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134 M. Horodecki et al.In spite of great number [10] of applications of Jaynes principle its status as wellas interpretation still remain unclear [11]. The principle is the most rational inferencescheme in the sense that it does not permit to draw any conclusions unwarranted bythe experimental data. However, this argument making the principle plausible does notactually prove it [11]. The di�culties in understanding of the Jaynes inference schemeare due to the fact that the latter is just a principle and it was not derived within thequantum formalism. Recently it has been shown [6] that the Jaynes inference is notuniversal, as it cannot be used in the case of entanglement processing. However, theJaynes principle could seem to be a natural tool for QIC, as it is just von Neumannentropy which indicates the maximal degree of compression [4].The motivation of the present paper was an attempt to understand the Jaynesprinciple on the basis of quantum information theory. The impetus to the presentconsideration was given by the important work of Schumacher [4] who �rst pointedout the physical interpretation of von Neumann entropy as the measure of quantuminformation in the context of QIC.The main purpose of this paper is to investigate the connection between the Jaynesprinciple and the problem of compression of quantum information produced by thesource characterized by incomplete data. We show that the entropy of the Jaynes state(the maximum entropy) is a basic bound for the rate of QIC at incomplete data. Wealso show that for one-qubit source the Jaynes principle provides a scheme which o�ersoptimal compression. According to the optimal protocol one should process as if theunknown density matrix of the ensemble of the source were just equal to the matrix ofthe Jaynes state.To begin with, let us outline the problem of QIC [4, 5, 12]. Suppose we have a sourcegenerating state %i (called message) with probability pi. The task is to transmit thestates %i to receiver with asymptotically perfect �delity by means of minimal numberof 2-state quantum systems. The latter are called qubits and constitute basic units ofquantum information. Alice, who is to compress the initial information representedby the states %i is allowed to operate over long sequences of input systems. Afterher compression procedure (which can be an arbitrary operation admitted within thequantum formalism) the emerging states are transformed onto qubits and sent to thereceiver (Bob) who is to perform the inverse operation. To this end he 
ips the state ofqubits again onto the systems identical to the ones emitted by the source, and performsdecompression operation. Now the asymptotically faithful transmission means that theinput states obtained by Bob are on average close to the states of input sequencesprovided the latter are su�ciently long. The closeness is quanti�ed by means of �delityof the form [13] F (%in; %out) = �Trqp%in%outp%in�2 : (3)If the input state is pure (%in = jainihainj) then the �delity takes the familiar formF (%in; %out) = hainj%outjaini. In this case F can be interpreted as probability thatthe output state %out passes the test of being the state %in. The overall scheme of



Optimal compression of quantum information ... 135compression-decompression protocol is the following%i1 
 : : :
 %iN Alice0s compression�!�A ~%i1;:::;iN (4)transmissionby means of qubits�! ~%i1;:::;iN Bob0s decompression�!�B %outi1;:::;iNwith the conditionlimN!1 Xi1;:::iN pi1 : : : piNF (%i1 
 : : :
 %iN ; %outi1;:::;iN ) = 1: (5)Thus the average �delity must tend to 1 for su�ciently long input sequences. Now thebasic problem is to �nd the protocol with minimal number of qubits per message neededto carry the ensemble of states ~%i1;:::;iN . In other words, the dimension of the Hilbertspace H~% spanned by the eigenvectors of the total density matrix ~% of the ensembleshould be as small as possible. Then also the needed number R of qubits per messagegiven by R = limN!1 1N log dimH~% (6)will take the minimal value.The outlined problem of QIC was �rst raised by Schumacher [4]. For ensemble ofpure states he showed that it is possible to reduce the needed number of qubits R to thevalue of the von Neumann entropy of the total density matrix of ensemble % =Pi pi%i.The proposed protocol was then simpli�ed by Jozsa and Schumacher [5] (we will refer toit as SJ protocol). Later on, Barnum et al. [12] showed that any possible compressionprotocol cannot compress the signal better than the SJ protocol. Thus for ensemble ofpure states we have Rmin = S(%): (7)For ensemble of mixed states the problem is more complicated and in general remainsstill open [14, 15].Let us now brie
y recall the SJ compression scheme. Here the Alice's operationgoes as follows. First, she subjects the initial sequence of states to a measurement withtwo outcomes 0; 1 corresponding to some projectors P and P? = I � P respectively.Obtained outcome 1 she does nothing else, otherwise (i.e. if an \error" occurred) shereplaces the resulting state of sequence of systems with some arbitrarily establishedstate j0ih0j where j0i belongs to the subspace H determined by the projector P . Aftersuch operation the resulting ensemble lies solely within the subspace H and the needednumber of qubits to carry it is equal to log dimH.Now there is �delity lemma [5] which says that for any projector P if the probabilityof error p = Tr%
NP?; %
N = %
 : : :
 %| {z }N (8)asymptotically vanishes then the condition of faithful transmission (5) is ful�lled withBob decompression being trivial (he needs do nothing apart from 
ipping the sig-nal from qubits onto systems identical with the ones emitted by the source) [16].



136 M. Horodecki et al.Moreover, the eigenvalues of % can be divided into two parts: an amount of approx-imately 2NS(%) typical eigenvalues carrying almost all \weight" of the matrix % andthe remaining eigenvalues (atypical) the sum of which vanishes for large N . Thesubspace Ht spanned by the eigenvectors corresponding to the typical eigenvalues iscalled typical one. Now in the SJ protocol the projector P is chosen to project ontothe typical subspace. Then, by the �delity lemma, the faithful transmission is possi-ble, and the signal is compressed down to the value of S(%) qubits per message (asdimHt = the number of typical eigenvalues � 2NS(%)).Consider now the case of incomplete data. Namely, suppose that Alice (who isto compress the signal states) knows neither the states %i generated by the sourcenor the probabilities pi. Instead, let she know mean values ai of some incomplete setof observables Ai measured on a large subensemble of the systems produced by thesource. As the set is incomplete, Alice is not able to recover the density matrix ofthe ensemble. Suppose now that she wants to compress the signal, basing on thatincomplete information. However, there are many ensembles which are in agreementwith the data. Then her strategy must be so clever that the Bob decompression couldbe faithful for any ensemble satisfying the data. The basic question is: what is themaximal compression rate which allow for faithful decompression if only incompletedata are measured? So far, in the problem of QIC the form of the ensemble generatedby the source was supposed to be known, hence the maximal compression rate was afunction of the ensemble. Here, the only characteristics of the source is contained in themeasured data, so that the maximal rate (or its bounds) is a function of the observablesAi and the mean values �ai.Note �rst that the basic limit for the compression rate at incomplete data can befound by means of the Jaynes principle: the minimal number of qubits cannot be lowerthan the maximum entropy Rmin(fAi; �aig) � SJ : (9)where SJ = S(%J). Indeed, the actual ensemble of the source could have its densitymatrix just equal to the Jaynes one (as the latter is in agreement with the data byde�nition). It could also consist of pure states, as the mean values of observables saynothing about components of ensemble. Then according to the the mentioned result ofBarnum et al. [12], any protocol which compresses the signal to the value less than themaximum entropy does not allow for faithful decompression.Here a very natural question arises: is it that the minimal number of qubits permessage is in fact equal to the Jaynes entropy? Below we will show that in the case ofone-qubit source the answer is \yes". The bound (9) will be reached by a scheme (wewill call it Jaynes compression) according to which Alice and Bob apply to the ensemblethe SJ protocol as if its density matrix were equal to the Jaynes state. We will showthat for one-qubit source satisfying the data the Jaynes compression allows for faithfuldecompression. Thus, Alice and Bob can faithfully process, imaging that the real stateis the Jaynes one, even if in fact it is not the case!Suppose that Alice has measured only one (nondegenerate) observable A and ob-tained mean value �a. We will show that the optimal compression is provided by the



Optimal compression of quantum information ... 137Jaynes scheme. For this purpose write the spectral decomposition of the observableA = a1jvihvj + a2jwihwj; (10)where ai are eigenvalues and jvi; jwi are eigenvectors. Let us write the density matrix% of input ensemble write in the basis jvi; jwi% = %11jvihvj + %12jvihwj + %21jwihvj + %22jwihwj: (11)The diagonal elements of % can be expressed in terms of the mean value �a and eigenvalues�1; �2 as follows %11 = �a� a2a1 � a2 ; %22 = 1� %11 = a1 � �aa1 � a2 : (12)Note that density matrices satisfying the constraint hAi = �a can di�er from each otheronly by o�-diagonal elements. As one knows [11] discarding the o�-diagonal elementscannot decrease entropy, so that the Jaynes state %J (which has maximal entropy) mustbe equal to %J = %11jvihvj+ %22jwihwj: (13)Hence %11 and %22 are eigenvalues of %J .Compare now the density matrix %
N of ensemble of sequences of signal states andthe N-fold tensor product of the Jaynes matrix %
NJ . The latter one has eigenvaluesequal to the diagonal elements of the former one, hence for any projector P onto thesubspace spanned by any collection of eigenvectors of %
NJ , we haveTr%
NJ P = Tr%
NP: (14)The above equality says that the probability of error for any ensemble satisfying thedata is equal to the probability of error for the ensemble with density matrix %J . Now,if Alice performs the measurement by means of projector onto typical subspace of thestate %
NJ then by virtue of the �delity lemma the faithful transmission is possible forany ensemble satisfying the data. Thus in this case we haveRmin(A; �a) = SJ : (15)The result incorporates the case of ensemble of mixed states as such ensemble can alsobe compressed by means of SJ protocol [14].Let us now analyse the case when Alice knows mean values of two observables A, BTr(%A) = �a; Tr(%B) = �b: (16)Let us write the observables in eigenbasis jvi; jwi of AA = � a1 00 a2 � ; B = � b1 cc b2 � ; (17)



138 M. Horodecki et al.where the relative phase of the base vectors is chosen so that c is real (of course ai andbi are real due to hermiticity of A and B). Applying the constraint (16) we see thatthe most general form of % is % = � %11 d+ i
d� i
 %22 � ; (18)where the diagonal elements are of the form (12) and d = �b � (b1%11 + b2%22)=(2c)so that the only free parameter is 
 (due to positivity of % 
 must satisfy inequality
2 � %11%22�d2). The eigenvalues of % are the closest together (hence % has the largestentropy) if 
 = 0 hence the Jaynes state is of the form%J = � %11 dd %22 � : (19)Then we obtain % = %J + i
 � 0 1�1 0 � : (20)Now, the matrix %J has real entries, so that it can be diagonalized by a real rotation.Note that the matrix in the second term of the equation is rotation by �=2). As therotations on the plane commute, if we apply the ones diagonalizing %J to the matrix %,the second term in (20) will not be a�ected. Then, in the eigenbasis of %J , both % and%J have the same diagonal elements. Thus, we can apply the same argument as in thecase of one observable data so thatRmin(A;B; �a;�b) = SJ : (21)As a matter of fact, the above analysis completes the proof that the Jaynes compressionallows faithful transmission of quantum information. In fact, suppose Alice knows meanvalues of three observables A;B;C. If they are linearly independent, they constitutecomplete data, so that the state of ensemble is uniquely determined. If, instead, one ofthem (e.g. C) can be written as linear combination of the others, then the mean valueof C is determined by the means of A and B so that we turn back to the case of twoobservables. To be careful, one should also consider the case of the so-called generalizedobservables (Positive Operator Valued measures) [17]. It appears [18], that in the caseof one-qubit source this can be easily reduced to the case of ordinary von Neumannobservables.In conclusion, we have shown that the Jaynes principle puts bound for maximalcompression rate. Moreover, for one-qubit source it provides a very simple schemeof optimal degree of compression. To obtain it, one should process as if the densitymatrix of the source were actually equal to the Jaynes matrix. The results shed newlight on the status of the Jaynes principle, as they allow to hope that from the pointof view of quantum information theory the principle seems to be a consequence ofquantum formalism rather than an external postulate. In fact, we have revealed aremarkable alternative: either the Jaynes principle can be derived as a theorem forquantum information theory, or its meaning for this �eld is not so profound as one



Optimal compression of quantum information ... 139could expect. Indeed, if the Jaynes compression did not work well in general, then itwould mean that the Jaynes inference scheme fails to play the most natural role thatcan be found for it within quantum information theory.Our results suggest also a general question concerning quantum information pro-cessing at incomplete data. Namely, note that the scheme we used here (the Jaynescompression) consisted of two basic stages(i) the estimated form of state is produced by means of the Jaynes principle.(ii) the compression protocol is chosen as if the actual density matrix of the ensemblewere equal to the Jaynes state.Suppose now that we have some di�erent task than QIC (e.g. we need to distill entan-glement). Then the question is whether the above approach will work in this generalcase. We then would have the following steps.(i) the estimated form of state is produced by means of an inference scheme(ii) the suitable protocol is chosen as if the actual density matrix were equal to inferredone.The inference scheme cannot be in general the Jaynes one but it must rather depend onthe kind of task. Indeed, it was shown [6] that in the case of entanglement processing theJaynes inference fails as it can produce inseparable (entangled) state although there existseparable (disentangled) ones consistent with data. There is an open question, whetherthe proposed general approach provides faithful and optimal information processing.Acknowledgements The authors would like to thank Richard Jozsa for helpful com-ments, stimulating discussion and simplifying the proof for two-observable case. Theyare also grateful to Armen Allahverdyan and Chris Fuchs for valuable comments. M.H. and P. H. would like to acknowledge the support by Foundation for Polish Science.Note added: Quite recently, the general solution of the problem of compression of quan-tum information at incomplete data has been provided in the paper \Universal compres-sion of quantum information" by Richard Jozsa and the present authors [19]. It followsthat the equality Rmin = SJ is true in general. The result is obtained via di�erentapproach than the one presented here.References[1] C. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W. K. Wootters: Phys. Rev.Lett. 70 (1993) 1895[2] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, A. Zeilinger: Nature(London) 390 (1997) 575 ; D. Boschi, S. Brance, F. de Martini, L. Hardy, S. Popescu:Phys. Rev. Lett. 80 (1998) 1121[3] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin, W. K. Wootters: Phys.Rev. Lett. 76 (1996) 722; C. H. Bennett, D. P. Di Vincenzo, J. Smolin, W. K. Wootters:Phys. Rev. A 54 (1997) 3814; M. Horodecki, P. Horodecki, R. Horodecki: Phys. Rev.Lett. 78 (1997) 574.
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