
acta physica slovaca vol. 48 No. 3, 115 { 132 June 1998ASYMMETRIC QUANTUM CLONING MACHINES1N.J. Cerf a;b;c(a) W. K. Kellogg Radiation Laboratory, California Institute of Technology,Pasadena, California 91125(b) Information and Computing Technologies Research Section, Jet PropulsionLaboratory, Pasadena, California 91109(c) Center for Nonlinear Phenomena and Complex Systems, Universit�e Libre deBruxelles, 1050 Bruxelles, BelgiumReceived 7 May 1998, accepted 15 May 1998A family of asymmetric cloning machines for quantum bits and N -dimensionalquantum states is introduced. These machines produce two approximate copiesof a single quantum state that emerge from two distinct channels. In particular,an asymmetric Pauli cloning machine is de�ned that makes two imperfect copiesof a quantum bit, while the overall input-to-output operation for each copy is aPauli channel. A no-cloning inequality is derived, characterizing the impossibilityof copying imposed by quantum mechanics. If p and p0 are the probabilities of thedepolarizing channels associated with the two outputs, the domain in (pp;pp0)-space located inside a particular ellipse representing close-to-perfect cloning isforbidden. This ellipse tends to a circle when copying an N -dimensional statewith N ! 1, which has a simple semi-classical interpretation. The symmetricPauli cloning machines are then used to provide an upper bound on the quantumcapacity of the Pauli channel of probabilities px, py and pz. The capacity is provento be vanishing if (ppx;ppy;ppz) lies outside an ellipsoid whose pole coincideswith the depolarizing channel that underlies the universal cloning machine. Fi-nally, the tradeo� between the quality of the two copies is shown to result from acomplementarity akin to Heisenberg uncertainty principle.1. IntroductionA fundamental property of quantum information is that it cannot be copied, incontrast with information we are used to in classical physics. This means that thereexists no physical process that can produce perfect copies of a system that is initially inan unknown quantum state. This so-called no-cloning theorem, recognized by Dieks [1]and Wootters and Zurek [2], is an immediate consequence of the linearity of quantum1Special Issue on Quantum Optics and Quantum Information0323-0465/96 c
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116 N.J. Cerfmechanics, and lies at the heart of quantum theory. Remarkably, if perfect cloningwas permitted, the Heisenberg uncertainty principle could be violated by measuringconjugate observables on many copies of a single quantum system.Consider a cloning machine that duplicates a quantum bit (a 2-state system) thatis initially in an arbitrary state j i = �j0i+ �j1i whose amplitudes are unknown. It iseasy to build such a machine that perfectly copies the two basis states j0i and j1i, butthen it badly duplicates the superpositions 2�1=2(j0i+ j1i) and 2�1=2(j0i�j1i). In otherwords, it cannot produce perfect copies of all possible input states. This being so, wemay ask how well one can approximately duplicate the unknown state of a quantum bit(qubit) if the quality of the copies is required to be independent of the input state. Thisquestion has been answered by Buzek and Hillery [3] who �rst showed that it is possibleto construct a cloning machine that yields two imperfect copies of a single qubit instate j i. Speci�cally, a universal cloning machine (UCM) can be de�ned that createstwo copies characterized each by the same density operator �, the �delity of cloningbeing f � h j�j i = 5=6. This machine is called universal because it produces copiesthat are state-independent: both output qubits emerge from a depolarizing channel ofprobability 1/4, that is, the Bloch vector characterizing the input qubit is shrunk bya factor 2/3 regardless its orientation. The UCM was later proved to be optimal byBruss et al. [4], and Gisin and Massar [5]. The concept of approximate cloning wasalso generalized to n-plicating machines, that is, cloners that yield n imperfect copiesof a single qubit [5, 6]. Quantum cloning machines have attracted a lot of attentionbecause of their use in connection with quantum communication and cryptography (see,e.g., [4, 7]). For example, an interesting application of the UCM is that it can be used toestablish an upper bound on the quantum capacity C of a depolarizing channel, namelyC = 0 at p = 1=4 [4].In this paper, we introduce a family of asymmetric cloning machines that producetwo distinct (approximate) copies of a single quantum state. This is in contrast withthe cloning machines considered before, which were symmetric (both outputs beingcharacterized by the same density operator). We consider the asymmetric cloning ofboth two-dimensional and N -dimensional quantum states. Using a particular class ofasymmetric cloners whose outputs emerge from (distinct) depolarizing channels, we de-rive a no-cloning inequality governing the tradeo� between the quality of the copies ofa single state imposed by quantum mechanics: a2 +2ab=N + b2 � 1, where sa = 1� a2and sb = 1� b2 is the scaling factor of the channel associated with output A and B, re-spectively. It is, by construction, a tight inequality which is saturated using our cloners.More generally, the complementarity between the two copies is shown to result from anuncertainty principle that relates the outputs of the cloner, much like that associatedwith Fourier transforms. Consequently, the probability distributions characterizing thechannels underlying the two outputs cannot be peaked simultaneously, giving rise to abalance between the �delity of the two copies.The cloning machines for quantum bits are discussed in the �rst part of this paper,Sec. 2. We introduce a Pauli cloning machine (PCM), which produces two (not neces-sarily identical) output qubits, each emerging from a Pauli channel [8]. The family ofPCMs relies on a parameterization of 4-qubit wave functions for which all qubit pairs



Asymmetric quantum cloning machines 117are in a mixture of Bell states. The subclass of symmetric PCMs is then used in orderto express an upper bound on the quantum capacity of a Pauli channel, generalizing theconsiderations of Ref. [4] for a depolarizing channel. In particular, the capacity of thePauli channel with probabilities px = x2, py = y2 and pz = z2, is shown to be vanishingif (x; y; z) lies outside the ellipsoid x2 + y2 + z2+ xy + xz + yz = 1=2, whose pole coin-cides with the depolarizing channel corresponding to the UCM. In Sec. 3, we generalizethe PCM to more than two dimensions, and de�ne a family of asymmetric cloning ma-chines for N -dimensional states. Our description is based on the maximally-entangledstates of two N -dimensional systems, which generalize the Bell states. A special caseof these cloners is shown to be the symmetric N -dimensional UCM [6]. This family ofasymmetric N -dimensional cloners is used to investigate the complementarity principlegoverning the tradeo� between the quality of the copies.2. Pauli cloning machines for quantum bits2.1. Characterization of a Pauli channel using the Bell statesConsider a quantum bit in an arbitrary state j i which is processed by a Paulichannel. Thus, the qubit is rotated by one of the three Pauli matrices or remainsunchanged: it undergoes a phase-
ip (�z), a bit-
ip (�x), or their combination (�x�z =�i�y) with respective probabilities pz, px, and py. (A depolarizing channel correspondsto the special case where px = py = pz.) It is convenient to describe the operation ofsuch a channel by considering an input maximally entangled with a reference system.De�ning the four maximally-entangled states of two qubits (i.e., the Bell states) asj��i = 1p2(j00i � j11i) j	�i = 1p2(j01i � j10i) (1)we note that the local action of the Pauli matrices on one of these states, say j�+i,yields the three remaining Bell states, namely(I 
 �z)j�+i = j��i(I 
 �x)j�+i = j	+i(I 
 �x�z)j�+i = j	�i (2)(Note that we use the convention j0i = j "i and j1i = j #i.) Therefore, if the inputqubit I of the Pauli channel is maximally entangled with a reference qubit R, say iftheir joint state j iRI is the Bell state j�+i, then the joint state of R and the outputO is a mixture of the four Bell states�RO = (1� p) j�+ih�+j+ pz j��ih��j+ px j	+ih	+j+ py j	�ih	�j ; (3)with p = px + py + pz.



118 N.J. CerfA simple correspondence rule can then be written relating an arbitrary mixture ofBell state and the associated operation on a qubit j i by a Pauli channel. Start fromthe mixture �RO = (1� p) j�+ih�+j+ 3Xi=1 pij	iih	ij (4)where p1 � p2 � p3, p = p1 + p2 + p3, and j	ii stand for the three remaining Bellstates ranked by increasing weight. It is straightforward to show that the operation onan arbitrary state j i performed by the corresponding channel isj i ! � = (1� p� p2) j ih j+ (p2 � p1) �1j ?ih ?j�1+ (p3 � p2) �3j ih j�3 + 2(p1 + p2) I=2 (5)where j ?i = �i�yj �i = �x�z j �i denotes the time-reversed of state j i. The fourcomponents in the right-hand side of Eq. (5) correspond respectively to the unchanged,(rotated) time-reversed, rotated, and random fraction. It is clear from Eq. (5) that theoperation of the channel is state-independent only if p1 = p2 = p3 = p=3, that is, ifthe time-reversed and rotated fractions vanish. Then, we have a depolarizing channelof probability p, i. e., �RO is a Werner state and Eq. (5) becomesj i ! � = (1� 4p=3) j ih j+ (4p=3) I=2 (6)Thus, the vector characterizing the input qubit in the Bloch sphere is shrunk by ascaling factor s = 1� 4p=3 regardless its orientation, so that the �delity of the channel,f = h j�j i = 1� 2p=3 = (1 + s)=2, is independent of the input state. Other channelsare necessarily state-dependent. For example, the \2-Pauli" channel of probability p(i.e., px = pz = p=2 and py = 0) performs the operationj i ! � = (1� 3p=2) j ih j+ (p=2) �yj ?ih ?j�y + p I=2= (1� 3p=2) j ih j+ (p=2) j �ih �j+ p I=2 (7)while the dephasing channel of probability p (i.e., pz = p and px = py = 0) simply givesj i ! (1� p) j ih j+ p �z j ih j�z (8)2.2. Asymmetric Pauli cloning machinesWe de�ne an asymmetric Pauli cloning machine as a machine whose two outputs,A and B, emerge from distinct Pauli channels [8]. Thus, if the input I of the cloneris fully entangled with a reference R, i.e., j iRI = j�+i, the density operators �RAand �RB must then be mixtures of Bell states. Focusing on the �rst output A, we seethat a 4-dimensional Hilbert space is necessary in general to purify �RA since we needto accommodate its four (generally nonzero) eigenvalues. The 2-dimensional space ofsecond output qubit B is thus insu�cient for this purpose, so that we must introduce anadditional system C, which may be viewed as an ancilla or the cloning machine itself.A 2-dimensional space for C is then su�cient, so that we need to consider a single
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Fig. 1. Pauli cloning machine of input I (initially entangled with a reference R) and outputsA and B. The third output C refers to an ancilla or the cloning machine. The three outputsemerge in general from distinct Pauli channels.additional qubit C for the cloning machine, as shown in Refs. [3, 4]. As a consequence,we are led to consider a 4-qubit system in order to fully describe the PCM, as picturedin Fig. 1. Before cloning, the qubits R and I are in the entangled state j�+i, the twoauxiliary qubits being in a prescribed state, e.g., j0i. After cloning, the four qubits R,A, B, and C are in a pure state for which �RA and �RB are mixtures of Bell states(A and B emerge from a Pauli channel). As we shall see, �RC happens to be also amixture of Bell states, so that C can be viewed as a third output emerging from a Paulichannel.Instead of specifying a PCM by a particular unitary operation acting on the statej i of the input qubit I (together with the two auxiliary qubits in a �xed state j0i),it is more convenient to characterize it by the wave function j	iRABC underlying theentanglement of the three outputs with R. So, our goal is to �nd in general the 4-qubitwave functions that satisfy the requirement that the state of every pair of two qubits is amixture of the four Bell states. Making use of the Schmidt decomposition of j	iRABCfor the bipartite partition RA vs BC, it is clear that this state can be written as asuperposition of double Bell statesj	iRA;BC = �v j�+ij�+i+ z j��ij��i+ x j	+ij	+i+ y j	�ij	�i	RA;BC ; (9)where x, y, z, and v are complex amplitudes (with jxj2 + jyj2 + jzj2 + jvj2 = 1). Notethat the possible permutations of the Bell states in Eq. (9) are not considered here forsimplicity. The above requirement is then satis�ed for the qubit pairs RA and BC,that is, �RA = �BC is of the form of Eq. (3) with px = jxj2, py = jyj2, pz = jzj2, and1� p = jvj2. It is important to note that these double Bell states for the partition RAvs BC transform into superpositions of double Bell states for the two other possiblepartitions of the four qubits RABC into two pairs (RB vs AC, RC vs AB). Forexample, the transformation associated with the partition RB vs AC isj�+iRA j�+iBC = 12 �j�+ij�+i+ j��ij��i+ j	+ij	+i+ j	�ij	�i	RB;AC



120 N.J. Cerfj��iRA j��iBC = 12 �j�+ij�+i+ j��ij��i � j	+ij	+i � j	�ij	�i	RB;ACj	+iRA j	+iBC = 12 �j�+ij�+i � j��ij��i+ j	+ij	+i � j	�ij	�i	RB;ACj	�iRA j	�iBC = 12 �j�+ij�+i � j��ij��i � j	+ij	+i+ j	�ij	�i	RB;AC (10)(For the partition RC vs AB, these expressions are similar up to an overall sign inthe transformation of the state j	�iRA j	�iBC .) This implies that j	iRABC is alsoa superposition of double Bell states (albeit with di�erent amplitudes) for these twoother partitions, which, therefore, also yield mixtures of Bell states when tracing overhalf of the system. Speci�cally, for the partition RB vs AC, we obtainj	iRB;AC = �v0 j�+ij�+i+ z0 j��ij��i+ x0 j	+ij	+i+ y0 j	�ij	�i	RB;AC ; (11)with v0 = (v + z + x+ y)=2z0 = (v + z � x� y)=2x0 = (v � z + x� y)=2y0 = (v � z � x+ y)=2 (12)implying that the second output B emerges from a Pauli channel with probabilitiesp0x = jx0j2, p0y = jy0j2, and p0z = jz0j2. Similarly, the third output C is described byconsidering the partition RC vs AB,j	iRC;AB = �v00 j�+ij�+i+ z00 j��ij��i+ x00 j	+ij	+i+ y00 j	�ij	�i	RC;AB ;(13)with v00 = (v + z + x� y)=2z00 = (v + z � x+ y)=2x00 = (v � z + x+ y)=2y00 = (v � z � x� y)=2 (14)Thus, Eqs. (12) and (14) relate the amplitudes of the double Bell states for the threepossible partitions of the four qubits into two pairs, and thereby specify the entire setof asymmetric Pauli cloning machines.2.3. No-cloning inequality for quantum bitsLet us consider the class of asymmetric PCMs whose outputs A and B emergefrom (distinct) depolarizing channels. Assume that the �rst output A emerges from adepolarizing channel of probability p = 3jxj2, i.e.,�RA = jvj2j�+ih�+j+ jxj2 �j��ih��j+ j	+ih	+j+ j	�ih	�j� ; (15)



Asymmetric quantum cloning machines 121with jvj2+3jxj2 = 1. Then, from Eq. (12), we have v0 = (v+3x)=2 and x0 = (v�x)=2,resulting in�RB = jv + 3xj24 j�+ih�+j+ jv � xj24 �j��ih��j+ j	+ih	+j+ j	�ih	�j� : (16)Thus, the second output B also emerges from a depolarizing channel of probabilityp0 = 3jx0j2 = 34 jv � xj2, implying that both outputs of this asymmetric PCM are state-independent as they simply correspond to a (di�erent) scaling of the vector character-izing the input qubit in the Bloch sphere. (The third output C emerges in general froma di�erent Pauli channel.) The relation between the parameters x and x0 characterizingthe two outputs can be written asjxj2 +Re(x�x0) + jx0j2 = 14 (17)Clearly, the best cloning (minimum values for jxj and jx0j) is achieved when the crossterm is the largest in magnitude, that is when x and x0 have the same phase. Forsimplicity, we assume here that x and x0 are real and positive. Consequently, the tradeo�between the quality of the two copies can be described by the no-cloning inequalityx2 + xx0 + x02 � 14 ; (18)where the copying error is measured by the probability of the depolarizing channelunderlying each output, i.e., p = 3x2 and p0 = 3x02 (with x; x0 � 0). Equation (18) cor-responds to the domain in the (x; x0)-space located outside an ellipse whose semiminoraxis, oriented in the direction (1; 1), is 1=p6, as shown in Fig. 2. (The semimajor axisis 1=p2.) The origin in this space corresponds to a (nonexisting) cloner whose two out-puts would be perfect p = p0 = 0, while to distance to origin measures (p+ p0)=3. Theellipse characterizes the ensemble of values for p and p0 that can actually be achievedwith a PCM. It intercepts its minor axis at (1=p12; 1=p12), which corresponds to theuniversal cloning machine (UCM), i.e., p = p0 = 1=4, as discussed below. This pointis the closest to the origin (i.e., the cloner with minimum p+ p0), and characterizes inthis sense the best possible copying. The UCM is the only symmetric cloner belongingto the class of PCM considered here (i.e., cloners whose outputs are depolarizing chan-nels); other symmetric cloners will be considered in Sec. 2.4. The ellipse crosses thex-axis at (1=2; 0), which describes the situation where the �rst output emerges from a100%-depolarizing channel (p = 3=4) while the second emerges from a perfect channel(p0 = 0). Of course, (0; 1=2) corresponds to the symmetric situation. The dimensionalargument used in Sec. 2.2. strongly suggests that the imperfect cloning achieved by suchan asymmetric PCM is optimal: a single additional qubit C for the cloner is su�cientto perform the best cloning, i.e., to achieve the minimum p and p0 for a �xed ratio p=p0.(This is proven rigorously for the special case p = p0 in Ref. [4]). Also, introducing aphase di�erence between x and x0 results in a set of PCMs characterized by an ellipsethat is less eccentric and tends to a circle of radius 1=2 for a phase di�erence of �=2.Consequently, the no-cloning inequality (18) is saturated when x and x0 have the same



122 N.J. Cerf
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Fig. 2. Ellipse delimiting the best quality of the two outputs of an asymmetric PCM thatcan be achieved simultaneously (only the quadrant x; x0 � 0 is of interest here). The outputsemerge from depolarizing channels of probability p = 3x2 and p0 = 3x02. Any close-to-perfectcloning characterized by a point inside the ellipse is forbidden.(or opposite) phase. The domain inside the ellipse corresponds then to the values for pand p0 that cannot be achieved simultaneously, re
ecting the impossibility of close-to-perfect cloning, and Eq. (18) is the tightest no-cloning bound that can be written for aqubit. 2.4. Symmetric Pauli cloning machinesConsider now the class of symmetric PCMs that have both outputs emerging froma same Pauli channel, i.e., �RA = �RB . Using Eq. (12), we obtain the conditionsjvj2 = jv + z + x+ yj2=4jzj2 = jv + z � x� yj2=4jxj2 = jv � z + x� yj2=4jyj2 = jv � z � x+ yj2=4 (19)which yields v = x+ y + z ; (20)where x, y, z, and v are assumed to be real. Equation (20), together with the nor-malization condition, describes a two-dimensional surface in a space where each point(x; y; z) represents a Pauli channel of parameters px = x2, py = y2, and pz = z2 (Weonly consider here the �rst octant x; y; z � 0). This surface,x2 + y2 + z2 + xy + xz + yz = 12 ; (21)is an oblate ellipsoid E with symmetry axis along the direction (1; 1; 1), as shownin Fig. 3. The semiminor axis (or polar radius) is 1=2 while the semimajor axis (orequatorial radius) is 1. In this representation, the distance to the origin is px+py+pz, so
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Fig. 3. Oblate ellipsoid representing the class of symmetric PCMs whose two outputs emergefrom the same Pauli channel of parameters px = x2, py = y2, and pz = z2 (only the octantx; y; z � 0 is considered here). The pole of this ellipsoid corresponds to the UCM. The capacityof a Pauli channel that lies outside this ellipsoid must be vanishing.that the pole (1=p12; 1=p12; 1=p12) of this ellipsoid|the closest point to the origin|corresponds to the special case of a depolarizing channel of probability p = 1=4. Thus,this particular PCM reduces to the UCM. This simply illustrates that the requirementof having an optimal cloning (minimum px + py + pz) implies that the cloner is state-independent (px = py = pz).2.5. Universal cloning machineThe optimal symmetric PCM (i.e., the UCM) can be obtained alternatively by re-quiring that the two outputs A and B of a symmetric cloner are maximally independent.Using Eqs. (14) and (20), we obtain v00 = x + z, z00 = y + z, x00 = x + y, and y00 = 0.Therefore, we have�RC = �AB = jx+ zj2 j�+ih�+j+ jy + zj2 j��ih��j+ jx+ yj2 j	+ih	+j : (22)(This means that the third output C emerges from a Pauli channel with vanishing py.)Thus, we need to maximize the joint von Neumann entropy of the two outputs A andB, S(AB) = �Tr(�AB log �AB) = H �jx+ zj2; jy + zj2; jx+ yj2� (23)with H [�] denoting the Shannon entropy. It is easy to see that the solution with x; y; z �0 that maximizes S(AB) is x = y = z, that is, the Pauli channel underlying outputs Aand B reduces to a depolarizing channel. Using Eq. (21), we get x = y = z = 1=p12,so that the wave function underlying the UCM isj	iRA;BC =r34 j�+iRAj�+iBC +r 112 �j��ij��i+ j	+ij	+i+ j	�ij	�i	RA;BC(24)Consequently�RA = �RB = 34 j�+ih�+j+ 112 �j��ih��j+ j	+ih	+j+ j	�ih	�j� (25)



124 N.J. Cerfcon�rming that A and B emerge both from a depolarizing channel with p = 1=4,j i ! 23 j ih j+ 13 (I=2) (26)so that the scaling factor is s = 1 � 4p=3 = 2=3 while the �delity of cloning is f =1� 2p=3 = 5=6 [3]. For the partition RC vs AB, we obtainj	iRC;AB =r13 �j�+ij�+i+ j��ij��i+ j	+ij	+i	RC;AB (27)implying that the 4-qubit wave function is symmetric under the interchange of A andB (or R and C). It is easy to check that the unitary transformation which implementsthe UCM [3] is j0iI j00i ! r23 j00iAB j0iC +r13 j	+iAB j1iCj1iI j00i ! r23 j11iAB j1iC +r13 j	+iAB j0iC (28)Indeed, using Eq. (28), we havej�+iRI j00i !r13�j00iAB j00iRC + j11iAB j11iRC�+r16 j	+iAB�j01iRC + j10iRC�(29)so that the initial state of I (maximally entangled with the reference R) is transformedinto the wave function Eq. (27). The latter implies�RC = �AB = 13 �j�+ih�+j+ j��ih��j+ j	+ih	+j� (30)showing that the joint entropy of the two outputs is maximum (remember that thesinglet j	�i component must vanish). Thus, the third output of the UCM emergesfrom a 2-Pauli channel of probability 2/3. Using Eq. (7), we see that the correspondingoperation on an arbitrary state j i isj i ! 13 j �ih �j+ 23 (I=2) (31)as noted in Ref. [6].2.6. Related bound on the capacity of the Pauli channelThe class of symmetric PCMs characterized by Eq. (21) can be used in order to put alimit on the quantum capacity of a Pauli channel, thereby extending the result of Brusset al. [4] for the depolarizing channel. Consider a PCM whose outputs emerge froma Pauli channel of probabilities px, py, and pz. Applying an error-correcting schemeseparately on each output of the cloning machine (obliviously of the other output) would



Asymmetric quantum cloning machines 125lead to a violation of the no-cloning theorem if the capacity C(px; py; pz) was nonzero.Since C is a nonincreasing function of px, py, and pz, for px; py; pz � 1=2 (i.e., addingnoise to a channel cannot increase its capacity), we haveC(px; py; pz) = 0 if (x; y; z) 62 E (32)that is, the quantum capacity is vanishing for any Pauli channel that lies outside theellipsoid E. In particular, Eq. (21) implies that the quantum capacity vanishes for (i) adepolarizing channel with p = 1=4 (px = py = pz = 1=12) [4]; (ii) a \2-Pauli" channelwith p = 1=3 (px = pz = 1=6, py = 0); and (iii) a dephasing channel with p = 1=2(px = py = 0, pz = 1=2). Furthermore, using the fact that C cannot be superadditivefor a convex combination of a perfect and a noisy channel [9], an upper bound on Ccan be written using a linear interpolation between the perfect channel (0; 0; 0) and anyPauli channel lying on E:C � 1� 2(x2 + y2 + z2 + xy + xz + yz) : (33)Note that another class of symmetric PCMs can be found by requiring �RA = �RC , i.e.,considering C as the second output and B as the cloning machine. This requirementimplies v = x� y + z rather than Eq. (20), which gives rise to the re
ection of E withrespect to the xz-plane, i.e, y ! �y. It does not change the above bound on C becausethis class of PCMs has noisier outputs in the �rst octant x; y; z � 0.2.7. Quantum triplicators based on the PCMLet us turn to the fully symmetric PCMs that have three outputs emerging fromthe same Pauli channel, i.e., �RA = �RB = �RC , which corresponds to a family of(non-optimal) quantum triplicating machines. The requirement �RA = �RC impliesv = x � y + z, which, together with Eq. (20), yields the conditions (v = x+ z) ^ (y =0). Incidentally, we notice that if all pairs are required to be in the same mixture ofBell states, this mixture cannot have a singlet j	�i component. The outputs of thecorresponding triplicators emerge therefore from a \2-Pauli" channel (py = 0), so thatthese triplicators are state-dependent, in contrast with the one considered in Ref. [5].(For describing a state-independent triplicator, a 6-qubit wave function should be used,that is, the cloner should consist of 2 qubits.) These triplicators are represented by theintersection of E with the xz-plane, that is, the ellipsex2 + z2 + xz = 12 ; (34)whose semiminor axis is 1=p3 [oriented along the direction (1; 1)] and semimajor axis is1. The intersection of this ellipse with its semiminor axis (x = z = 1=p6) correspondsto the 4-qubit wave functionj	iabcd = 2p6 j�+ij�+i+ 1p6 j��ij��i+ 1p6 j	+ij	+i ; (35)



126 N.J. Cerfwhich is symmetric under the interchange of any two qubits and maximizes the 2-bitentropy (or minimizes the mutual entropy between any two outputs of the triplicator,making them maximally independent). Equation (35) thus characterizes the best trip-licator of this ensemble, whose three outputs emerge from a \2-Pauli" channel withp = 1=3 (px = pz = 1=6). According to Eq. (7), the (state-dependent) operation of thistriplicator on an arbitrary qubit can be written asj i ! 12 j ih j+ 16 j �ih �j+ 13(I=2) : (36)If j i is real, Eq. (36) reduces to the triplicator that was considered in Ref. [10]. The�delity of cloning is then the same as for the UCM, i.e., f = 5=6, regardless the inputstate (provided it is real).3. Cloning machines for N-dimensional states3.1. Channel characterization using the maximally-entangled statesConsider now the cloning of the state of an N -dimensional system. In order to followour previous discussion for quantum bits (N = 2), we need �rst to introduce the set ofmaximally-entangled (ME) states of two N -dimensional systems, A and B:j m;niAB = 1pN N�1Xj=0 e2�i(jn=N)jjiAjj +miB (37)where the indices m and n (m;n = 0; � � � ; N � 1) label the N2 states. Note that, hereand below, the label in the kets are taken modulo N . Taking the partial trace of anystate j m;nih m;nj results in a density operator for A or B given by�A = �B = 1N N�1Xj=0 jjihjj = I=N (38)implying that A and B are maximally entangled. It is easy to check that the j m;ni areorthonormal and form a complete basis in the product Hilbert spaces HA 
HB . Theresolution of identity simply readsN�1Xm;n=0 j m;nih m;nj = 1N Xm;nXj;j0 e2�i[(j�j0)n=N ]jjihj0j 
 jj +mihj0 +mj= 1N Xk;n Xj;j0 e2�i[(j�j0)n=N ]jjihj0j 
 jkihk + j0 � jj= Xk;j jjihjj 
 jkihkj= IA 
 IB (39)



Asymmetric quantum cloning machines 127where we have made the substitution j +m = k and used the identityN�1Xn=0 e2�i[(j�j0)n=N ] = N �j;j0 (40)The maximally-entangled (ME) states j m;ni generalize the Bell states for N > 2:in the special case of two maximally-entangled qubits (N = 2), we simply have theequivalence j 0;0i = j�+i, j 0;1i = j��i, j 1;0i = j	+i, and j 1;1i = j	�i.We use these ME-states in order to describe a quantum channel that processes N -dimensional states. In such a channel, an arbitrary state j i undergoes a particularunitary transformation Um;n = N�1Xk=0 e2�i(kn=N)jk +mihkj (41)with probability pm;n (with Pm;n pm;n = 1). Note that U0;0 = I, implying that j iis left unchanged with probability p0;0. If the input of the channel I is maximallyentangled with a reference R (an N -dimensional system) so that their joint state isj 0;0i =Pj jji=pN , then the joint state of the output O and the reference R is simplya mixture of the N2 ME-states,�RO =Xm;n pm;nj m;nih m;nj (42)generalizing the mixture of Bell states that we discussed in Sec. 2. Indeed, applyingUm;n locally to one subsystem, leaving the other unchanged, transforms j 0;0i into aME-state, (I 
 Um;n)j 0;0i = j m;ni (43)extending Eq. (2) to N > 2. This allows us to treat the cloning of N -dimensional statesfollowing closely Sec. 2.2, that is, by considering a 4-partite pure state, namely the stateof a reference system R (initially entangled with the input I), the two outputs A andB, and the cloning machine (or a third output) C. Note that, using the same reasoningas in Sec. 2.2, it appears that the minimum size required for the Hilbert space of thecloning machine is N . (In order to purify �RA, we need a N2-dimensional additionalspace whereas B is only N -dimensional.) Consequently, we need to consider a purestate in a N4-dimensional Hilbert space.3.2. Asymmetric cloning machinesWe start by expressing the joint state of the four N -dimensional systems R, A, B,and C, as a superposition of double-ME states:j	iRA;BC = N�1Xm;n=0�m;n j m;niRA j m;N�niBC (44)



128 N.J. Cerfwhere the �m;n are (arbitrary) complex amplitudes such that Pm;n j�m;nj2 = 1. Thisexpression reduces to Eq. (9) for N = 2. By tracing over B and C the state Eq. (44),we see that the joint state of R and A is a mixture of the ME-states,�RA = N�1Xm;n=0 j�m;nj2 j m;nih m;nj (45)so that A can be viewed as the output of a channel that processes an input maximallyentangled with R (the initial joint state being j 0;0i). Now, we will show that, byinterchanging A and B, the joint state of the 4-partite system can be reexpressed as asuperposition of double-ME statesj	iRB;AC = N�1Xm;n=0�m;n j m;niRB j m;N�niAC (46)where the amplitudes �m;n are de�ned by�m;n = 1N N�1Xx;y=0 e2�i[(nx�my)=N ] �x;y (47)These amplitudes characterize the quantum channel underlying the second output, B,since the joint state of R and B is again a mixture of ME-states,�RB = N�1Xm;n=0 j�m;nj2 j m;nih m;nj (48)Thus, the outputs A and B of the N -dimensional cloning machine emerge from channelsof respective probabilities pm;n = j�m;nj2 and qm;n = j�m;nj2 which are related viaEq. (47). It is easy to check that Eq. (47) reduces to Eq. (12) for qubits (N = 2). Letus prove Eqs. (46) and (47) by considering a single component j �;�iRAj �;N��iBX inEq. (44), that is, choosing �m;n = �m;��n;� . Eq. (47) gives �m;n = e2�i[(n��m�)=N ]=N ,so that Eq. (46) results inj	iRB;AC = 1N Xm;n e2�i[(n��m�)=N ] j m;niRB j m;N�niAC= 1N2 Xm;nXj;j0 e2�i[(n��m�)=N ] e2�i[(j�j0)n=N ] jjiR jj +miB jj0iA jj0 +miC= 1N Xm;j e�2�i(m�=N)jjiR jj +miB jj + �iA jj + �+miC (49)where we have used Pn e2�i[(�+j�j0)n=N ] = N �j+�;j0 . Making the substitution k =j +m, we obtainj	iRB;AC = 1N Xj;k e2�i[(j�k)�=N ]jjiR jkiB jj + �iA jk + �iC (50)



Asymmetric quantum cloning machines 129which is indeed equivalent to j �;�iRAj �;N��iBX when interchanging A and B. Thisproof holds for an arbitrary �m;n as a consequence of the linearity of Eq. (47).Therefore, we have shown that the complementarity between the two outputs Aand B of an N -dimensional cloning machine is governed by the relationship between afunction and its Fourier transform. The tradeo� between the quality of the two copiesis simply due to an \uncertainty principle" inherent to Fourier transforms. Indeed,Eq. (47) is basically a 2-dimensional discrete Fourier transform (up to an interchangeof the indices m and n, and a minus sign):�m;n = F [n;m] with F [~x; ~y] = F2f�N�x;yg (51)where F2 is a 2-dimensional discrete Fourier transform. This emphasizes that, if oneoutput is close-to perfect (�m;n is a peaked function), then the second one is very noisy(�m;n is a 
at function), and conversely. In other words, the indices of �m;n and �m;nact as conjugate variables, so that the probability distributions characterizing the twooutputs, pm;n and qm;n, cannot have a variance simultaneously tending to zero as aconsequence of an uncertainty principle. (Note that the index m of pm;n is dual tothe index n of qm;n, and conversely.) The normalization of the �m;n's simply resultsfrom Parseval's theorem: Pm;n j�m;nj2 = Pm;n j�m;nj2. A symmetric N -dimensionalcloning machine then corresponds essentially to a function �m;n whose square is equalto its squared Fourier transform, i. e., j�m;nj2 = j�m;nj2.3.3. No-cloning inequality for N-dimensional statesWe now investigate this complementarity principle in the special case where thechannel underlying each output is a depolarizing channel, that is, all the probabilitiespm;n are equal except p0;0 (and equivalently for qm;n). Assume that �m;n is the su-perposition of a peaked function Pm;n = �m;0 �n;0 (i. e., a perfect channel) and a 
atfunction Fm;n = 1=N (i. e., a fully depolarizing channel), with respective amplitudes aand a: �m;n = aPm;n + aFm;n (52)Note that the normalization condition is ja+a=N j2+(N2�1)ja=N j2 = 1 can be writtenas jaj2 + 2N Re(aa�) + jaj2 = 1 (53)Tracing over B and C, we see that the �rst output is characterized by�RA = �jaj2 + 2N Re(aa�)� j 0;0ih 0;0j+ jaj2 I 
 IN2 (54)so that the input state is replaced by a random state with probability p = jaj2 andleft unchanged with probability 1 � p. This is the N -dimensional generalization of adepolarizing channel. If a = 0, the channel is perfect, while a = 1 corresponds to a fullydepolarizing channel. Note that p denotes here the randomization probability of thedepolarizing channel, that is p = 1 � s where s is the scaling factor (this di�ers from



130 N.J. Cerfour notation in Sec. 2). Using Eq. (47), we see that the second output is characterizedby �m;n = bPm;n + b Fm;n (55)where b = a and b = a, since Fm;n are Pm;n are dual under Fourier transform. Hereq = jbj2 is the randomization probability of the depolarizing channel associated withB. Thus, the complementarity of the two outputs of the class of asymmetric clonersconsidered here (i.e., cloners whose outputs emerge from depolarizing channels) can besimply written as jaj2 + 2N Re(ab�) + jbj2 = 1 (56)It is easy to see that the best cloning (the smallest values for jaj and jbj) is achievedwhen the cross term is the largest in magnitude, that is, when a and b have the samephase. For simplicity, we assume that a and b are real and positive. Arguing like before,we write a no-cloning inequality for an N -dimensional quantum state:a2 + 2N ab+ b2 � 1 (57)where p = a2 or q = b2 is the randomization probability underlying output A or B,respectively. This corresponds to the domain in the (a; b)-space which is outside anellipse, oriented just as in Fig. 2, whose semiminor axis is pN=(N + 1) and semimajoraxis is pN=(N � 1). Equation (57) generalizes the no-cloning inequality for qubits,Eq. (18), which is simply equivalent to Eq. (57) for N = 2, substituting x = a=2and x0 = b=2. This ellipse intercepts its minor axis at (pN=2(N + 1);pN=2(N + 1)),which corresponds to an N -dimensional UCM [6], as discussed below. Note that thisellipse tends to a circle of radius one as N tends to in�nity. This means that, at thelimit N ! 1, the sum of the randomization probabilities cannot be lower than one,i.e., p + q � 1. The no-cloning inequality involves an \incoherent" sum in this limit(i.e., probabilities|not amplitudes|are added, while the cross term disappears), whichemphasizes that N ! 1 can be viewed as a semi-classical limit. The optimal cloningmachine (with p+ q = 1) can then be understood in classical terms: the input state issent to output A or B with probability 1� p = q or 1� q = p, respectively, the otheroutput being a random N -dimensional state. There is no such classical interpretationfor �nite-N cloners, as (1� p) + (1� q) can then exceed one.3.4. Symmetric cloning machine or the N-dimensional UCMIt is easy to �nd the symmetric N -dimensional cloner of the class considered above(i.e., cloners whose outputs emerge from an N -dimensional depolarizing channel) byrequiring that a = b in Eq. (56), which simply results inp = jaj2 = N2(N + 1) (58)Thus, the scaling factor corresponding to both outputs is given bys = 1� jaj2 = N + 22(N + 1) (59)



Asymmetric quantum cloning machines 131in agreement with the expression derived in Ref. [6] for an N -dimensional UCM. Notethat this cloner is also state-independent and acts on an arbitrary state asj i ! � = N + 22(N + 1) j ih j+ N2(N + 1) (I=N) (60)When N !1, this can be viewed as a classical machine that is transmitting the inputstate to one of the two outputs with probability 1/2, a random state being sent on theother output. In analogy with what we have done for quantum bits (N = 2) in Sect. 2.4,it should be possible to �nd an entire class of symmetric cloners with N > 2, therebygeneralizing Eq. (21). This would give rise to an upper bound on the quantum capacityof a general channel processing N -dimensional states, extending the bound Eq. (33) forPauli channels. This will be reported elsewhere.4. ConclusionWe have de�ned a class of asymmetric cloning machines for quantum bits and N -dimensional quantum states. For quantum bits, we have shown that the asymmetricPauli cloning machine, whose outputs emerge from two distinct Pauli channels, general-izes the universal cloning machine of Buzek and Hillery. The asymmetric PCMs allowedus to derive a tight no-cloning inequality for quantum bits, quantifying the impossibilityof copying due to quantum mechanics. Using a class of symmetric PCMs, we have alsoestablished an upper bound on the quantum capacity of the Pauli channel of probabil-ities px = x2, py = y2, and pz = z2, namely C � 1� 2(x2 + y2 + z2 + xy + xz + yz).These considerations have been extended to N dimensions, showing that the notion ofasymmetric cloners is quite general. The N -dimensional UCM appears as a special caseof these cloners (symmetric and state-independent). We have generalized the no-cloninginequality in order to characterize the impossibility of perfectly copying N -dimensionalstates. Furthermore, we have shown that the tradeo� governing the quality of thetwo outputs results from an uncertainty principle akin to the complementarity betweenposition and momentum.Acknowledgements I am grateful to V. Buzek for suggesting the extension of thePauli cloning machine to N -dimensional quantum states. This work was supported inpart by the National Science Foundation under Grant Nos. PHY 94-12818 and PHY94-20470, and by a grant from DARPA/ARO through the QUIC Program (#DAAH04-96-1-3086). NJC is Collaborateur scienti�que of the Belgian National Fund for Scienti�cResearch. References[1] D. Dieks: Phys. Lett. 92A (1982) 271[2] W.K. Wootters, W.H. Zurek: Nature 299 (1982) 802[3] V. Buzek, M. Hillery: Phys. Rev. A 54 (1996) 1844[4] D. Bruss, D.P. DiVincenzo, A.K. Ekert, C.A. Fuchs, C. Macchiavello, J.A. Smolin: Phys.Rev. A 57 (1998) 2386
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