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A family of asymmetric cloning machines for quantum bits and N-dimensional
quantum states is introduced. These machines produce two approximate copies
of a single quantum state that emerge from two distinct channels. In particular,
an asymmetric Pauli cloning machine is defined that makes two imperfect copies
of a quantum bit, while the overall input-to-output operation for each copy is a
Pauli channel. A no-cloning inequality is derived, characterizing the impossibility
of copying imposed by quantum mechanics. If p and p’ are the probabilities of the
depolarizing channels associated with the two outputs, the domain in (\/p, v/p')-
space located inside a particular ellipse representing close-to-perfect cloning is
forbidden. This ellipse tends to a circle when copying an N-dimensional state
with N — oo, which has a simple semi-classical interpretation. The symmetric
Pauli cloning machines are then used to provide an upper bound on the quantum
capacity of the Pauli channel of probabilities p., p, and p.. The capacity is proven
to be vanishing if (/pz, /Py, /P=) lies outside an ellipsoid whose pole coincides
with the depolarizing channel that underlies the universal cloning machine. Fi-
nally, the tradeoff between the quality of the two copies is shown to result from a
complementarity akin to Heisenberg uncertainty principle.

1. Introduction

A fundamental property of quantum information is that it cannot be copied, in
contrast, with information we are used to in classical physics. This means that there
exists no physical process that can produce perfect copies of a system that is initially in
an unknown quantum state. This so-called no-cloning theorem, recognized by Dieks [1]
and Wootters and Zurek [2], is an immediate consequence of the linearity of quantum
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mechanics, and lies at the heart of quantum theory. Remarkably, if perfect cloning
was permitted, the Heisenberg uncertainty principle could be violated by measuring
conjugate observables on many copies of a single quantum system.

Consider a cloning machine that duplicates a quantum bit (a 2-state system) that
is initially in an arbitrary state 1)) = a|0) + 3|1) whose amplitudes are unknown. It is
easy to build such a machine that perfectly copies the two basis states |0) and |1), but
then it badly duplicates the superpositions 27 /2(|0)+|1)) and 27/2(]0) — [1)). In other
words, it cannot produce perfect copies of all possible input states. This being so, we
may ask how well one can approximately duplicate the unknown state of a quantum bit
(qubit) if the quality of the copies is required to be independent of the input state. This
question has been answered by Buzek and Hillery [3] who first showed that it is possible
to construct a cloning machine that yields two imperfect copies of a single qubit in
state |¢). Specifically, a universal cloning machine (UCM) can be defined that creates
two copies characterized each by the same density operator p, the fidelity of cloning
being f = (¥|p|yp) = 5/6. This machine is called universal because it produces copies
that are state-independent: both output qubits emerge from a depolarizing channel of
probability 1/4, that is, the Bloch vector characterizing the input qubit is shrunk by
a factor 2/3 regardless its orientation. The UCM was later proved to be optimal by
Bruss et al. [4], and Gisin and Massar [5]. The concept of approximate cloning was
also generalized to n-plicating machines, that is, cloners that yield n imperfect copies
of a single qubit [5, 6]. Quantum cloning machines have attracted a lot of attention
because of their use in connection with quantum communication and cryptography (see,
e.g., [4, 7]). For example, an interesting application of the UCM is that it can be used to
establish an upper bound on the quantum capacity C of a depolarizing channel, namely
C=0atp=1/4[4].

In this paper, we introduce a family of asymmetric cloning machines that produce
two distinct (approximate) copies of a single quantum state. This is in contrast with
the cloning machines considered before, which were symmetric (both outputs being
characterized by the same density operator). We consider the asymmetric cloning of
both two-dimensional and N-dimensional quantum states. Using a particular class of
asymmetric cloners whose outputs emerge from (distinct) depolarizing channels, we de-
rive a no-cloning inequality governing the tradeoff between the quality of the copies of
a single state imposed by quantum mechanics: a® + 2ab/N + b> > 1, where s, = 1 — a*
and s; = 1 — b2 is the scaling factor of the channel associated with output A and B, re-
spectively. It is, by construction, a tight inequality which is saturated using our cloners.
More generally, the complementarity between the two copies is shown to result from an
uncertainty principle that relates the outputs of the cloner, much like that associated
with Fourier transforms. Consequently, the probability distributions characterizing the
channels underlying the two outputs cannot be peaked simultaneously, giving rise to a
balance between the fidelity of the two copies.

The cloning machines for quantum bits are discussed in the first part of this paper,
Sec. 2. We introduce a Pauli cloning machine (PCM), which produces two (not neces-
sarily identical) output qubits, each emerging from a Pauli channel [8]. The family of
PCMs relies on a parameterization of 4-qubit wave functions for which all qubit pairs
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are in a mixture of Bell states. The subclass of symmetric PCMs is then used in order
to express an upper bound on the quantum capacity of a Pauli channel, generalizing the
considerations of Ref. [4] for a depolarizing channel. In particular, the capacity of the
Pauli channel with probabilities p, = 22, Dy = y? and p, = 22, is shown to be vanishing
if (z,y, 2) lies outside the ellipsoid #2 + 4% + 22 + 2y + 22 + yz = 1/2, whose pole coin-
cides with the depolarizing channel corresponding to the UCM. In Sec. 3, we generalize
the PCM to more than two dimensions, and define a family of asymmetric cloning ma-
chines for N-dimensional states. Our description is based on the maximally-entangled
states of two N-dimensional systems, which generalize the Bell states. A special case
of these cloners is shown to be the symmetric N-dimensional UCM [6]. This family of
asymmetric N-dimensional cloners is used to investigate the complementarity principle
governing the tradeoff between the quality of the copies.

2. Pauli cloning machines for quantum bits

2.1. Characterization of a Pauli channel using the Bell states

Consider a quantum bit in an arbitrary state [¢)) which is processed by a Pauli
channel. Thus, the qubit is rotated by one of the three Pauli matrices or remains
unchanged: it undergoes a phase-flip (o), a bit-flip (0,,), or their combination (o0, =
—io,) with respective probabilities p,, p;, and p,. (A depolarizing channel corresponds
to the special case where p, = p, = p..) It is convenient to describe the operation of
such a channel by considering an input maximally entangled with a reference system.
Defining the four maximally-entangled states of two qubits (i.e., the Bell states) as

1 1
V2 V2

we note that the local action of the Pauli matrices on one of these states, say |®7)
yields the three remaining Bell states, namely

|95) = —=(100) % [11)) [P¥) = —=(]01) £10)) (1)

(I®o.)@F) = |&7)
(Z®o,)|®T) = [¥7F)
(I @og0.)|@") = [¥7) (2)

(Note that we use the convention |0) = | 1) and |1) = | |).) Therefore, if the input
qubit I of the Pauli channel is maximally entangled with a reference qubit R, say if
their joint state |1) s is the Bell state |®T), then the joint state of R and the output
O is a mixture of the four Bell states

pro = (1= p) [2TN QT + p [ & W& | + py [UFNTT| +p, [¥ )T [, (3)

Withp =Pz + Py + D:-



11s N.J. Cert

A simple correspondence rule can then be written relating an arbitrary mixture of
Bell state and the associated operation on a qubit 1)) by a Pauli channel. Start from
the mixture

3
PRO = (1—10)\‘I’+)<‘I’+\+Zpi|‘1’z‘)(‘1’i| (4)
i=1
where p1 < p2 < p3, p = p1 + p2 + p3, and |¥;) stand for the three remaining Bell
states ranked by increasing weight. It is straightforward to show that the operation on
an arbitrary state |¢)) performed by the corresponding channel is

W)= p = (1=p—p2) V)] + (p2 —p1) o1 )P[0
+  (p3 — p2) o3l)(Wlos + 2(p1 +p2) Z/2 (5)

where [1)_) = —ioy|¢p*) = 0,0.]9*) denotes the time-reversed of state |¢)). The four
components in the right-hand side of Eq. (5) correspond respectively to the unchanged,
(rotated) time-reversed, rotated, and random fraction. It is clear from Eq. (5) that the
operation of the channel is state-independent only if py = py = p3 = p/3, that is, if
the time-reversed and rotated fractions vanish. Then, we have a depolarizing channel
of probability p, i. e., pro is a Werner state and Eq. (5) becomes

[¥) = p = (1= 4p/3) [)(P| + (4p/3) T/2 (6)

Thus, the vector characterizing the input qubit in the Bloch sphere is shrunk by a
scaling factor s = 1 — 4p/3 regardless its orientation, so that the fidelity of the channel,
f=@lply) =1—-2p/3=(1+s)/2, is independent of the input state. Other channels
are necessarily state-dependent. For example, the “2-Pauli” channel of probability p
(i.e., p = p, = p/2 and p, = 0) performs the operation

W)= p = (1=3p/2) [} + (p/2) oy[){Y-|oy +pL/2
= (1=3p/2) [L){] + (p/2) [) W [+ T/2 (7)

while the dephasing channel of probability p (i.e., p. = p and p, = p, = 0) simply gives

) = (1 =p) V)] +p o=|Y)(Plo- (8)

2.2. Asymmetric Pauli cloning machines

We define an asymmetric Pauli cloning machine as a machine whose two outputs,
A and B, emerge from distinct Pauli channels [8]. Thus, if the input I of the cloner
is fully entangled with a reference R, i.e., [¢))gr = |®7T), the density operators pra
and pgpp must then be mixtures of Bell states. Focusing on the first output A, we see
that a 4-dimensional Hilbert space is necessary in general to purify pgra since we need
to accommodate its four (generally nonzero) eigenvalues. The 2-dimensional space of
second output qubit B is thus insufficient for this purpose, so that we must introduce an
additional system C', which may be viewed as an ancilla or the cloning machine itself.
A 2-dimensional space for C is then sufficient, so that we need to consider a single
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Fig. 1. Pauli cloning machine of input I (initially entangled with a reference R) and outputs
A and B. The third output C refers to an ancilla or the cloning machine. The three outputs
emerge in general from distinct Pauli channels.

additional qubit C for the cloning machine, as shown in Refs. [3, 4]. As a consequence,
we are led to consider a 4-qubit system in order to fully describe the PCM, as pictured
in Fig. 1. Before cloning, the qubits R and I are in the entangled state |®*), the two
auxiliary qubits being in a prescribed state, e.g., |0). After cloning, the four qubits R,
A, B, and C are in a pure state for which pr4 and pgp are mixtures of Bell states
(A and B emerge from a Pauli channel). As we shall see, prc happens to be also a
mixture of Bell states, so that C' can be viewed as a third output emerging from a Pauli
channel.

Instead of specifying a PCM by a particular unitary operation acting on the state
|t) of the input qubit I (together with the two auxiliary qubits in a fixed state |0)),
it is more convenient to characterize it by the wave function |¥)gapc underlying the
entanglement of the three outputs with R. So, our goal is to find in general the 4-qubit
wave functions that satisfy the requirement that the state of every pair of two qubits is a
mixture of the four Bell states. Making use of the Schmidt decomposition of |¥)gaBc
for the bipartite partition RA vs BC, it is clear that this state can be written as a
superposition of double Bell states

(W) rase = {v|@T)[®F) + 2]@7)[@ ) + & |UTH)UT) +y [T )T )}, ey (9)

where z, y, 2z, and v are complex amplitudes (with |z|> + |y|* + |z|*> + |[v|> = 1). Note
that the possible permutations of the Bell states in Eq. (9) are not considered here for
simplicity. The above requirement is then satisfied for the qubit pairs RA and BC,
that is, pra = ppc is of the form of Eq. (3) with p, = |z|, p, = |y|*, p. = |2]?, and
1 —p=|v|% It is important to note that these double Bell states for the partition RA
vs BC transform into superpositions of double Bell states for the two other possible
partitions of the four qubits RABC into two pairs (RB vs AC, RC vs AB). For
example, the transformation associated with the partition RB vs AC is

@) ra [2F)Bo = %{\‘P+)\‘P+) +H[@T)ET) + [THNET) + [ E) T )}y
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@7 )ra |27 )BC = %{\¢+)\‘1’+) +[@7)@T) — (U))@))} pp e
[T )Ra |97 )pe = %{\¢+)\‘1’+) —[@)e ) + [T EF) — TN )}y
¥ ) ra |97 )BC = %{\¢+)\‘1’+) —[@)e) — [EH)E) + [ U)E )} pp e (10)

(For the partition RC vs AB, these expressions are similar up to an overall sign in
the transformation of the state |[¥~)ra ¥~ )pc.) This implies that |¥)papc is also
a superposition of double Bell states (albeit with different amplitudes) for these two
other partitions, which, therefore, also yield mixtures of Bell states when tracing over
half of the system. Specifically, for the partition RB vs AC, we obtain

(@) ppac = {v'|@1)[@F) + 2" |@7)[@7) + 2" [FT) W) + ¢ [O) O )} 0 (A1)

with

v+z+z+y)/2

( )
( 0)
(v—z4+z—y)/2
(v—z—z+y)/2 (12)

S T S
I

implying that the second output B emerges from a Pauli channel with probabilities
P = |2'%, p, = |y'|*>, and p., = |2'|*. Similarly, the third output C is described by

considering the partition RC vs AB,

() reiap = {0"[@T)[0F) + 2" [@7)[@7) + 2" [WH)WF) + 3" [UH)U )}y
(13)
with
v = (wtz4+x—1y)/2
"= (wtz-—z+y)/2
"= (w—z+x+y)/2
"= w—z—x—y)/2 (14)

Thus, Egs. (12) and (14) relate the amplitudes of the double Bell states for the three
possible partitions of the four qubits into two pairs, and thereby specify the entire set
of asymmetric Pauli cloning machines.

2.3. No-cloning inequality for quantum bits

Let us consider the class of asymmetric PCMs whose outputs A and B emerge
from (distinct) depolarizing channels. Assume that the first output A emerges from a
depolarizing channel of probability p = 3|z|?, i.e.,

a =[P [@FN@T| + |2 (127 )@ [+ [TFN(TT| + e ) (e) , (15)
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with |02 + 3]z|?> = 1. Then, from Eq. (12), we have v' = (v +3x)/2 and 2’ = (v —z)/2,
resulting in

|v + 3z|?
4

2
prn = @)@t + DT ey @ e s e (0
Thus, the second output B also emerges from a depolarizing channel of probability
p' = 3|2'|> = 3|v — |, implying that both outputs of this asymmetric PCM are state-
independent as they simply correspond to a (different) scaling of the vector character-
izing the input qubit in the Bloch sphere. (The third output C' emerges in general from
a different Pauli channel.) The relation between the parameters x and ' characterizing

the two outputs can be written as
1
|z|? + Re(z*z") + |2'|* = 1 (17)

Clearly, the best cloning (minimum values for |z| and |z'|) is achieved when the cross
term is the largest in magnitude, that is when z and z' have the same phase. For
simplicity, we assume here that 2 and 2’ are real and positive. Consequently, the tradeoff
between the quality of the two copies can be described by the no-cloning inequality

2’ +zr’ + 2% > i , (18)
where the copying error is measured by the probability of the depolarizing channel
underlying each output, i.e., p = 3z and p' = 32" (with z,2’ > 0). Equation (18) cor-
responds to the domain in the (x, z')-space located outside an ellipse whose semiminor
axis, oriented in the direction (1,1), is 1/4/6, as shown in Fig. 2. (The semimajor axis
is 1/4/2.) The origin in this space corresponds to a (nonexisting) cloner whose two out-
puts would be perfect p = p’ = 0, while to distance to origin measures (p + p')/3. The
ellipse characterizes the ensemble of values for p and p’ that can actually be achieved
with a PCM. It intercepts its minor axis at (1/4/12,1/1/12), which corresponds to the
universal cloning machine (UCM), i.e., p = p’ = 1/4, as discussed below. This point
is the closest to the origin (i.e., the cloner with minimum p + p'), and characterizes in
this sense the best possible copying. The UCM is the only symmetric cloner belonging
to the class of PCM considered here (i.e., cloners whose outputs are depolarizing chan-
nels); other symmetric cloners will be considered in Sec. 2.4. The ellipse crosses the
z-axis at (1/2,0), which describes the situation where the first output emerges from a
100%-depolarizing channel (p = 3/4) while the second emerges from a perfect channel
(p' = 0). Of course, (0,1/2) corresponds to the symmetric situation. The dimensional
argument used in Sec. 2.2. strongly suggests that the imperfect cloning achieved by such
an asymmetric PCM is optimal: a single additional qubit C for the cloner is sufficient
to perform the best cloning, i.e., to achieve the minimum p and p’ for a fixed ratio p/p'.
(This is proven rigorously for the special case p = p’ in Ref. [4]). Also, introducing a
phase difference between x and ' results in a set of PCMs characterized by an ellipse
that is less eccentric and tends to a circle of radius 1/2 for a phase difference of 7/2.
Consequently, the no-cloning inequality (18) is saturated when z and 2’ have the same
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Fig. 2. Ellipse delimiting the best quality of the two outputs of an asymmetric PCM that
can be achieved simultaneously (only the quadrant z,z’ > 0 is of interest here). The outputs
emerge from depolarizing channels of probability p = 3z and p’ = 32'2. Any close-to-perfect
cloning characterized by a point inside the ellipse is forbidden.

(or opposite) phase. The domain inside the ellipse corresponds then to the values for p
and p’ that cannot be achieved simultaneously, reflecting the impossibility of close-to-
perfect cloning, and Eq. (18) is the tightest no-cloning bound that can be written for a
qubit.

2.4. Symmetric Pauli cloning machines

Consider now the class of symmetric PCMs that have both outputs emerging from
a same Pauli channel, i.e., pga = prp. Using Eq. (12), we obtain the conditions

w? = jw+z+z+yl?/4
oP = fotzoa g/
2P = ot —yP/
> = Jv-z-z+y[’/4 (19)
which yields
v=x+y+z, (20)

where z, y, z, and v are assumed to be real. Equation (20), together with the nor-
malization condition, describes a two-dimensional surface in a space where each point
(z,y, z) represents a Pauli channel of parameters p, = z?, p, = y?, and p, = z? (We
only consider here the first octant x,y,z > 0). This surface,

1
m2+y2+z2+my+mz+yz:§, (21)
is an oblate ellipsoid E with symmetry axis along the direction (1,1,1), as shown
in Fig. 3. The semiminor axis (or polar radius) is 1/2 while the semimajor axis (or
equatorial radius) is 1. In this representation, the distance to the origin is p, +py+p-, so
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y
Fig. 3. Oblate ellipsoid representing the class of symmetric PCMs whose two outputs emerge
from the same Pauli channel of parameters p, = =, p, = 3>, and p. = z? (only the octant
z,y,z > 0 is considered here). The pole of this ellipsoid corresponds to the UCM. The capacity
of a Pauli channel that lies outside this ellipsoid must be vanishing.

that the pole (1/v/12,1/v/12,1/+/12) of this ellipsoid the closest point to the origin
corresponds to the special case of a depolarizing channel of probability p = 1/4. Thus,
this particular PCM reduces to the UCM. This simply illustrates that the requirement
of having an optimal cloning (minimum p, + p, + p.) implies that the cloner is state-
independent (p, = p, = p:).

2.5. Universal cloning machine

The optimal symmetric PCM (i.e., the UCM) can be obtained alternatively by re-
quiring that the two outputs A and B of a symmetric cloner are maximally independent.
Using Egs. (14) and (20), we obtain v =z + 2, 2" =y + 2, 2" = x + y, and " = 0.
Therefore, we have

pre = pan = o+ 27 [BTN@T| + |y + 27 (BTN @[ + |z +y? [TEN(TF . (22)

(This means that the third output C emerges from a Pauli channel with vanishing p,.)
Thus, we need to maximize the joint von Neumann entropy of the two outputs A and
B

)

S(AB) = ~Tr(paplogpap) = H [lo + 21, [y + 2, |z + y|] (23)

with H[-] denoting the Shannon entropy. It is easy to see that the solution with z,y, 2z >
0 that maximizes S(AB) is ¢ = y = z, that is, the Pauli channel underlying outputs A
and B reduces to a depolarizing channel. Using Eq. (21), we get =y = 2z = 1/1/12,
so that the wave function underlying the UCM is

3 1 e N
B e =[5 18 a8 + o5 {18087 + [0 + 1850}
(24)
Consequently

pa = pp = 3 197)(@F |+ 5 (@)@ |+ U]+ [0 )@ ]) (25)
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confirming that A and B emerge both from a depolarizing channel with p = 1/4,

[9) > 2 [ + 5 (T/2) (26)

so that the scaling factor is s = 1 — 4p/3 = 2/3 while the fidelity of cloning is f =
1 —2p/3 =15/6 [3]. For the partition RC vs AB, we obtain

|¥)RreaB = \/g{|‘1’+>|‘1’+> +[@7)[@7) + |\IJ+)“II+>}RC;AB (27)

implying that the 4-qubit wave function is symmetric under the interchange of A and
B (or R and C). Tt is easy to check that the unitary transformation which implements

the UCM [3] is
3 1.,
|0)7 [00) — §|00)AB 10)c + 5\‘1’ Yan [1)c

|1)[ |00) — \/ng)AB |1)C + \/g‘j[l+>AB |0)C (28)

Indeed, using Eq. (28), we have

1 1
‘¢+>Rl|00) — \/;(|00)AB |00)RC + |11)AB ‘11)30) + \/g‘II+>AB (‘01>RC + ‘10)30)
(29)
so that the initial state of I (maximally entangled with the reference R) is transformed
into the wave function Eq. (27). The latter implies

pre = pan = 5 (97)(@* |+ )@ |+ ) (@) (30)

showing that the joint entropy of the two outputs is maximum (remember that the
singlet |¥~) component must vanish). Thus, the third output of the UCM emerges
from a 2-Pauli channel of probability 2/3. Using Eq. (7), we see that the corresponding
operation on an arbitrary state |¢) is

9 5 |+ 2 (T/2) (31)
as noted in Ref. [6].

2.6. Related bound on the capacity of the Pauli channel

The class of symmetric PCMs characterized by Eq. (21) can be used in order to put a
limit on the quantum capacity of a Pauli channel, thereby extending the result of Bruss
et al. [4] for the depolarizing channel. Consider a PCM whose outputs emerge from
a Pauli channel of probabilities p,, py, and p,. Applying an error-correcting scheme
separately on each output of the cloning machine (obliviously of the other output) would
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lead to a violation of the no-cloning theorem if the capacity C(ps,py,p-) was nonzero.
Since C' is a nonincreasing function of p,, py, and p., for p,,p,,p. < 1/2 (i.e., adding
noise to a channel cannot increase its capacity), we have

C(pz,py,p-) =0 if (x,y,2) ¢ E (32)

that is, the quantum capacity is vanishing for any Pauli channel that lies outside the
ellipsoid E. In particular, Eq. (21) implies that the quantum capacity vanishes for (i) a
depolarizing channel with p = 1/4 (p, = p, = p. = 1/12) [4]; (ii) a “2-Pauli” channel
with p = 1/3 (p, = p. = 1/6, p, = 0); and (iii) a dephasing channel with p = 1/2
(pz = py =0, p, = 1/2). Furthermore, using the fact that C' cannot be superadditive
for a convex combination of a perfect and a noisy channel [9], an upper bound on C
can be written using a linear interpolation between the perfect channel (0,0, 0) and any
Pauli channel lying on E:

C<1-2+9y*+22+ay+az+y2). (33)

Note that another class of symmetric PCMs can be found by requiring pra = pre, i.e.,
considering C as the second output and B as the cloning machine. This requirement
implies v =  — y + 2 rather than Eq. (20), which gives rise to the reflection of E with
respect to the zz-plane, i.e, y — —y. It does not change the above bound on C' because
this class of PCMs has noisier outputs in the first octant z,y,z > 0.

2.7. Quantum triplicators based on the PCM

Let us turn to the fully symmetric PCMs that have three outputs emerging from
the same Pauli channel, i.e., pra = prB = pPrRC, Which corresponds to a family of
(non-optimal) quantum ¢riplicating machines. The requirement pra = pgrc implies
v = x —y + z, which, together with Eq. (20), yields the conditions (v = x + 2) A (y =
0). Incidentally, we notice that if all pairs are required to be in the same mixture of
Bell states, this mixture cannot have a singlet |¥~) component. The outputs of the
corresponding triplicators emerge therefore from a “2-Pauli” channel (p, = 0), so that
these triplicators are state-dependent, in contrast with the one considered in Ref. [5].
(For describing a state-independent triplicator, a 6-qubit wave function should be used,
that is, the cloner should consist of 2 qubits.) These triplicators are represented by the
intersection of E with the zz-plane, that is, the ellipse

. . 1
m2+22+mz:§, (34)

whose semiminor axis is 1/1/3 [oriented along the direction (1, 1)] and semimajor axis is
1. The intersection of this ellipse with its semiminor axis (z = z = 1/v/6) corresponds

to the 4-qubit wave function
1 1
)Y+ —=[@ )P )+ —
)| @) [27)[@7) NG

¥) NG

2
abcd = %‘¢+ ‘\I!+>‘\I!+> ) (35)
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which is symmetric under the interchange of any two qubits and maximizes the 2-bit
entropy (or minimizes the mutual entropy between any two outputs of the triplicator,
making them maximally independent). Equation (35) thus characterizes the best trip-
licator of this ensemble, whose three outputs emerge from a “2-Pauli” channel with
p=1/3 (px = p. = 1/6). According to Eq. (7), the (state-dependent) operation of this
triplicator on an arbitrary qubit can be written as

[9) = 511 + g™ "]+ 3(T/2) (36)

If |¢) is real, Eq. (36) reduces to the triplicator that was considered in Ref. [10]. The
fidelity of cloning is then the same as for the UCM, i.e., f = 5/6, regardless the input
state (provided it is real).

3. Cloning machines for N-dimensional states

3.1. Channel characterization using the maximally-entangled states

Consider now the cloning of the state of an N-dimensional system. In order to follow
our previous discussion for quantum bits (N = 2), we need first to introduce the set of
maximally-entangled (ME) states of two N-dimensional systems, A and B:

N—
1
‘wm n)AB — \/—— Z 2mi(in/N) |7 A|7 +m> (37)
7=0

where the indices m and n (m,n = 0,---, N — 1) label the N? states. Note that, here
and below, the label in the kets are taken modulo N. Taking the partial trace of any
state [Vm,n){(¥m,n| results in a density operator for A or B given by

pA=pp=— Z )| =T/N (38)

implying that A and B are maximally entangled. It is easy to check that the ¢y, ) are
orthonormal and form a complete basis in the product Hilbert spaces H4 ® Hp. The
resolution of identity simply reads

N—1

1 iT(i—in o . .
Do ) Wmnl = 5 D0 N @ [+ m)(j -+ ml
m,n=0 m,n j,j’
1 N L
= SNy 6 Ry + ]
k.o j.j'

= ZIJ Jl @ [k) (k|

= IA ®1Ip (39)
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where we have made the substitution j +m = k and used the identity

N-—-1
S il =N = N g (40)

n=0

The maximally-entangled (ME) states |¢y, ) generalize the Bell states for N > 2:
in the special case of two maximally-entangled qubits (N = 2), we simply have the
equivalence [th,0) = |®7F), [¢o,1) = |®7), [¢h1,0) = [¥F), and [¢p1 1) = [T7).

We use these ME-states in order to describe a quantum channel that processes V-
dimensional states. In such a channel, an arbitrary state |¢) undergoes a particular
unitary transformation

N—1
w= S TN (i (41)
k=0

Un

'

with probability py, n (with mepmm, = 1). Note that Uy g = Z, implying that |¢)
is left unchanged with probability poo. If the input of the channel I is maximally
entangled with a reference R (an N-dimensional system) so that their joint state is
Yo,0) =225 17)/V/N, then the joint state of the output O and the reference R is simply
a mixture of the N2 ME-states,

PRO = me7n|’l/}m,n><1/}m,n (42)

m,n

generalizing the mixture of Bell states that we discussed in Sec. 2. Indeed, applying
Up,n locally to one subsystem, leaving the other unchanged, transforms |1 ) into a
ME-state,

(Z @ Umn)ltho,0) = [¥m.n) (43)

extending Eq. (2) to N > 2. This allows us to treat the cloning of N-dimensional states
following closely Sec. 2.2, that is, by considering a 4-partite pure state, namely the state
of a reference system R (initially entangled with the input I), the two outputs A and
B, and the cloning machine (or a third output) C. Note that, using the same reasoning
as in Sec. 2.2, it appears that the minimum size required for the Hilbert space of the
cloning machine is N. (In order to purify pra, we need a N?-dimensional additional
space whereas B is only N-dimensional.) Consequently, we need to consider a pure
state in a N*-dimensional Hilbert space.

3.2. Asymmetric cloning machines

We start by expressing the joint state of the four N-dimensional systems R, A, B,
and C, as a superposition of double-ME states:

N—1

|¥)pa.Bo = Z Amon [Vm,n)RA | Vm,N—n)BC (44)

m,n=0
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where the a,, , are (arbitrary) complex amplitudes such that Y |am n|> = 1. This
expression reduces to Eq. (9) for N = 2. By tracing over B and C' the state Eq. (44),
we see that the joint state of R and A is a mixture of the ME-states,

N-1

PRA = Z |am7n|2 |7/}m,n><1/}m,n

m,n=0

(45)

so that A can be viewed as the output of a channel that processes an input maximally
entangled with R (the initial joint state being |1g0)). Now, we will show that, by
interchanging A and B, the joint state of the 4-partite system can be reexpressed as a
superposition of double-ME states

N-—1
|\IJ>RB;AC = Z ﬁm,n |’l/}m,n)RB ‘1/)m7N7n)AC (46)

m,n=0

where the amplitudes f3,,,, are defined by

1 N-—1
Bmn = ~ Z e2mil(nz—my)/N] Uy y (47)
z,y=0

These amplitudes characterize the quantum channel underlying the second output, B,
since the joint state of R and B is again a mixture of ME-states,

N—1

PRB — Z ‘ﬁm,n

m,n=0

? [Ym ) (Y] (48)

Thus, the outputs A and B of the N-dimensional cloning machine emerge from channels
of respective probabilities py,.n = |Qm.nl? and gm.n = |Bm,n|* which are related via
Eq. (47). Tt is easy to check that Eq. (47) reduces to Eq. (12) for qubits (N = 2). Let
us prove Eqs. (46) and (47) by considering a single component |9, ,)ra|¥y, n—v)Bx i
Eq. (44), that is, choosing am » = 6m u0n.,. Eq. (47) gives By, , = e2mil(nu=—mv)/Nl /|y
so that Eq. (46) results in

1 .
|¥YrB.Ac = N 282”1[(n”7m")/N] Um.n)RB | Vm,N—n)AC

1 ] —mv wi[(j—4' )n - - - -
= D Do el AN @GN |y |+ )| a4 )

m,n j,j’
1 omi(my/N) | (s . .
= 5 2N i) g i+ ) ) ali ot e (49)
m.j
where we have used Y, e?7il(v+i=i)/Nl = N g, ... Making the substitution k =
Jj + m, we obtain
W) rBiac = > el INT Y p kY g |5+ ) a |k + pe (50)

J:k
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which is indeed equivalent to [¢, ,)ra|%,u,N—v)Bx When interchanging A and B. This
proof holds for an arbitrary a,, , as a consequence of the linearity of Eq. (47).

Therefore, we have shown that the complementarity between the two outputs A
and B of an N-dimensional cloning machine is governed by the relationship between a
function and its Fourier transform. The tradeoff between the quality of the two copies
is simply due to an “uncertainty principle” inherent to Fourier transforms. Indeed,
Eq. (47) is basically a 2-dimensional discrete Fourier transform (up to an interchange
of the indices m and n, and a minus sign):

Bm.n = Fln,m] with F[Z,9] = Fo{an_zy} (51)

where F5 is a 2-dimensional discrete Fourier transform. This emphasizes that, if one
output is close-to perfect (au, , is a peaked function), then the second one is very noisy
(Bm,n is a flat function), and conversely. In other words, the indices of ap, , and Bp,.n
act as conjugate variables, so that the probability distributions characterizing the two
outputs, pm,, and ¢, n, cannot have a variance simultaneously tending to zero as a
consequence of an uncertainty principle. (Note that the index m of py,, is dual to
the index n of g, n, and conversely.) The normalization of the 8, ,’s simply results
from Parseval’s theorem: Y7 |amnl* = 32, [Bm.nl®. A symmetric N-dimensional
cloning machine then corresponds essentially to a function a,, , whose square is equal
to its squared Fourier transform, i. e., [am n|> = |Bm.nl?-

3.3. No-cloning inequality for N-dimensional states

We now investigate this complementarity principle in the special case where the
channel underlying each output is a depolarizing channel, that is, all the probabilities
DPm.n are equal except pgo (and equivalently for g, n). Assume that a,, , is the su-
perposition of a peaked function P, ,, = dm.00n0 (i. €., a perfect channel) and a flat
function F, , = 1/N (i. e., a fully depolarizing channel), with respective amplitudes @
and a:

mn =8P, n+aFn, (52)

Note that the normalization condition is |[@+a/N|*>+ (N?—1)|a/N|?> = 1 can be written
as

2
|al® + N Re(@a*) + |a]* = 1 (53)
Tracing over B and C, we see that the first output is characterized by

I®T

+ |a‘2 N2

pra = |[al? + 5 Re(@a®)| [Yoo) oo (54)

so that the input state is replaced by a random state with probability p = |a/? and
left unchanged with probability 1 — p. This is the N-dimensional generalization of a
depolarizing channel. If a = 0, the channel is perfect, while a = 1 corresponds to a fully
depolarizing channel. Note that p denotes here the randomization probability of the
depolarizing channel, that is p = 1 — s where s is the scaling factor (this differs from
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our notation in Sec. 2). Using Eq. (47), we see that the second output is characterized
by

ﬂmm = EPm,n + mem (55)
where b = a and b = @, since Fy,, n are Py, , are dual under Fourier transform. Here
q = |b|? is the randomization probability of the depolarizing channel associated with

B. Thus, the complementarity of the two outputs of the class of asymmetric cloners
considered here (i.e., cloners whose outputs emerge from depolarizing channels) can be
simply written as

. 2 .
af + < Re(ab") + [b]* = 1 (56)

It is easy to see that the best cloning (the smallest values for |a| and |b]) is achieved
when the cross term is the largest in magnitude, that is, when a and b have the same
phase. For simplicity, we assume that @ and b are real and positive. Arguing like before,
we write a no-cloning inequality for an N-dimensional quantum state:

2 A
a2+ﬁab+b221 (57)

where p = a® or ¢ = b? is the randomization probability underlying output A or B,
respectively. This corresponds to the domain in the (a,b)-space which is outside an
ellipse, oriented just as in Fig. 2, whose semiminor axis is /N/(N + 1) and semimajor
axis is y/N/(IN —1). Equation (57) generalizes the no-cloning inequality for qubits,
Eq. (18), which is simply equivalent to Eq. (57) for N = 2, substituting = = a/2
and 2’ = b/2. This ellipse intercepts its minor axis at (/N/2(N + 1),1/N/2(N + 1)),
which corresponds to an N-dimensional UCM [6], as discussed below. Note that this
ellipse tends to a circle of radius one as N tends to infinity. This means that, at the
limit N — oo, the sum of the randomization probabilities cannot be lower than one,
i.e., p4+ q > 1. The no-cloning inequality involves an “incoherent” sum in this limit
(i.e., probabilities not amplitudes are added, while the cross term disappears), which
emphasizes that NV — oo can be viewed as a semi-classical limit. The optimal cloning
machine (with p+ ¢ = 1) can then be understood in classical terms: the input state is
sent to output A or B with probability 1 —p = q or 1 — g = p, respectively, the other
output being a random N-dimensional state. There is no such classical interpretation
for finite- N cloners, as (1 — p) + (1 — ¢) can then exceed one.

3.4. Symmetric cloning machine or the N-dimensional UCM

It is easy to find the symmetric N-dimensional cloner of the class considered above
(i.e., cloners whose outputs emerge from an N-dimensional depolarizing channel) by
requiring that a = b in Eq. (56), which simply results in

N
2
= = 58
Pl = 5w (58)
Thus, the scaling factor corresponding to both outputs is given by
N +2
s=1—|a? = —~12_ (59)

2(N + 1)
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in agreement with the expression derived in Ref. [6] for an N-dimensional UCM. Note
that this cloner is also state-independent and acts on an arbitrary state as

) s p= T2+ e (Z/N) (60)

2(N +1) 2(N +1)

When N — oo, this can be viewed as a classical machine that is transmitting the input
state to one of the two outputs with probability 1/2, a random state being sent on the
other output. In analogy with what we have done for quantum bits (N = 2) in Sect. 2.4,
it should be possible to find an entire class of symmetric cloners with NV > 2, thereby
generalizing Eq. (21). This would give rise to an upper bound on the quantum capacity
of a general channel processing N-dimensional states, extending the bound Eq. (33) for
Pauli channels. This will be reported elsewhere.

4. Conclusion

We have defined a class of asymmetric cloning machines for quantum bits and N-
dimensional quantum states. For quantum bits, we have shown that the asymmetric
Pauli cloning machine, whose outputs emerge from two distinct Pauli channels, general-
izes the universal cloning machine of Buzek and Hillery. The asymmetric PCMs allowed
us to derive a tight no-cloning inequality for quantum bits, quantifying the impossibility
of copying due to quantum mechanics. Using a class of symmetric PCMs, we have also
established an upper bound on the quantum capacity of the Pauli channel of probabil-
ities p, = 2%, p, = y?, and p, = 22, namely C < 1 —2(z% + y® + 22 + 2y + 22 + y2).
These considerations have been extended to N dimensions, showing that the notion of
asymmetric cloners is quite general. The N-dimensional UCM appears as a special case
of these cloners (symmetric and state-independent). We have generalized the no-cloning
inequality in order to characterize the impossibility of perfectly copying N-dimensional
states. Furthermore, we have shown that the tradeoff governing the quality of the
two outputs results from an uncertainty principle akin to the complementarity between
position and momentum.
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