (5)

There are known two measures satisfying all four conditions (i-vi) recalled above. It is
not known however whether they are additive. However the condition (iv) automatically
guarantees that they are additive on pure states. First one is the entanglement of
formation Ey [25] which must be first defined on the quantum ensemble £ = {p;, |¥;)}
as

Ef(£) =Y piS(Tra(|:)(¥;))). (6)
Than the entanglement of formation of state p4p is defined as

Ef(ean) = min By (£), ™)
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where minimum is taken over all ensembles realising the state p4p. The above function
has some interesting properties, in particular the analytical formula for E; for an arbi-
trary two spin—% system has been recently provided [20]. It is not known whether the
above function is additive. This is the main obstacle for fully consistent interpretation
for this quantity as the asymptotic number of singlets per output pair needed to build
given inseparable state. That was the reason of introducing the definition of internal
entanglement [28] which we shall call total entanglement contained in state p. It is given
in the following

Definition.- The total entanglement contained in state o is defined as

- By(o®"
Etot(@) = lim M:

n—o0 n

(8)

where 0®" =9 ® ... ® p.

This measure has the interpretation of the average number of singlet pairs (per
output pair) needed to produce pairs in state p. There is an open question whether the
total entanglement is equal to the entanglement of formation. It is certainly not greater
than the latter and is additive on tensor product of the same states i.e. Eiy(0® 0) =
2E;,(0). If the entanglement of formation also satisfies this condition then the two
measures are identical i.e. Eyo; = Ey. As the problem of additivity of £y is open, there
is the question whether it is possible that E; # 0 while F;,; = 0. Below we provide
simple additive lower bound for the entanglement of formation which excludes this
curiosity for some states.

Proposition.- For any state oap the entanglement of formation is bounded by:

E¢(0aB) > S(Trcoas) — S(oam), with C = A or B. 9)

Proof.- The proof of the above inequality is a simple implication of the concavity
property [21] of the function (S(-) — S(Tra(-)). It is interesting to note that the left
hand side of the inequality (9) defines two additive functions of gap

G(j(QAB):S(TTcQAB)fs(QAB), C’:Aor B. (10)

For 2 x 2 Werner states any of those functions, if positive, is the amount of en-
tanglement which can be distilled from the states by means of hashing method [25].
It is not known whether this result can be extended to higher dimensions as there is
no counterpart of hashing method there. Note that exact positivity of the function
G(0aB) is sufficient condition for inseparability of states. It is important fact that,
as we announced before, additivity of G(oap) prevent us from the strange situation
when FEj,; = 0 for all inseparable states the inseparability of which results from exact

®Rn
positivity of G(oap). In fact, for G(gap) > 0 we have Eip:(0) = lim, oo W >

- o
limy, 00 G(QT;‘B) =lim, o0 nG(zAB) = G(oan) > 0.
The other measure of entanglement is relative entropy of entanglement [22, 14]. This

measure is defined as

E,(0) = min,,,,S(ello), with  S(e|l0) =Tr(eloge — elogasep). (11)
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with minimum taken over all separable states o4.,. There is inequality relation between
two the measures [14]

E.(0) < E¢(0)- (12)

This measure has good topological properties and important probabilistic interpretation
(see Ref. [14]).

3. Distillation of noisy entanglement and notion of distillable entanglement

In this section we describe briefly the concept of distillation of mixed state entangle-
ment. Recall that Alice and Bob start with sharing some amount, say n, of particles in a
given initial state and are allowed to perform a sequence of any LQCC operations to ob-
tain with the, in general, less amount (m.,,) of pairs of particles in states arbitrarily close
to singlets. The asymptotic average amount of the output pairs per input pair is called
distillable entanglement [15, 25]. Although the main idea is clear, the precise definition
of this notion is still missing. An important attempt of strictly mathematical formu-
lation of the definition is contained in Ref.[23] by means of separable superoperators.
In that paper it has been proved that using trace preserving separable superoperators,
of constant output dimension one can distill from the Werner 2 x 2 states only strictly
less amount of entanglement than the entanglement of formation E¢ of the states. This
important feature of any LQCC action has been also derived by means of E, measure
[14] at the additional assumption that the relative entropy of entanglement is additive
on product of identical states (at present we do not know whether it is true). As the
proof in Ref. [23] does not consider the Alice and Bob actions in full generality, the
result is still waiting for rigorous proof. Here we present an attempt the quantitative
definition of distillable entanglement [15, 25, 23] enriched by the various dimension out-
put condition. Given n pairs of particles, each in state g, Alice and Bob are allowed to
perform arbitrary finite sequences LQCC operations on state p®" with N different final
outputs k = 1,..., M with possibly different dimensions dy. Any sequence of LQCC
operations can be written as some separable superoperator [23] (but not conversely [26])
which can, in general, produce different output systems acting as

A
1 i T
0®" > ol = -~ ZAEk) ® Bl(k)g®nAz(k) ® Bi(k) 7 (13)
K3
i=1
where
i i
pe=Tr (Z AR g k) gon 40T o k) > (14)

is the probability of the outcome and the states pj, are defined on different Hilbert
spaces H}', dim H]' = dj/; here one also requires that Agk),Bl(k) : H®" — H}' and
k) 4(k k) o (k
S piAP AP @ B BT = 1.
Now the entanglement which can be distilled by means of such a given protocol P
is defined as .
Dp = lim 22,
n—oo n
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with 7, = ), px log d}}. Here we demand that the input states g}, tend to singlet states
U= ﬁ 2;1:1 |i) & |i) on spaces H}} for high n. Quantitatively, the closeness between
the states and ¥*s is measured by fidelity F = (\Il;i"? |g|\Il;i"?) which should tend to 1 for
high n. The latter condition is called high fidelity condition. The condition must be
stated in such a way, that the input states can be directly used for different purposes
like e.g. teleportation. It appears that it is not easy to provide proper form of condition
[24] in general case. Of course, for constant output dimension (i.e. where dj = d,, for
each k) the condition can be stated unambiguously [25, 23] as

S mF(o}) = 1. (15)
k

Also, there is no problem with all the protocols existing so far, as the latter always
produce some number of two qubit pairs, so that the output dimensions are powers of
2 x 2. Indeed, suppose that given the outcome £, we obtain m} two-qubit pairs in joint
state o},. Let gf denote the state of Ith pair. The condition can be of the form

lim inf F(gF) — 1.

n—oo 1,k

Thus we simply demand that the state of each obtained pair has to tend to singlet
state for high n. Now, having defined (in somewhat incomplete way) the amount of
distilled entanglement with respect to a given protocol we can define [25] the distillable
entanglement of the state o by maximizing Dp over all possible protocols P

D(p) = max Dyp.
(0) = max Dp

There are some results on D which are “definition independent” [15, 16, 25, 27]. First,
trivially we have E;,; > D as we certainly cannot obtain greater number of singlets than
the one necessary to produce the state. Otherwise we would be able to create singlets
by means of LQCC. The inequality immediately implies that also £y > D. Much more
nontrivial result is that for pure states [16] D(¥) = E¢(V) = E,.(¥) = E(¥). It is
also known [27] that for any state from 2 x 2 case D # 0iff Ey # 0 (E, # 0). As we have
mentioned above there have been provided [23, 14] quite strong arguments supporting
the statement that for 2 x 2 Werner states

D < Ef. (16)

Quite recently, additional surprising information has been provided [28]. Namely, for the
systems N x M > 8 there exist states for which D = 0 while still E; > 0. The result
has been achieved by proving that any distillable state must violate Peres criterion
of positivity of partial transposition [29] (see also [30]) and recalling that there are
states which satisfy the criterion being still inseparable, having then nonzero Ey, F,
[13]. This result indicates the possibility of dramatic qualitative irreversibility of the
process production of mixed entangled states. The entanglement needed to produce
such states become completely bound, so that no amount of it can be recovered by
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M x N states

Low dimension - N x M <6 Higher dimension - N x M > 6
Vopure D = Eyoy = Ef
Vo mixed £y > 0= D >0 Jp (mixed) with £y >0and D =0
Probably Vg mixed D < E,,; if only Epr > 0 3 (locally orthogonal) ¢ mixed with D = Eyo = Ef #0

Tab. 1. Comparison of relations between D and Eot, Ey.

means of LQCC. On the other hand, the inequality (16) represents the quantitative
irreversibility expected for some mixed states. Since we know that for pure states the
process of production of pure not maximal entangled states is reversible (D = Ey)
then the natural question is whether there are mixed states for which still equality
D = Ej holds. We shall discuss this question in detail in the next section. Remarkably,
the above irreversibilities, which are physically intuitive, could be regarded as fully
exact ones only if we knew that indeed Fy = Fy,;. We do not know it yet, but from
the definition of Fj,; it is easily to show that this quantity is nonzero whenever D is
nonzero, and is equal to D if D = FE¢. In table 1 we collect the results concerning
relation between D, Fy,; and Ey.

4. Local orthogonality concept and mixed states with D = Ey

4.1 Illustrative example

As we have mentioned in previous section it has been argued recently [23, 14] that
distillable entanglement D is strictly less than the entanglement of formation E for 2 x 2
Werner states. The latter are of the form

ow (F) = FIW ) (0|4 1[0 ) (0|4 2@ )@+ e )@ | (17)

Here we use the usual Bell basis [31]

1
¥y = —2(|00)i|11);

1
V2

Below we provide some quite interesting property of the function E¢ which is compatible
with the mentioned results. Consider any pure state of the form

o, (101) + |10). (18)

(W) = al00) +b|11), a,b >0, a* +b*> = 1. (19)
By definition the entanglement of formation of (19) amounts to

Ey(¥) = H(a%), (20)
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where H(z) = —zlogz — (1 — z)log(l — z) is the binary entropy function. Let us
subject the above state to the following “twirling” operation i.e. the random bilateral
operation® [9, 25, 15]

T() = /U® U*(-)U @ U*dU, (21)

where the integral is performed with respect to the probability measure proportional to
the Haar measure. In result we obtain a Werner state

(a+b)?*

T(12NP)) = ow(F) with F =

(22)

It is elementary to see that 2 + \/F(1—F) = (1 + V1 —4a%0?) = a®. Now, since

2

E(ow(F)) = H(3 + \/F(1 = F)) [25] we see that
E(T (%) (¥])) = E(ew (F)) = E(|¥)(¥]). (23)

Thus we have the curious situation than any pure entangled state |¥)(¥| has the
same entanglement of formation as the highly randomized state 7 (|O)(¥|) = ow (F).
Recall that for any pure state |¥) one has D(¥) = E(¥). Thus one can turn all the
entanglement contained in ¥ into the pure singlet form. But for the Werner states
(17) it has been argued [23, 14] that D(ow (F)) <log2 — H(F) < E¢(ow (F)) if only
F < 1. Thus the twirling operation in 2 x 2 case is probably an example of the operation
preserving F; but significantly decreasing D. In fact, using the Schmidt decomposition
one can immediately prove the following

Proposition.- For any 2 x 2 pure state there exists basis (given by Schmidt decom-
position) such that the operation T defined in this basis preserves entanglement of for-
mation.

For N x N, N > 2 this proposition is not true. To provide the counterexample
let us consider N x N system in the state ¥, = ]ﬁZf\i] lit), 1 < M < N having
E(Uy) =log M. After the operation 7 one obtains the state [32]

N2 I 1 M
with F < & and maximally entangled state Py = & 21]\;1 |i) ® |i). The above state
can be represented as o(F) = N,(\}:]F)a(]ﬁ) + M= Py . As the state o(4;) is separable
[32] we get immediately that
NF -1 M—-1

Thus in higher dimensions there exist the pure entangled states for which the random
bilateral unitary transformation always decreases the entanglement of formation. Thus

5We use here second unitary transformation conjugated relative to the first one for the sake of the
further analogy in higher dimensions. For 2 x 2 case the original twirling operation using the same
unitary operations on the first and the second subsystem can be also utilized.
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the proposition provides the unique feature of two-qubit entanglement. Note in this
context that the results concerning distillation of entanglement stress that, in a precise
sense, any distillable entanglement is a mixed two-qubit entanglement (see [28] for
details).

4.2 Local orthogonality

The expected and partially proved fact that the operation 7 decrease D may be
supported by the intuition that it should not be possible to distill the full entanglement
content from any of pure states U ® U*¥ included in the mixture 7 (|¥)(¥|) as they can
not be perfectly distinguished by local operations and classical comunication. Recently
this fact has been used in the proof of imposibility of local cloning of Bell states (18)
[33]. The essential idea of the latter was the observation that any two orthogonal
entangled states can be cloned locally only if some of their reduced density matrices
are orthogonal. We shall call this property local orthogonality proposing the general
definition

Definition.- Consider two states v, ¢ of composite multiparticle composite quantum

system defined on Hilbert space H = % H;. We say that the two states are k-locally
=1

orthogonal, if there exist some k subsystems (say they are labelled by {i1,... iy} and
are described by Hilbert spaces Hi,, ..., H;, ) such that the corresponding reductions of

3 3

the states v, ¢ are orthogonal, i.e.

Tr(g;pgf) =0, l=1dy,.., 1. (26)
If the numbers of the systems {ii1,...,ir} are known then the states ¥, ¢ are called
locally orthogonal on the subsystems iy,...,i;. The ensemble of pure states

{1i}X .} is called locally orthogonal if its elements can be ordered in the sequence
{iy, Wiy, oy Yig } such that for any 1 < m < N the state v);,, is 1-locally orthogonal on
the same subsystem to all following states v;, ,n > m.

Remark.- The notion of local orthogonality is not equivalent to the notion of local
distinguishability. The states in a given ensemble can be locally distinguishable, but it
may be the case, that to distinguish them one must destroy them (see in this context
[26]). The locally orthogonal states are distinguishable without destroying them.

Note that any two component quantum system allowing for existence two entangled
1-locally orthogonal pure states must be of the form M x N, max(M,N) > 4 i.e. one
of subsystems must represent at least the spin % We have the following simple

Property.- Consider the state o0 = >, pi|®:)(®;| of the quantum system composed
from two subsystems defined by locally orthogonal ensemble {®;}. Then we have

(i) Ep(0) = X2, piBy (|19:)(®1])

(i1) D(0) = Ey(0) = Bror(0)-

Proof.- Consider the system in state g in paradigmatic situation of two distant
laboratories and let us treat the state ¢ as a random mixture of ®;s. Then, using
appropriate local measurements (following from local orthogonality property of the
ensemble) and classical communication Alice and Bob can determine which of the pure
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state they share. Then they can use the large blocks procedure [16] to convert all the
entanglement of this state into the singlet form D. Thus we have D = Y, p; B¢ (|®;)(®;]).
As, by definition, D(g) < E¢(9) < >, E¢(|®;)(®;]) we obtain both numerical value of
E; and its equality to D. As the latter is, again by definition, additive on products of
the same states and as Eyo; < Ey we get easily from the first equality of (ii) the second
one.

The simple example of 5 x 5 locally orthogonal ensemble ordered as required in the
definition is: {|00) + |11),]21) + |32),|30) + |43). There remains an interesting question
of maximal support of the locally orthogonal ensembles for fixed composite quantum
system. In the above context we propose the two following conjectures:

Conjecture 1.- The locally orthogonal ensembles are the only ones which pure
entangled components ¥; can be distinguished by local operations and classical com-
munication without destroying them.

Conjecture 2.- The only mixed states g with the property Fi.:(0) = D(p) are those
which are defined by means of locally orthogonal ensembles.

Finally, note that the result of providing mixtures with D = Ej,; is analogous to
that of Braunstein, Mann and Revzen [31] who found mixtures violating maximally the
Bell inequalities. Their mixtures were, in our language, locally orthogonal mixtures of
singlet pairs.

5. Thermodynamical analogies

The first formal thermodynamical analogy was proposed by Popescu and Rohrlich
[17]. The authors made an important observation that any LQCC process which pre-
serves entanglement must be reversible which have been related to Carnot cycle in usual
thermodynamics. Such an analogy was also considered by Vedral and Plenio [14] in the
context of distillation of entanglement. In more general quantum information context
the thermodynamical approach was also developed in Ref. [18] where, in particular,
the law of conservation of quantum information (entanglement) was considered. The
analogy entanglement-energy was then developed in Ref. [28] to interpret the results
on distillation of entanglement. Below we propose some new elements which, we be-
lieve, will contribute to understanding of thermodynamics-like aspects of entanglement
processing.

From previous discussion we know that there are two important measures of entan-
glement which are in a sense dual ones:

e Total entanglement E;,;(g) which represents the least number of shared singlets
asymptotically required to prepare the state o by means of LQCC.

e Distillable entanglement D(g) - the greatest number of pure singlets that can
asymptotically be prepared from ¢ by means of LQCC.

In short, Ety is the minimal number of singlets we need to produce a state while D
is the maximal number of singlets we can recover from the state. Another important
quantity of precise information theoretic sense is von Neumann entropy S. Its physical
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sense in quantum information theory was proved by Schumacher [34] (see also Ref. [35])
and Barnum et al. [36] in the context of compressing of quantum information. Basing
on the above notions we shall now try to provide information-theoretic counterparts of
such thermodynamical notions as internal energy U, free energy F' and entropy Si.
We propose the following scheme for the “energetic” quantities [28] Ei, D.

(free entanglement) D = Efree — F (free energy)

(total entanglement) E.,. U (internal energy)
(bound entanglement) E—D=FE,..< TSth (bound energy)

where T is temperature. Now the last element of the above scheme lead us to the
question what about the entanglement counterparts of thermodynamical temperature
and entropy? Following analogy we obtain a formula

Eior = Efree - Tese: (27)

where T, and S, are unknown counterparts of T' and S;j,.

If one tries to recognize the von Neumann entropy S as the counterpart of thermo-
dynamical entropy then finding the interpretation of temperature of entanglement 7T
would be the main test of this choice. It can be partially verified that the choice might
be reasonable. First, note that in thermodynamics one has Fy, < Uyp. In our case the
analogous inequality holds, as trivially, D cannot exceed F;,;. Now, recall that in usual
thermodynamics F' = U — T'Sy,. According to our proposal Efyee = Eyor — TeS even
if we do not know what the temperature 7T, means. Suppose now, that for pure states
T, is finite. Then putting S = 0 we obtain that D = FE;,, i.e. that for pure states,
the distillable entanglement is equal to the entanglement of formation, which is true
indeed [16]. Note, that for mixed states, the formula (27) can serve as a definition of
temperature T, for mixed states p:

Eo -FE ree
Te(gmiw) = %

As for separable mixed state ¢ we have E = D = 0 we obtain that the temperature
vanishes in this case which can be extrapolated via expected continuity property to cover
the case of pure separable states. So far the von Neumann entropy seems to be a good
quantity for our purposes. But, as we shall see in a moment, there are some problems.
Note that for many mixed inseparable states, the best known protocols of distillation
provide a very little number of distilled singlets in comparison with the entanglement
of formation. For example for Werner states the obtained yield of distillation procedure
is about thousand times less than the entanglement of formation. There are even more
stronger suggestions (recalled in the previous sections) that for mixed 2 x 2 inseparable
states Etree < Epor (provided that Eypr = Ey). Now, in our language, this is equivalent
to state that for those states the temperature is nonzero. However, as we have shown
in Section 4 for composite systems of higher dimensions there are many states with
E; = Eipt = Efree and S # 0. This is a curiosity of the model and it would suggest
that the temperature of those states is zero which is not intuitive. Thus perhaps the

(28)
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entropy S, should be defined in other way. For this purpose one could exploit the
notion of local orthogonality. Namely, the entanglement entropy S, should quantify
the irreversibility of the process of local preparing of the given mixed state. Then it
could be defined as some measure of local non-orthogonality of some canonical ensemble
realizing the state. A natural candidate is here the optimal ensemble in formula defining
the entanglement of formation. So defined entropy would vanish for locally orthogonal
mixtures. However, it is a very hard task to obtain a precise definition, and it is an open
question, whether that choice would produce the entanglement temperature having a
good physical interpretation. Nevertheless, the energy type analogies about D as a
counterpart of free energy and Ei,; as the counterpart of internal energy seem to be
plausible.

The remaining question is to define the entanglement (informational) work. In
general, it is natural to assume that

sending qubits <+ WORK.

Indeed, suppose that the given system contains some amount of free entanglement. Then
one can use it to send precisely this amount of qubits by means of teleportation preceded
by distillation procedure. This is analogous to the situation in thermodynamics, where
the free energy can be used to perform work. On the other hand, if the work AW is
performed over a system (without dissipation i.e. adiabatically) then the total energy
increases Uy = Uy + AW. This corresponds to the fact that to produce a state of total
entanglement Fi;,; Alice and Bob need to exchange precisely this amount of qubits
(they will send halves of singlets). This is true if the channel between Alice and Bob
is noiseless which correspond to lack of dissipation of energy. If, instead, the channel is
noisy, then the number of qubits must be larger: some amount of the sent entanglement
will be spread over the system and environment 6. Then, despite the total entanglement
(total quantum information) of system plus environment is conserved, the amount of
useful entanglement is much more less than the number of exchanged qubits. We may
say that there is the “information heat flow”: the lost entanglement was not used
to perform work, but rather changed into uncontrolled form. In the context of the
possibility of existence of states with nonzero bound entanglement, the process of this
flow can manifest itself not only by destroying some amount of entanglement but also by
binding some part of remaining entanglement. The above consideration is nothing else
but a balance analogous to that governed by the first law of thermodynamics. As the
latter is nothing else but the principle of conservation energy, we obtain that the above
balance is implied by the conservation of quantum information which can be viewed as
the analogue of the thermodynamical law for quantum entanglement processing [18].
The reader can ask why sending qubits and sending entangled qubits can both be
treated as work. Indeed there is a clear qualitative difference between them. However,
it can be explain as follows: sending known entangled qubits can be represented as work
over the composite system i.e. as a counterpart of mechanical work done over the gas,
as it aims at increasing of entanglement - “energy” of the system. The latter can be

6Note that entanglement can be spread deliberately by means of a kind of “depurification” procedure
[37].
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subjected to dissipation which causes the information heat flow discussed above. On the
other hand, having the composite system with given entanglement Fy,.. one can tele-
port some unentangled qubit through it. This represent the work done by the system
for us, resembling the gas doing mechanical work. One can also send the unentan-
gled qubits directly without using entanglement and teleportation. Then for noiseless
channel we have a counterpart of purely mechanical process (with no thermodynamical
element).

6. Searching for representative state at given entanglement

In this section we consider the problem of choosing for each established value of
entanglement, some representative, most probable state. Such a choice can be of course
performed only up to local unitary transformation. As a criterion we will use von
Neumann entropy, so that the scheme of obtaining the representative state will slightly
resemble the Jaynes scheme [38] of producing Gibbs state”. Recall that given the
Hamiltonian H the Gibbs state g = (1/Tre?")eH for a given mean energy E =
(H) = TrgH can be obtained by maximizing von Neumann entropy over all states with
mean energy F. In our scheme, we will keep constant entanglement and maximize
entropy (see [19] in this context). As it is total entanglement which we chose as the
counterpart of energy, we should use this measure in our scheme. However, to be able
to perform any calculations we must have analytical formula for entanglement. In this
situation we will rather use entanglement of formation. In the case of two-qubit states
the analytic formula for the latter is the following [20]

1+v1-C?

Eylo) = H(—*

). (29)

Here C' = max{0,\y — Ao — A3 — A4} and A;s are the eigenvalues, in decreasing order,

of the Hermitian matrix R = /,/00,/0 with
0=0,Q0,0"0y Q 0y (30)

The star denotes complex conjugation of the matrix g in product basis. Now, one could
ask what state is expected to have the greatest von Neumann entropy of all states with
given entanglement of formation. Such a state should have a high degree of symmetry.
The natural candidate is the Werner state (17) as it can be written in the following
very symmetric form

<a<l (31)

1
ow = el )Wy + (1= a)gT @ T,

W =

where o = %(4F —1). Surprisingly, we will see that for some values of E; the represen-
tative state is certainly not the Werner state. Consider the following simple state

op = plV ) (Wi |+ (1 —p)[01){01]. (32)

"Note that in entanglement processing domain the inference scheme based on Jaynes principle in
general fails [19].
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It can be checked that it is entangled for any p > 0 [25, 29, 30]. We obtain that
Clep) =p, Clow) =2F—1. (33)

Then the two states have the same entanglement of formation if p = 2F — 1. This
is compatible with the fact that for p = F = 1 both of them are equal to |¥)(¥,|
while for p = 0, F = % both of them are separable. Now, one can check that at least
for % < p < 1 the entropy of the state g, is strictly greater than the one the Werner
state. Consequently, it is certainly not the Werner state which maximizes entropy for
those values of entanglement. Then one can conclude that the problem of finding the
representative state for given entanglement may produce some highly nontrivial result:
it will provide an interesting, unknown family of states.

7. Concluding remarks

In conclusion, we have provided new properties of entanglement of formation. In
particular an additive lower bound for this quantity has been provided. The concept
of local orthogonality have been developed leading to the family of mixed states with
distillable entanglement equal to entanglement of formation. Subsequently the notions
of total and distillable entanglement have been considered as counterparts of thermo-
dynamical notions of internal and free energy. The question of possible temperature of
entanglement as well as a counterpart of thermodynamical entropy have been analysed.
The process of sending quantum information has been considered as a counterpart of
work and discussed in detail.

One of the advantages of the proposed approach is certainly the fact that it generates
new interesting questions like e.g. the problem of defining and interpretation of temper-
ature of entanglement. Another, fundamental problem is the following: is there a link
between the analogy considered here and the recent development concerning quantum
information processing at incomplete data [19, 39]7 In fact, since the famous Jaynes pa-
pers we know that the statistical thermodynamics which explains the phenomenological
one can be treated as a special kind of statistical inference at incomplete experimental
data. Then, it follows that the recent results on quantum information processing at
incomplete data (where one requires some nonstandard schemes [19]) should also be
somehow connected with the approach discussed in this paper. We think that since
analogy was always a powerful tool in physics, the above problems are worth of deeper
investigation. We believe that the present consideration will contribute to obtaining
more clear picture of the highly nonintuitive domain which is quantum information
theory.
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