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The superposition of displaced Fock states ( DFS’s) is discussed and various mo-
ments are calculated. The s-ordered namm.yvno‘cwd.—:nw distribution function (QDF)
for the superposition of DFS's is investigated- The s-parameterized charactris-
tic function (CF) for the superposition of two DFS’s are considered. The Glauber
second-oreder coherence function is calculated. The squeezing properties of the su-
perposition of DFS’s are studied. Analytical and numerical results for the quadra-
ture component distributions are presented. A generation scheme is discussed.

1 Introduction

There are two kinds of states that play 2 fundamental role in quantum optics of a single
boson mode: the Fock (number) state and the coherent state [1]. The number state
{n) is determined by its photon number while the phase is completely random. The
amplitude of the field has a zero expectation value in this state. On the other hand
for the coherent state |o) the phase is determined and the amplitude of the field has
a non-zero value. Experiments have been performed to prepare the Fock states and
coherent states through motional dynamics of the centre of mass of trapped ions [21.
Displaced Fock states (DFS’s) |a, n) are also important states in quantum optics (3, 4,
defined by the action of the displacement operator D{a) on the pumber state [ # 0).
In one sense the DFS’s is obtained from a number state by adding a nongzero value t0
the field amplitude {4]. By displacing in phase space, a field amplitude is added to this
state, and the photon number has now 2 contribution from the coherent component
of the field. They become phase dependent because of the phase of the displacement
operator. They can be regarded as a generalized class of the Fock and coherent states.
They may form a complete basis, and have interesting and unusual physical properties
[4, 5]. The experimental observtion of the DFS’s is still to be done.
The DFS, la,n >, 18 defined by

fa,n) = D(a)|n) (1.1)
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with D(a) the displacement operator, given by {1

D(a) = exp(aa™ — a*a), a = |ale® (1.2)

where a {(a™) is the annihilation (creation) operator of the boson field.
The scalar product (8, m|a,n) is given by, 41

(Blayy/ 2o — B "L (e - g, m>n

Am. S_Q, 3v = AEQV HMA.AE* _ QJ:!E.@N.IEA_Q _ EnY n>m

(1.3)

where the scalar product of two coherent states has the well known value {Bla) =
exp[—3(laf? + |81%) + af*], and L2 (z) is the Laguerre polynomial

@=2 () S 04

=0

The generation of nonclassical states of light is at the heart of quantum optics. In
particular the superpositions of quantum states [6], are also considered as an important
type of nonclassical states. These states are of particular interest because they possess
various nonclassical properties, such as squeezing and sub-Poissonian statistics.Non-
classical properties of states generated by the excitations of even and odd coherent
states of light have been studied in ref. [9]. Also generating Schodinger-cat-like states
by means of conditional measurements on a beam splitter have been proposed in [10}.
It may then be of interest to consider superpoisitions of the DFS’s to see if there is any
enhancement of some nonclassical properties. Previously, two kinds of superpositions of
DFS’s, ie., [g1 >= %m:?: > +|a,k >) and [¢p >= N(Ja,n > +|—a,n >) with N the
normalization constant, have been studied [7]. The generation of special superpositions
of the DFS’s via the driven J aynes-Cummings model have been discussed (8]-

In this paper we study another type of superposition of the DFS’s.

This paper is organized as follows. In section 2 we discuss the construction and
properties of superposition of DFS’s and illustrate the photon number probability dis-
tributions. In section 3 we discuss the statistical properties of superposition of a pair
of DFS’s. We discuss the m-vmnwamnmn.ﬁm& ncmmm.vnovmw._:@ distribution function. We
study some applications for the s-ordered characteristic function: namely; moments and
squeezing. Also we discuss the quadrature component distributions for these states. Fi-
nally in section 4 we present a generatation scheme for these states.

2 Superposition of DFS’s

We consider a superposition of these states in the form

k—1

[T, = Ak D Cilagsms) (2.1a)

j=0
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where C; are constants, with Ag as the normalization constant given by

k-1
A2 =Y C;C* (ou,rulaj nj) (2.1b)

jd=0

1t is interesting to see the connection between this superposition and a similar state
defined by Agrawal and Tara [4d]. There they define the state

W)= 2o, with N = (Bl (22)

after little algebra, we get

=5 " (7)o v 23

J

which is a special case of eqn.(2.1) when a; = 8 We first obtain the photon statistics
for the states of equation (2.1). To begin we set

|¥x) = MU an(k)im) ‘ (2.4)
m=0 .
where
k-1
am(k) = 14kl Y _ Ci{mlag,ns) (2.5)
i=0

The expectation value in this expression can be calculated from (1.3) when we let § = 0.
The photon number distribution P(l) is

P() e
_.&Qaw_u (2:6)

I

il

Numerical calculations, for k& = 2, show that these distributions oscillate and as l
becomes large the distributions are damped. As n; increase the distributions are still
oscillatory. We note that fast oscillations appear in P(l) with decreasing of ao-

We now examine the quadrature squeezing properties of |¥,). The quadrature
components can be expressed in terms of creation and annihilation operators as follows:

1 1
X, = m?.r at), Xo = e at) (2.7)

To calculate the moments of the quadratures in our state, one has to find average

values of products of the operators a and at in these states, on the form (dropping the
surperscript k)

o0
< a*tfal >= M aya*,

s,7=0

(2.8)
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As is well known squeezing is said to exist whenever (AX;)? < 2 for (j=1or 2), with

the variance (AXHY = CAWV - (X;)*.

terized by the g parameter defined as

The squeezing is best parame
A2y —
g = I\!\\AADXL ) O.Mm~ =12 (2.9)
' 0.25
such that squeezing exits for -1 < ¢;: <0. ) . ,

Next we consider a phase space quasiprobability distribution functions (QDF’s) for
our states. We study the m-cm.Sanmﬁ.Ema QDF which is. given in ref. [5]. For the
density operator p = | ¥ >< Tl the s-parameterized QDF has the form:

(2.10)

9 & C(1+s) . 5
.TJAE.mV = .m MoAleu A._. _ mVu..Tw_ < u.u_ew > ~
.ﬂ“
The general representation function F(83, s) that may be identified with the weight func-
d P(B) the Glauber-Sudershan

tions Q(f) Husimi function ,W(8) Wigner function an :
function when the order parameter assumes the values s = —1,0,+1 respectively.
3 Superposition of a pair of DFS’s

In the previous section we have derived a general expression for the s-parameterized
QDF of superpositions of DFS’s (2.1). To shed some light on eq.(2.1), we take the case

of the superposition of two DFS’s {k = 2}, namely
(3.1)

|¥2) = As{Colao,no) + Cilai,m)}
= exp(iy) with ¢ as a
hotons in the two DFS’

from the work in ref.
the normalization co

parameter and alpha; = —ao- We

s of eq.(3.1). We choose 7o >n in
(7, 9]. Note that the
nstant

we choose Co = 1, 1

take different number of p
our analysis, which is the main difference
resulting states (odd or even states) depend on 7o and ng,

As is obtained from (2.1b).

The s-ordered characteristic fu
C(\8) = TripD(A)] exp(3IA1) wi
corresponding to the state 81l)isp=
we can write the s-ordered CF in the form,

(14],
e density operator
ator identities,

nction (CF) C(,s) is defined by
th D()\) given by eqn.(1.2). Th
(¥, >< T,|. By using the oper

COns) = 1Al expl5 AP [exp- LA + a5 = aox" L]
1

+ mxliw_v,_m — oA+ QothE:y_ﬁ + exp(i) Who mxglm_y — 200’}

X (A — 2a0) ™™ L1~ 1A = 200f°] + exp(=i¥) - exp{~ 5|+ 200l’)

X [~ + 200) T La T A+ 200’)} 3.2)

s obtained; and from it we can calculate any expectation

Thus the s-ordered CF i
value for the field operators.
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Fig. 1. Coherence function g
= 6 (dashed curve).

number of photons has the value:
m=1n=4%4 (chained curve) and n; =1, no

3.1 Photon statistics

Here we focus our attention on the autocorrelation function g?) defined by Glauber as

follows:

(a*’a?)
(ata)?

¢ =

We plot the autocorrelation function ¢‘® in Fig.1 against the displacement param-
1 with ng = 1,2,4,6 , for ¢ = 0.

eter ag. We assume the parameters as follows: n; =
We note that sub-Poissonian light exists for ng = ny = 1 (solid curve) and ng =2 with
n; = 1. The super-thermal light exist only with ao < 1. Also when the displacement
parameter og is increased the Poissonian behaviour is persistent. Numerical calcula-
tions show that super-Poissonian light exists for even ng —ny. The super-thermal light

exists only with ng =n1 =0.
3.2 Squeezing

g is given here through investigation of the parameter ga.
e displacement parameter ao- We assume the param-
eters as follows: ny = 0 ng = 0,2,4,6. We find that the maximum squeezing in the
case of ng = n, = 0, L.e, coherent states. Increasing of n; implies the demolishing of

does not exist. Thus as might be expected there is

squeezing. Also the squeezing of @1
no second-order squeeing for these states forn; > 1.

Discussion of normal squeezin
In Fig.2 we plot ¢u against th
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Fig. 2. Squeezing parameter g2 against the displacement parameter &o, , for ¢ = 0. The
aumber of photons has the values: n1 = 0, o = 0 {solid curve), iy = 0,10 =2 (dotted curve)
n=0,no=4 (chained curve) and n1 =0, no = 6 (dashed curve).

3.3 s-ordered QDF

From eqn.(2.10) we choose to discuss the Wigner function (s = 0). Also the s-ordered
QDF is defined as a Fourier transformation of the s-ordered CF [14].

The Wigner function for no = n1 = 2, a0 =3foryp =0 are shown in Fig.3a.
From the plots, two separated peaks surrounded by almost circular contours and an
oscillatory regime between them can be seen. The separation of the two peaks is seen
to increase with increasing co, but the oscillatory regime increases with increasing ;-
Tt is observed that the plot is symmetric about X =Re(f)=0,Y=1I m(B) =0.

In Fig.3b we plot the Wigner function withng=2,nm =1,a =1, for 4 = 0. Here
we notice the asymmetry where we have a peak and a crater. However, it is symmetric
about X = Re(B) =0. ,

3.4 Quadrature distributions

In order to calculate the quadrature component distribution for the superposition state
(i-e., the vwmmm-vwgamgim.mm field strength distribution) we write

TAHQQV = _AH.B_ewv_w . Awwv

which can be measured in balanced homodyne detection [10]. We first expand the
eigenstate |z, &) of quadrature component :

z(®) = Mv\mﬁmlz.m +eTat) ‘ (3.4)
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{a}

Fig.3. Wigner function ( i.e., s = —1) the two DFS’s superposition state, for ¢ = 0, with; (a)
np=m =2 x=3 Byne=2,m=1x= 1. Here X = Re(B) and Y = Im(B).

in the photon number basis a5 [10}

.8y = L e a2y 35 S H @) (3.5)
we 2 =0 )\M.:._

By using Eqgns.(2.1) and (3.5 ) we have the quadrature component distribution (3.3) in
the form

P ) = e 3 T D Glea s @HE 36

2 i=o 9(+3) 11!

T2
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Fig. 4. Quadrature distribution P(z,®)) of the pair of DFS’s superpoition state |¥) with
ao = 0.5, ¥ = 0. The number of photons are assumed as: (@yno=m1=1,(b) no=mn1 = 2.

In Fig4 we plot the phase-parameterized field strength distribution (quadrature
component) distribution P(z,®) with (a) no = m = 1, ap = 0.5, (b) o = n3 = 2,
ap =0.5,forp =0. In general the figures for P(z,®) are symmetric around z = 0 and
$=73.

In Fig.4a the middle two peaks diminish by the increase in @ while the outer peaks
build up for the range [0, z]. In Fig4b. we see that the outer peaks diverge as @
increases in [0, §]. For ® near § the quadrature component distribution Pz, ®) exhibits
two separated peaks or more, whereas for @ close to 0 or 7 anl interference pattern is
observed. Numerical calculations show that for different values of 9 the features shown
in these figures change.
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4 Generation scheme

After the discussion of the properties of the superposition of the DFS’s, we wish to
consider the production of such superposition. Let a two-level ion of mass M move
in a harmonic potential of frequency Wz in the z-direction. Let afat) stand for the
annihilation (creation) operator of the vibrational quanta in the z-direction. Then the
position operator is given by z = Azola + at) with Azg = (2w:M )% the width of
the harmonic ground state. In this scheme 2 beams of lasers applied along the T—axis
are required to manipulate the motion of the atom: they are detuned by tw,. In the
rotating wave approximation the hamiltonian for this system is given by

H=w,ata+ ﬁmwmqu - (pE (z,t)o- + h.c) (4.1)
The frist two terms describe the external and internal free motion of the ion and the
last term stands for the atom-field interaction. The dipole matrix element p and the
transition frequency wo of the 9-level ion, and the operators 6; = le){el — lgi{gl, o+ =
leYgl,o- = |g)(e| where |e) and |g) are the atomic excited and ground state repectively.
The negative frequency part of the driving electric field is given by

E (. 3 — mwms.:s.olﬁuvnlfal_.eL + mwmm—ﬂﬁo+5nvnlwnn+sn_ A%.Nv

where E; and ¢; indicate amplitudes and phases of the driving beams. When the
trapping frequency is much larger than the other characteristic frequencies, and provid-
ing that the field is resonant with one of the vibrational side-bands, then the ion-field
interaction can be described by a non-linear Jaynes Cummings model (JCM) [15 .
Accordingly, in the interaction picture the Hamiltonian (4.1) takes the form

o . N2741
H = IM Q) et —n2/2 (i) RIS
1 Q.uoﬁ 1e%e Q._G.+C_.€ Y*a
. 2L
+ Qettreil ) 7 (g+yiait Yoo + hec. (4.3)

GG+ D!

with ; = pE; the Rabi frequencies and 77 = %”.NAHWV the Lamb-Dicke parameters,
and they describe the ratio between the single photon recoil energy and the energy-
level spacing in the harmonic oscillator strength. In the Lamb-Dicke limit where the
vibrational amplitude of the ion is much smaller than the laser wavelength it is sufficient
to keep the frist few terms in (4.3) and one works with an effective Hamiltonian H; of

the form

;= — (210" + 2gsa)o— + h.c. (4.4a)
where

g; = iQePinie B2, j=1,2 (4.4b)

the exponentials may be put equal to 1 because of the smallness of the n}’s.
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When we look at (4.4) it is noticed that the first terms (+ its h.c.) is the usual
JCM Hamiltonian. It describes the first red-side band resonance. While the second
term (-+ its h.c.) is the first blue-side band resonance. It is the counter-rotating term
which is not present in the cavity Q.E.D. The motional and electronic dynamics may
be decoupled in the Hamiltonian (4.4) by adding another interaction [16]; and we finish
up with

i = {2 +g3)at + 2091 + g2)a}(o+ +0-) (4.5)
under this Hamiltonian any atom prepared in the state .%mcmv + |g)) which can be
generated from the ground state by applying a 7 carrier pulse will stay in this state
and will be left unchanged [16]. Thus the dynamics is reduced to that of the motional
degrees of freedom only. Under this Hamiltonian the motional dynamics evolves towards
the DFS’s |a, m) when it is prepared initially in the Fock state |m). The state |m) can be
prepared with very high efficiency according to recent experiments [2]. The preparation
of superposition of these states can be done according to the scheme described below.

We start from

m
[2(0) = Y, caln9) (4.6)
n=0
This state can be generated by successive applications of an external classical driving
field and a quantized field (similar to (4.4)) as described in detail in ref. [ 17]. Applying
classical field (carrier) for a duration time 7y whose evolution operator takes the form

U(n) = ¢os Qiriledel - i€’ sin Q7 le) (gl
— de~¥rsinQym|g){el + cos Q719 (g} \ 4.7

where € is the Rabi frequency in this case, 6, is a phase, on the state (4.6) and taking
yn=50= Z, then we get

T Cn
1T(r)) = Us(n)[2(0) = > M\M_:v ® (le) +19)) (4.8)
c n=0
the internal state (le)+ lg}) will remain constant under the Hermiltonian (4.5). Applying
this Hermiltonian for a time duration 73. The state |¥(r)) evolves to

m
C.

[E(r)) = [¥(r + 7)) = Ur () E(m)) = ) &_P:V ® (le) +192) (4.9)
where o = 2i(g1 + 95)72- The state in (4.9) is a superposition of displaced Fock states
but with the same displacement a. This state is equivalent to that discussed in ref.
[4(d)]

We choose the polarization in the quantized field so that it affects the excited state
only as described in ref.[2] and apply the field for a duration 73 which generates the
state ’

n=0

(@ (ra)) = Ualra)| ¥(m2)) = 2 m«w:?vs + o) lg)] (4.10)

n=0
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where a = a + 2i(d1 + §3)73-
After that we apply a carrier pulse for a duration 74 with the evolution operator
(4.7). It produces the following state

m

[T(rs)y = M ma\:w:m,:XnOm AR ie~ 102 5in Qy74|g)) + _Q‘:Xls.ms.&

% sinQy7ale) + cos Qy7alg))]

M énl(cos QuTa|B,m) — i sin Qg Tala, n))le))

n=0

+ (cosQusla,n) — ie~i2 sin Qy7418,1)) )]
MU?QS_F:V + Canlo,m)le) + (D1nlBym) + Danla,n))lg)  (411)

I

Detecting the atom in either of its electronic states gives the desired superposition

™ [CalB 1) + Kl )]

-5 Conclusions

We have discussed the properties and a mo:@.pso.n scheme of DFS superposition states.
In particular, we have given the expression for the photon number distribution and
QDF’s.

The three dimensional plots of the Wigner function for some parameters have been
illustrated for the state of superposition of two DFS’s showing nonclassical and inter-
ference effects. Several moments have been calculated. The second-order correlation
function g(® have been investigated numerically. The squeezing properties for these
states have been discussed. We have analyzed the quadrature component distributions
for the pair of DFS’s superposition state and have presented analytical and numerical
results. We have found that the basic features of a pair of DFS’s superposition state,
such as the appearance of two separated peaks and an interference pattern. A gener-
ation scheme for these states has been presented, depending on motional dynamics of
center of mass of trapped ions.

Acknowledgments The authors wish to express their appreciation to the referee for
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References

1] R.J. Glauber: Phys. Rev. 130 (1963) 2529 ; R.J. Glauber: Phys. Rev. 131 (1963)

2766 ; J. Perina: Quantum statistics of linear and non-linear optical phenomena Reidel-
Dordrecht, Holland 1984; D.F. Walls, and G.J. Milburn: Quantum Optics Springer-
Verlag, Berlin 1994; W.H. Louisell: Quantum statistical properties of radiation Wiley,
New York, 1973

{2l (a) D. Leibfried, D.M. Meekhof, B.E. King, C. Monroe, W.M. Itano, D.J. Wineland:
Phys. Rev. Lett. 7T (1996) 4281



594

3]
4]

(5}
(6}

(7
9]
(10)
{11}
(12]
{13]

(14]

(15]
[16]

(17

A-S F Obada, G M Abd Al-Kader

(b) D.M. Meekhof, C. Monroe, B.E. King, W.M. Itano, D.J. Wineland: Phys. Rev.
Lett. T6 (1996) 1796
(c) C. Monroe, D.M. Meekhof, B.E. King, D.J. Wineland: Science 272 (1996) 1131
(d) W.M. Itano, C. Monroe, D.M. Meekhof, D. Leibfried, B.E. King, D.J. Wineland
D.J.: SPIE Proc. 2995 (1997) 43
M. Boiteux, A. Levelut: J. Phys. A: Math.Gen. 6 (1973) 589 ; S.M. Roy, V. Singh: Phys.
Rev. D 25 (1982) 3413 ; M.V. Satyanarayana: Phys. Rev. D 32 (1985) 400
(a) A. Wunsche: Quantum Opt. 3 (1991) 359
(b) F.AM. De Oliveira,M.S. Kim, P.L. Knight, V. Buzek: Phys. Rev. A 41 (1990)
2645
(c) G.M. Abd Al-Kader: J. Egypt. Math. Soc. 2 (1994) 89
(d) G.S. Agarwal, K. Tara: Phys. Rev. A 43 (1991) 492
N. Moya-Cessa, P.L. Knight: Phys. Rev. A 48 (1993) 2479
V.V. Dodonov, LA. Malkin, v.I. Man’ko: Physica A 72 (597) ; B. Yurke, D. Stoler:
Phys. Lett. A 57 (1986) 13 ; J. Janszky, A.V. Vinogradov: Phys. Rev. Lett. 64 (1990)
2771 ; V. Buzek, P.L. Knight: Optics Commun. 81 (1991) 331 ; V. Buzek, A. Vidiella-
Barranco, P.L. Knight: Phys. Rev. A 45 (1992) 6570 ; C.C. Gerry: Optics Commun. 91
(1992) 247 ; J. Mod. Optics 40 (1993) 1053; E.E. Hach I11, C.C. Gerry: Phys. Rev. A49
(1994) 490 ; J.Mod. Optics 40 (1993) 2351; D. Mogilevtsev, S.K. Ya: Optics Commun.
132 (1996) 452 ; M. Ban: Phys. Lett. A 193 (1994) 121 ; Phys. Rev. A 51 (1995) 1604;
A.-S. F. Obada, Z.M. Omar: LC.T.P. Publ. (Trieste) (1995) 1C/95/302; Phys. Lett.
A 227 (1997) 349; M.S. Abdalla, M.H. Mahran, A.-S. F. Obada: J. Mod. Optics 41
(1994) 1889 ; A.-S.F. Obada, M.H. Mahran, F.A.A. El-Orany, M.S. Abdalla: Internal.
J. Theor. Phys. 35 (1996) 1393 A. Joshi, A.-S.F. Obada: J. Phys. A 30 (1997) 81
H. Moya-Cessa: J. Mod. Optics 42 (1995) 1741
B. Zheng, C.C. Guo: Quantum Semiclass. Opt. 8 (1996) 951
V.V. Dodonov, Y.A. Korennoy, v.I. Man'ko, Y.A. Moukhin: Quantum Semiclass. Opt.
8 (1996) 413
M. Dakna, T. Anphut, T. Opatrny, L. Kndl, 0.-G. Welsch: Phys. Rev. A 55 (1997)
3184 .
Special issue on Quantum phase and phase dependent measurements, of Physica Scripta
T48 (1993) pp 1-142; R. Lynch: Phys. Rep. 256 (1995) 367
S.M. Barnett, D.T. Pegg: Phys. Rev. A 39 (1989) 1665 ; J. Mod. Optics 36 (1989) 7;
S.M. Barnett, D.T. Pegg: Phys. Rev. A 1990 (41) 3427
A V. Chizhov, B.K. Murzakhmetov: Phys. Lett. A 176 (1993) 33 ; AV. Chizhov, Ts.
Gantsog, B.K. Murzakhmetov: Quantum Opt. 5 (1993) 85
see the review M. Hillery, R.F. O'Connell, M.O. Scully, E.P. Wigner: Phys. Rep. 106
(121) 2 nd itemerences therein; K.E. Cahill, R.J. Glauber: Phys. Rev. 177 (1969) 1857,
1882 h.-W. Lee: Phys. Rep. 259 (1995) 147
W. Vogel, R.L. de Matos Filho: Phys. Rev. A 52 (1995) 4214 ; R.L. de Matos Fitho,
W. Vogel: Phys. Rev. Lett. 76 (1996) 608
S.-C. Gou, J. Steinbach, P.L. Knight: Phys. Rev. A 55 (1997) 3719 ; J. Steinbach, J.
Twamley, P.L. Knight: Phys. Rev. A 56 (1997) 4815
C.K. Law, J.H. Eberly: Phys. Rev. Lett. 76 (1996) 1055 ; S.A. Gardiner, J.I. Cirac, P.
Zoller: Phys. Rev. A5 (1997) 1683 B. Kneer, C.K. Law: Phys. Rev. A 57 (1998) 2096



