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We study in a simple model the effects of resonance production and decay on
Bose-Einstein correlations of identical pions. The intermediate stage of collision
is simulated by the formation process of resonances given by a single function of
the proper time of a resonance. Direct pions are described as decay products of
5 resonance with vanishing life-time. In contradistinction to our recent work we
include realistic pr-distributions of resonances. The comparison with data of the
EHS/NA22 Collaboration shows that the mean time of resonance formation is
rather short, 0.1-0.4 fm/c. This result is almost independent of the form of the
function describing resonance formation. The data of the EHS/NA22 Collabora-
tion require also a decrease of the chaoticity parameter A with increasing average
transfer momentum of identical pions.

It is pointed out that there are similarities between the model based on resonance
formation and decay and the one based on hydrodynamical evolution of hadronic
matter. We conjecture that hydrodynamical models in hadronic collisions are
describing in a different language the process of resonance formation and decay.

1 Introduction

Bose-Finstein correlations (BEC) of identical particles, for reviews see Refs. [1-3],
bring information on the space-time distribution of the region from which particles have
been produced. Relationship between BEC and space-time evolution of the system has
been recently intensively studied in connection with the analysis of data on heavy ion
collisions [4-8]. The experience gained in analysing data on heavy ion collisions has
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shown that the effects due to resonance production and decay play an important role
and have to be understood before one can see what is the underlying dynamics of heavy
ion collisions.

Effects of resonance production on BEC in hadronic interactions are even more im-
portant than in heavy ion collisions. These effects have been studied over past two
decades in a number of papers [9-19]. The formation time of resonances brings an im-
portant information about the first, rather unknown stage of pp, pp, and ete™ collisions.
Decays of resonances to final state hadrons are described in a standard way, resonance
widths being given by the data. It is not quite clear whether a pion which is created in
a decay of a resonance is able to interact immediately with the full cross- section with
other hadrons. Such a "formation time” is important [20] for estimating the energy
density of interacting matter produced in proton-nucleus {(pA) or nucleus-nucleus (AB)
collisions. On the other hand this formation time consists presumably in ”dressing up”
of the valence partons by soft ones and it is not relevant for BEC.

There exist numerous models of the evolution of hadronic collisions [21-24] and the
determination of the time scale from analysis of BEC could make the parameters in
these models more accurate.

We have recently studied the effects due to resonance decays in hadronic collisions
in a very simplified model [19]. The purpose of the present paper is to make that model
more realistic by including transverse momenta of resonances, what will permit us to
study also the transverse momentum dependence of correlation functions.

In Ref. [19] we have shown by using one simple parametrization of the time depen-
dence of resonance formation, that the mean time for the formation of resonances is
rather short, 0.2-0.4 fin/c. In the present paper we shall use a few different parametriza-
tions and we shall show that the conclusion of the short average time of the formation
of resonances is not due to a particular form of parametrization.

The present paper is organized as follows. In Sects. 2 and 3 we shall describe the
formulation of our model. In Sect.4 we compare the model with data of EHS/NA22
Collaboration. Sect. 5 contains comments and conclusions. Appendix A deals with
the connection of the present model to its simplified version used in Ref. [19] and in
the Appendix B we discuss analogies between the model based on resonance formation
and decay and hydrodynamical models. The discussion leads to the conjecture that
hydrodynamical models describe in another language the dynamics of the hadronic
collision based in fact only on resonance formation and decay.

2 A model of Bose-Einstein correlations in hadronic collisions based on
resonance formation and decay.

In Ref. [19] we have studied identical particle correlations in hadronic collisions in 2
model where resonance formation and decay is responsible for correlations of identical
pions. The model has contained a few very simplifying assumptions, the strongest of
them consisting in putting transverse momenta of resonances equal to zero. In the
present, improved version of the model, we shall include a realistic description of the
transverse momenta of resonances.
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When discussing collisions of really heavy-ions, like Pb+Pb the assumption of an
intermediate system of thermalized matter [7,25] may be quite realistic. For hadronic
collisions such an assumption is very debatable, although it is known since the work
of Hagedorn [26}, see also Ref. [27] that transverse momentum spectra of final state
hadrons in pp collisions at high energy are close to thermal ones. The increase of
dN/prdpr for pions at low values of pr can be most likely explained by resonance
decays [25,28].

In the present paper we shall not assume that hadronic system formed in hadronic
collisions is thermalized. We shall take instead as much information on resonance
production as we are able to from the experimental data and we shall parametrize the
formation of resonances by a simple function of their proper time.

Experiments show that a part of pions is produced via decays of experimentally
identified resonances. The rest of pions is referred to as "direct” ones. A part of
them is probably due to decays of resonances which are too broad to be identified. In
describing direct pions we shall assume that they are due to decays of a short living
resonance.

The probability density (Wigner distribution) for formation of a resonance R with
four vector P in point with four-cordinate X will be denoted as .wwﬁm ,P). The prob-
ability density Sp—x(z;p) for a pion to be produced with four-momentum p in point
with four-coordinate x is given as{7;19,25;28;29]

Mg d’p " 4 _¥r
Sron(zip) = po o Hl:u.@ ~ MgE*) | d*X [ drTe
P
&9z — (X + i )SL(X, P). (1)

The factor Mg/4n\/E*2 — m2 comes from the probability distribution of a decay of a
resonance with mass Mg to pion with the energy E* in the resonance rest frame. The
probability distribution is given as

1 M
P(po,P) = i

d(po— E*) =

4n/E*2 —m2 (ro ) 4dm\/E*2 —m2
The probability is normalized by

Q.w

\ P Qonmw'v'@ =1
Po
The corresponding correlation function is expressed as the Fourier transform of the

Wigner distribution {4,5]

IS [ d*5SRn (@, K)eit= ]2 3
_MN.\.&AH.WNIJ‘A.@.TNAXM ’ A v

where p;,p2 are momenta of identical pions, ¢ = p1 — p2 and K = L(p; + p;) and X is
the chaoticity parameter. Define now

§(Pp — MgE"). @)

Clg,K) =1+

Sron(GK) = \ dzei% S, (33 K). (4)
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Inserting Sp—n from Eq.(1) we have

M . 3
2 \ dizeie® \ mﬂwﬂww — MRE®)

4dw+/E*? —m2

\ da*x \ drTe T76@ (z — (X + .mﬁvvmm@u P). (5)

Spon(g: K) =

We shall now introduce the variable £ = = — X and integrate over { keeping X fixed.
Using

\Q»m \.oo drTe 6@ (¢ - .Wl.&m..e.m = ” drTe TTe%r ™ = lllﬂ (6)
0 Mg 0 T —i%E
R
we find
g Mg da3pP r
Span(g K) = &P o P — MgE")——
R— AQ v %ﬁ/\wﬂmﬂ:lma E A R vH, — s.n%

\ d* X el X SL(X; P) )

We shall now rewrite preceding expressions in the form similar to that used in our
earlier work [19]. The four-vectors K and P are expressed in terms of rapidities and
transverse momenta as

K = K(mr cosh(y); K1 cos ¢, Krsin g, mr sinh(y))

P = P(Mgy cosh(Y); Pr cos(®), Prsin(®), Mgy sinh(Y)).
The scalar product K - P then becomes

K - P = myMprcosh(Y — y) — K7 Pr cos(® — 8). 8)
This enables us to write

§(K - P — MRE") = 8 (mrMgT cosh(Y — y) — KrPrcos(® — ¢) — MrE")
1 KpPrcos(® — ¢) + Emm.v )

= —— & (cosh(Y —y) —
mrMRgT AoOm ( v) mrMpT

The integration over momentum is replaced by integration over rapidity

3
mmw — dY PrdPrd® = dY MprdMprd®.

The §-function in Eq.(8) has the form §(f(Y)) and f(Y) =0 has two solutions
Yi2 = y*Eyr

yr(Kq, Pr,® — ¢) = arccosh A

i

YR (10)

EN@&.TNAHN.HOOMA@IQV
Mprmr
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In this way the d-function can be written as

1
§(Y —y+yr) +6(Y —y -
Seiwe_m._a,@&_: y+yr) +8(Y —y -~ yr))

x@(K1Prcos(® — ¢) + MRE® —mrMpr) (11)

§(K - P— MgE") =

where the last term is due to the fact that cosh{yr) >1.
Putting everyting together we have

Mg
47\/E*2 —m2

O(MRE* + K7Prcos(® — ¢) — mrMpgr)

1
mq Mgr|sinh(yr)| (Y —y-yr)+6(Y —y+ yr)]

r -
ﬂﬂummm»? P), . (12)
Mg

Spa(t: K)

i

.\, dY MprdMgrd®

where

-,

§L(q;P) = \ A XerXSH(X:P) (13)
and yr is given by Eq.(9).

In the present paper, following Ref. [19], we shall assume that "direct” pions are
decay products of a resonance with a very large width.

Inserting Eq.(12) for resonance contributions into Eq.(2) we obtain the correlation
function C(q, K).

In the Appendix A we shall show how formulas used in our earlier work are obtained
in the present formalism.

3 Model with non-vanishing transverse momenta of resonances

We shall start here with Eqs. (11) and (12) and derive expressions for Spon{g; K)
corresponding to the situation with non- vanishing transverse momenta of resonances.
Making use of the d-function in Eq.(11) we obtain

Em \
E&Sme
pr = D
@QS.N@; + KpPr GOMAG = Avv s S.HEN.HV
1

_ 9P
1-ifsr,

Shax(g: K)

It

1
my Mpr|sinh(yr)|

55(a ), (14)

where

P; = P;(Mgr cosh(Y;); Pr cos ®, Prsin @, Mgr sinh(Y3)). (15)
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The model of resonance production is contained in the function 5! #(X,P) in Eq.(12).
We assume that all resonances are produced in the point X =0 mba that all of them
are formed in an interval (7,7 + dr) in their proper time 7 with the same probability
density p(t).

In order to see the dependence of results on the functional form of p(r) we shall use
here three parametrizations of p(7):

e exponential as in Ref. [19]

e ¢ - function, and

o Gaussian.

3.1 Exponential parametrization

In this case we have

(r) = me -z
p(r) = 5 p =) (16)
In its proper time T the resonance arrives at the point
P E

vm E'Nq. .vﬂc = §|m~ﬂ. AH‘NV
In this way we obtain

SL(x;P) = \ " arLerlmes3(® — L 50X — L) Na(P) (18)
and via Eq. (12)

-P
Sh(a:P) = \ %ié?i&% Z ) Na(P)
|, IIH,Iz P) (19)
e shl - R H :

where Ng(P) is the distribution of resonances in the four-momentum P. Hbmmnauw
Eq.(18) into Eq.(13) we find

Spor(@: K) = AAE M \Emﬂmgmﬂma

i=1,2
O(MRE" + KrPrcos(® — $) — mrMgr) 2
mg Mgr|sinh(yr)|
1 1 :
Nr(P:) (20)
<P 2 ’
1 il 1—idtry

where ygr is given by Eq. (10) and four-momenta P, P, are given by Eq. (15) with
rapidities Y;, Y, determined by Eq. (10).
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3.2 Parametrization with the é-function
In this case we have
p(t) = 8(1 — 75)

and

S_ ~uvl \ aﬂﬁ?v @GG Em J = exp{i EMQV.

Instead of Eq.(19) we get

Spon(; K) = \E dMprd®
R— AQ v 923.‘%& RT RT

1
O(MpE* + KpPrcos(® — ¢) — mrM, -
(Mg 7Prcos(® — @) ~ mr miiﬂﬁmi Snh(n)]
H .Q.MUu.
Ng(P; 21
T \QGG 7 1) Nr(P;) (21)
RMR

3.3 Gaussian parametrization

In this case
p() = o=
(ws.qw

The Fourier transform can be taken explicitly only in the case when 7 /o is much larger
than 1, and we can replace the lower bound in

[ omren (1529

by —oo. In this approximation we obtain
< Mg
Spax(; K ) =
4d7/E*2 —m2 = N

O(MgrE* + KrPr cos(® - ¢) — mrMpT)

———exp[—(r — 77)*/20°].

\ MardMprd®

1 1
1 . q-P;
myMpr|sinh(yr)| 1 - igly
- P; 1 -P\?
exp As.ngm.dv exp IMQN Am@wﬂv Ng(F;) (22)

We shall parametrize Ng(P) in terms of rapidity and transverse momentum

aqm aqw
- * =B IIM@ bP.
aVPrapras ~ DRan P iA v vﬁsa )
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Table 1: Parameters of resonance production cross-sections in #Tp and branching ratios
of resonances to 7.

Resonance | B | E*[GeV] | b[GeV 2] | 7lGeV '] o [mb]

7o 1 0.385 2.7 [30] 6.66 1.74 [30]
e 1 0385 | 2.7 g[30] 6.66 1.3 g[30] -

w 09 | 0263 9.7 [30] 118.6 2.6 [30]

fa 057 | 0635 | 20g[31] 5.41 0.3 g[31]

K*0 0.66 0.319 3.5 [30] 20.0 0.7 [30]

n 0.286 0.180 20¢g 832.10° 2.0 g[33)

A® 033 | 0265 | 7.0g[32] 8.3 0.7 g[31]

A- 10 | 0265 | 7.0g032 8.3 0.7 g[31]
o 1 0.385 27 g 0 5 (Bo,)

where Bg is the branching ratio for the decay of resonance R to the particle whose
correlation we are studying {7 7).

In this way we arrive for the case of the exponential parametrization of p(7) at the
final expression

~ Mg \
Spax(g; K) = MgrrdMprd®
R— AQ v Ax 3 s.Mm RT RT

@ng@i + K7 Pr OOmAAv e ﬂv — Sﬂgmﬂv

1 1
meMpr|sinh(yr)| 1 - s_nmmlﬁlz
1 1 2 (dog
=~ Ba—2bgetnEr Ailv (24)
1-— smmmﬁ\ 2T dY Y=Yn:

When inserted into Eq.(2) this gives the correlation function Clq; K).

Note that resonance decay and resonance formation enter Eq.(19) in the case of
the exponential parametrization of p(r) in the same way. For resonance decay this
is dictated by the decay law and for resonance formation it follows from the specific
assumption in Eq.(15) which describes resonance formation by an exponential law.
Resonance decay widths T are taken from the data and 77, which can be written as
1/Ty, is a free parameter of our model which is to be determined from the data on
correlations of identical pions.

4 Comparison with data on C(qr) at a fixed value of Kr

We shall now compare resulting correlations for the three parametrizations of p(r). In
order to make the comparison realistic we have taken parameters of resonance produc-
tion and decay from data. Parameters are summarized in Table 1.
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Fig. 1. Comparison of correlation functions calculated with exponential, gaussian with the
width ¢ = 0.3 fm/c and é-function parametrizations of resonance formation at Kr = 20
MeV/c, 7y = 0.3 fm/c and r = 0.8.

Correlation functions for the three parametrizations are presented in Fig.1. In all
three cases we have 7; = 0.3 fm/c and the ratio r of direct to all pions is given as
r = 0.8. The differences between parametrizations are rather small.

Our calculations of 7~ m~ correlations are based on Eq.(19). Since the three parametriza-

tions used lead to rather similar results we shall use in what follows only the exponential
one. The longitudinal momentum of the pair of pions Ky is put equal to zero, what
means also that y = 0 and the transverse momentum K is taken as a parameter in
C(g; K1)- The contribution of a resonance R is then given as

Spor(K) =

M
A > \ MprdMprd®

*2 _ a2
dn/E my T

1
@Q&h@i + K1 Pr OOwAQ s AE - S%Emﬂv

myMpr!sinh(yg)|

H H &Qm
m: A v Awmv
,.~u_. ..N. \ ,
1-— sﬂmmﬂm - sm\ﬂﬂﬁ\ dY 1@&@%&@ V=Yq:
where the four-vector 1 is given by (yr, Pr, @) and I» by (—ygr, Pr,®), 7a = 1/Unis
the resonance decay time and yg in Yp1 = YR and Y = —yg is calculated via Eq.(9).
Since Mpr = /M + P2 we have also MprdMpr = PrdPr.

For the four-vector ¢ = (0,0,qz) (in what follows ¢z will be denoted simply as q)
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Fig. 2. Contribution of individual resonances at K = 20 MeV /¢, formation time of resonances
17 = 0.3 fm/c (left) and 75 = 1.0 fm/c (right).

we have
g-Pi = —qMgrsinh(yr), ¢ P2 = +qMrr sinh(yr)

The symbol Bg in Eq.(24) denotes the branching ratio of R = 7~ X.

Parameters of resonance production cross-sections are to a large extent given by
excellent data of EHS/NA22 Collaboration {30,31,32] but in a few cases we shall have
to guess the relevant information from other data at similar energies.

Cross-section for resonance production will be parametrized as

dor 1 9 A&va :
= —2b.exp(=bPE)| = . (26)
W Prapaas = an 2 o N )y

Around Y = 0 cross-sections for resonance production vary slowly so we shall rather
use the value of cross-section at ¥ =0

&Q‘xv . QQ.:V —_ .0 AM.NV
— R~ v = Q.mw.
A &M\. Y =Yri Q< Y=0

The parameter r in Tab.1 gives the ratio of directly produced to all negative pions.
According to the detailed study of resonance production by LEBC-EHS [33] Collabo-
ration the ratio r is about 0.5.

When analysing the information on the fraction of 7~ coming from resonance mmS.Qm
one takes into account resonance which can be identified among final state hadrons, like
pw,n, K*, f2, 8 and pions which cannot be attributed to decays of these Hmmoww.cnmm
are referred to as "direct” ones. By itself this does not give the dynamical origin of
» direct” pions. In a similar way as in Ref. [19] we shall assume that direct pions are
originated by a broad resonance of very large width, that means 7, = 0, and the mass
of the p. .

Values of parameters of resonance cross-sections used in our calculations are given
in Tab.1. The letter ”g” indicates that the corresponding value has been guessed on
the basis of data.
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Fig. 3. Dependence of the correlation function on the ratio r of direct to all pions, Kr =
20MeV/c, a) 7y = 0.2fmfc, b) 75 = 0.3fm/c, c) 75 =04fm/c.

We shall now present results of our calculation of C{g; K7) and compare the results
with data of EHS/NA22 Collaboration [34].

In Fig.2 we present contributions of individual resonances to the correlation function
C(g, K) for K = K7=20 MeV. As expected and as found also in Ref. [19] resonances
with large life-times lead to a very narrow C(g,0). On the other hand direct pions,
originated in our model by decays of a resonance with a vanishing width give a rather
broad C(g,0). For the case of 74=0.3fm/c shown in Fig.2a mixing of resonances with
direct pions can give a reasonable description of the data. We shall study this issue in
more detail below. On the other hand, in the case of 7y=1fm/c, Fig.2b, the contribution
of direct pions is already more narrow than the data what shows that in this case there is

no mixture of resonances and direct pions which could agree with the data of EHS JNA22
Collaboration [34].

In Fig.3 we compare the data with our results obtained with a few values of the
parameters 7 and 7. The comparison indicates that increasing 75 can be compensated
to some extent by increasing r. This is also natural, since inreasing 7; makes the region
from which pions are emitted broader, whereas increasing r makes it more narrow.
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Fig. 4. Plot of correlation functions for different Kr, formation time of resonances 7y =
0.3fm/fc, r =08.

Values of r corresponding to larger values of 7y are close to r = 0.85 —0.9 what may
be too high, taking into account the estimated r ~ 0.5 in Ref. [33]. Note that even for
5= 0.2 fm/c the value of r is almost 0.8 what may be still too large.

As a consequence the present results indicate that the formation time of resonances
7y is surprisingly short of about 0.1-0.2 fm/c and that the ratio of direct to all pions is
probably a bit larger than the experimental estimate [33] r & 0.5.

In Fig.4 we plot the correlation function C(g, Kr) as function of ¢ for a set of fixed
values of K. With increasing K the shape of C (g, K1) as a function of g is more flat.
This is natural, since for increasing K the contribution of long living resonances 1 and
w decreases because of their three body decays leading to softer transverse momentum
spectra of pions from their decays.

On the other hand the correlation functions in Fig.4 can be made consistent with
the data only assuming the presence of the chaoticity parameter A = A7) with a
rather strong dependence on the average transverse momentum Kr.

In Fig.5 we present a comparison of our results for a few values of Ko with the
data of Ref. [32]. In each of Figs.5 we present the data [32], the calculated C{g, Kr)
which is much higher than the data in particular for larger values of K and finally the
correlation function multiplied by a suitably chosen value of the chaoticity parameter:
MK7)C(g, Kr). Values of A(Kr) required by the data are presented in Table 2 and
shown also in Fig.6 together with a Gaussian fit of M(K'T)

A(Kr) = exp A‘ﬁ.v _

2
20%
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Fig. 5. Calculated correlation functions C(g, K1) compared with the data for different values
of Kr. The upper curve corresponds to A = 1, for the lower curve the parameter MK7)
determined by the data.

Table 2: Dependence of the choaticity parameter A on Kr).

Kr(MeV/c) 20 60 100 140 180 220 260
A 0.976 | 0.838 | 0.533 | 0.360 | 0.258 0.208 | 0.118
A 005! 0.15] 005] 007} 0.10]| 007 0.07

where 0% = 0.104 GeV/c.

Results presented in Figs.4,5 and 6 and in Table 2 show that the present model can
be consistent with the data only at the price of assuming the presence of chaoticity
parameter A(Kr) strongly dependent on K7. We shall come back to this point in in
the next section.
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Fig. 5. (continued)

5 Comments and conclusions

It should be stressed that the present model is only a rough approximation. In a more
ambitious model one should start with the amplitudes for resonance production and
amplitudes for resonance decays to the observed pions. Such a study will hopefully be
performed in the near future, but it will be technically much more complicated than
the present simplified model. One can also hope that a model based on amplitudes and
not on Wigner density distributions will naturally lead to the strong dependence of A
on K1 required by the data.

In the present paper and in Ref. [19] we have shown that the experimental data .

[34] of the EHS/NA22 Collaboration on 7~ correlations can be reasonably described
when one takes explicitly into account contributions of known resonances decaying into
a—.In the model we have also obtained without any additional assumptions the change
of slope of the correlation function C(qr; Kr) with increasing Kr.

The effects of resonance production on correlations of identical pions have been
studied in detail also by Lednicky and Progulova [14].

In their model they do not consider the formation time of resonances as used in Ref.
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Fig. 6. Dependence of A(K7r) described by a Gaussian.

[19] but introduce instead as a parameter the effective radius ro of the region in which
resonances are produced. Their analysis has lead to the value

ro = 0.55 & 0.08(stat.) £ 0.10(syst.) fm.

This can be compared with results of Ref. [19], where all resonances are produced in
the same point but due to the formation time they decay in the distance roughly given
by 2y = sinh(ygr)7y, where YR is the rapidity of a resonance which gives as a decay
product a pion with low momentum in the cms of collision. For the p meson we have
[19] yr ~1.67 and taking zy ~ 0.55 we obtain 7 = 0.2fm/c which corresponds to results
obtained in Ref. {19]. More studies along these lines are certainly desirable.

We have not studied the single particle spectra, as done in detail in Ref. [30}, since
it is known that these spectra can be desribed via resonance decays. We are however
well aware of the fact that simultaneous description of both single particle spectra and
correlations is substantial for the determination of model parameters and we shall come
back to this issue in the near future.

The problem which remains to be clarified is a rather strong dependence of the
chaoticity parameter MK7) on K. The problem is probably caused by the fact that
we are not working with the amplitude containing resonance production and decay but
with Wigner functions corresponding to probability densities. As shown by B.Andersson
and M.Ringer [36] in their study of correlations based on the Lund model where am-
plitudes for production of multiparticle system are known, the chaoticity parameter is
calculable.To work with amplitudes in a model of resonance production and decay is in
principle possible, but technically rather difficult.
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Appendix A: Relationship to the model with vanishing transverse
momenta of resonances .

In the present section we shall start with the general formula Eq.(11) and study ap-
proximations which Jead to the simplified model of Ref. [19). In this model transverse
momenta of resonances vanish and only slow pions in the c.m.s. of hadronic collisions
were studied. In this frame we thus have E=0,Ko=mZEmp, Yy =Yz = 0. The
general expression Eq.(11) considered for simplicity for a resonance R decaying to two

pions then simplifies to

S (@ K) = e .
ik dr+/E*2 — mz mrMrr| sinh(yr)|
r = r =
5i(q; P f(q; P(—
X . Ewﬁwu rla (yr)) + T EWWIAW& Shlg; P( yr)) ! » (A1)

where P(yg) is the four-momentum of a resonance with mass M and rapidity Y = ¥R-
Dynamics of resonance formation has been described in Ref. [19] by a single parameter
7. The probability that a resonance has been already formed in its proper time 7 has
been expressed in Eq.(15).

Taking into account Lorentz time dilatation the function .m.m?u. P) for a resonance
with rapidity yr > 0 is given as

Sl (a;P) = wmilu\i% - %%E. (A2)

where zy = sinh(yr)Ts,- - VR = tanh(yg). Suppose now that the resonance R with
mass Mp decays into two pions with masses mq = M. Suppose further that the pion
taking part in Bose-Einstein: mmu:m_mﬁonm is show in the c.m.s. of hadronic collisions.
This corresponds to the case K =0,y = 0. In this situation E* = Mp/2 and

Mg Mg

YR = rccos Ams , cosh(yr) -

: Mg\ M Mg\’
sinh(yr) = Amlawv -1, yr=In AMMv+ Alwﬂsmv -1

Assuming further that the interfering pions have the same energy, that means go =
k1o — koo =0 we find for the two terms in Eq.(9)
1 *° 1

&f (g s T —igzg—2/21y = 3
.mm@qmv@wvv 521 Jo e e dz mmﬂa\uu (A3)
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fo(,. _ A —igqz zfzf —
MNAQ. NUA @va NN\ loom € dz MAM — .&QN%V

(A4)

Inserting that into Eq.(11) and making use of ¢ - P(yr) = —¢ Mg sinh(yg) and
q- P(—yr) = qMr sinh(ygr), we find

.w.wlz_.sw K)

I

Mg 1

anJE*2 —m2 9myMpgr|sinh(yrl)
1 1 1 1

T +igza 1+iqzs 10z 1 ENL (*9
Mp 1 1- ¢z

anEZ —m2 mrMgr|sinh(yr)] 1+ (gz7)2)[1 + (g2a)?] _

where zq = sinh(yr)Te = sinh(ygr)/T. This is up to the factor Mg/(4n/E*? —mZ),
which has been by error omitted in Ref. [19], the structure of resonance contribution to
the correlation function used in Ref. [19]. The absence of this factor does not modify
the resulting correltions very much, since the resonnces we consider have similar masses
and values of E* are also rather similar.

Note that zq is the distance travelled by the resonance R moving with velocity
vg = tgh(yr) during the Lorentz dilated time tq = cosh(y R)Td-

Appendix B: Relationship between models based on resonance formation
and decay and hydrodynamical models

In very interesting papers [36,37) the EHS/ NA22 Collaboration have recently analyzed
their data on single pion distributions and correlations of n— pairs. The analysis has
been based on the hydrodynamical model [38—41]. In what follows we shall refer to this
model as to CLZ one (Csdrgd, Lorstad, Ziméanyi). In this model the authors use a few
parameters characterizing the hydrodynamical evolution of the matter formed in TN
interactions at 250 GeV /c. The time-evolution of the system is given by the probability
distribution of hadronization (freeze- out) in the proper time of parts of the system.
This distribution is described by 2 Qaussian function with mean value 7¢ and dispersion
Ar. Using the EHS/NA22 data the authors of Ref. [30] have obtained

7y = 14+0.1fm/c A7 >1.3+0.3fm/c.

The value of 77 is rather close to the mean life- time of the p-meson, 7, = 1/150
MeV= 1.33 fm/c. As pointed out by the authors of Ref. [30] the values of 7y and AT
found indicate that the emission process occurs during almost all of hydrodynamical
evolution.

1t is also worth noting that for an exponential decay process described by the prob-
ability density p(t) = wﬂmxc A|W\v we get ((AT)?) = (1) — (r)? = 7%, what would
make AT = 7; quite natural.

The CLZ refer to their model [38-41] sometimes as to the core-halo model, where the
halo corresponds to long living resonances, like w, 7, etc. and the core which is described
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by hydrodynamics. The halo is responsible for the decrease of the chaoticity parameter
A, since the contribution of these resonances is non- vanishing only for relative momenta
smaller than the experimental resolution.

In our model we have allowed for a possibility of a formation time for resonances
The resulting value of this time is rather short, about 0.1-0.4fm/c. In our Bommw
all resonances start to be formed in one point and it is quite possible that the value
of the formation time is just taking into account the dimensions of the 7p collision
region. The small value of the formation time is in our 'opinion an evidence against
a presence of truly hydrodynamical processes, since the introduction of temperature
requires thermalization and within very short formation times the thermalization can
hardly be established. Formation times larger than or at least noEcmn._wEm with the
mean decay time of resonances like the p-meson could be compatible with thermalization
and hydrodynamical evolution in 7p interactions. Although our parametrization of the
time-dependence of the formation of resonances is rather primitive, it would be quite
interesting to learn what formation times are required by the data on Bose-Einstein
correlations in hadron-nucleus and light ion induced collisions.
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