acta physica slovaca vol. 48 No. 5, 549 — 562 October 1998

STATIONARY SPHERICAL SHELLS AROUND KERR-NEWMAN
NAKED SINGULARITIES

Zdenék Stuchlik!, Stanislav Hledik
Department of Physics, Faculty of Philosophy and Science,
Silesian University, Bezru¢ovo ndm. 13, 746 01 Opava, Czech Republic

Received 17 July 1998, accepted 27 August 1998

It is shown that in the field of some Kerr-Newman naked singularities a stationary
spherical shell of charged dust can exist, with the specific charge being the same
for all particles of the dusty shell. Gravitational attractions acting on the particles
are balanced by electromagnetic repulsions in such a way that the shell is stable
against radial perturbations. Particles of the shell move along orbits with constant
latitude and radius. Rotation of the shell is differential. The shell is corotating
relative to static observers at infinity, but it is counterrotating relative to the
family of locally non-rotating observers. No such a shell can exist in the field of
Kerr-Newman black holes.

1 Introduction

There is a strong evidence that black holes play the central role in astronomical phe-
nomena connected with active galactic nuclei and some extraordinary galactic binary
systems (see [1] and references therein). The most general black holes are represented by
the Kerr-Newman solution of Einstein-Maxwell equations. However, the Kerr-Newman
solution represents also naked singularities, i.e., spacetime singularities not hidden be-
hind an event horizon, which could be conceivable for explaining the effects connected
with quasars and active galactic nuclei along with the black-hole solutions. The con-
Jecture of cosmic censorship [2] suggests that no naked singularities evolve from regular
initial data, however, the proof and even precise formulation of the conjecture still re-
mains one of the biggest challenges in general relativity. Therefore, it is important to
consider possible astrophysical consequences of Kerr-Newman naked singularities. Of
particular interest are those effects that could distinguish a naked singularity from black
holes.

Motion of test particles can be considered as a first step on the way to understand
physical processes governed by black holes and naked singularities, because it illustrates
the geometry and electromagnetic field of the backgrounds. The behaviour of charged
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particles in charged backgrounds has been considered in a number of papers. For
example, Abramowicz and Bigak [3] considered an interplay between forces acting on
charged particles in the field of a Reissner-Nordstrém black hole; Semeréak [4] compared
gravitoelectric and gravitomagnetic fields of the Kerr geometry with the electric and
magnetic fields of the Kerr-Newman geometry, and Semersk and Bi¢dk [5] discussed
dynamical properties of generally non-Keplerian equatorial and polar orbits around
Kerr—Newman black holes. Bigdk, Stuchlik and Balek discussed some aspects of the
motion of test charges in both the black-hole and naked-singularity Kerr-Newman fields:
general features of the radial motion, and the motion along the axis of symmetry 6],
the motion in the equatorial plane (7], and the shell of incoherent charged matter falling
radially from rest at infinity with zero total angular momentum onto a Kerr-Newman
black hole (8].

Here, we shall show that in the field of a wide class of Kerr-Newman naked-
singularity spacetimes a spherical charged shell consisting of particles with zero total
angular momentum, covariant energy equal to their rest energy, and an appropriately
chosen specific charge, can be stationary at a sphere with radius chosen correspondingly.
The particles of the shell move along orbits with constant latitude, and their trajecto-
ries do not cross. Of course, their azimuthal coordinate varies due to the dragging. We
shall also demonstrate that no stationary spherical shell of this kind can exist in the
field of Kerr—Newman black holes.

In Section 2, the Kerr—-Newman geometry is described in terms of the standard lo-
cally non-rotating frames, and the corresponding electromagnetic field is given. The
equations of motion of charged test particles are written down, and the components of
momentum and velocity of test particles in the locally non-rotating frames are given.
Some relevant aspects of the latitudinal motion [9] are briefly summarized, with atten-
tion being focused on trajectories with constant latitude, which can be considered as
an analogy of purely radial trajectories in non-rotating backgrounds.

In Section 3, the stationary spherical shells consisting of charged test particles will
be discussed. Surprisingly enough, in a wide family of Kerr—Newman naked-singularity
spacetimes such a shell can be constructed from particles of the same kind, i.e., carrying
the same specific charge. However, the construction is possible only if each particle
has zero total angular momentum and covariant energy equal to rest energy. At a
given spacetime, the radius of the shell and the specific charge of its particles will
be determined, and it will be shown that the shell is stable with respect to radial
perturbations. The rotation of the shell will be given relative to both static distant
observers and the locally non-rotating observers located at the radius of the spherical
shell. Tt will be shown that the radius of the shell can be determined by the distant
static observers through the redshift of photons moving along the outgoing principal
null congruence of the Kerr-Newman spacetimes. Concluding remarks will be presented
in Section 4.
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2 The geometry and equations of motion

Using the standard Boyer-Lindquist coordinates ¢,7,6,$ and the geometric system of
units (¢ = G = 1), we give the Kerr-Newman metric in terms of tetrad of differential
forms of the locally non-rotating frames (LNRF) [10]: )

2 2 2 2
ds® = - TE_ + T:; + TE n Ta; 1)
w® = (/AT/A dt, @)
W = /T/A dr, 3)
w® = VT, (4)
W = /AT sinf (dp - Qdt), (5)
where
A = r—2Mr+a®+e?, (6)
T = r?4a’cos?h, ) (7)
A = (*+a*)? - a’Asin?9, (8)
Q = (afA)2Mr ~€?). (9)

Here M denotes the mass of the background, a -— its angular momentum per unit
mass, e — its electric charge.  is the angular velocity of locally non-rotating observers
relative to distant static observers. If M2 > a? + €2, the geometry determines a black-
hole spacetime, if M < a? 4 €2, it determines a naked-singularity spacetime. In the
following we put M = 1; the coordinates ¢, r and the parameters a, e then become
dimensionless.

The electromagnetic field of the Kerr-Newman background is determined by the
vector potential, which is in coordinate components given in the form

Ay= IW (eré;, — aersin® 659) . (10)

The motion of a test particle with rest mass m, and electric charge e (both being

dimensionless since M = 1} is given by the Lorentz equation

Du#
mp—= eF¥, (11)
and the normalization condition
dz* dz¥
e (12)

u# = dz* [dr is four-velocity of the particle, and 7 is its proper time, related to the
affine parameter A by the relation 7 = mAX. For photons, m = 0. The tensor of the

electromagneticfield F,,, = A, ,— A, ,. The motion of uncharged particles and photons
is determined by the geodesic equations.
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In the integrated and separated form, the motion is determined by Carter’s equa-
tions [10]:

dr
MMM = ++/R(r), (13)
dé
MMM = +/W(9), (14)
do P,  aP.
A = Tanle TR (15)
dt (r? + a?)P,
M.&Iv,. = —aPy+ A § AHmv
where
R = P!-AMm’?+K), an
W = (K-a*m?cos®6) ~ B ’ (18)
sinf ) ’
and
P = E(r’ +a®) —ad — cer, (19)
Py = aEsin®0- . (20)

In addition to the constants of motion m, E (energy at infinity), ¢ (the axial angular
momentum at infinity), and K (related to the total angular momentum), it is convenient
to introduce the constant of motion

Q=K - (% -aE)? (21)

because Q = 0 corresponds to motion in the symmetry plane of the geometry (6 = /2).
For null geodesics A can be adjusted to give relation E = w, w being the frequency of
the photon at infinity.

The components of momentum relative to LNRF are

P = pruf, (22)

where p* = dz# /d)\. The components of velocity relative to the family of locally non-
rotating observers are

(r) VAdr

(n - P~ _vdar

VT T A @ 23)
® A do

0 - P _ jAd5

YT o VA (24)
(¥)  Asin® (d¢

() - P _ ASmU fdp

@ = S svs (&) e
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The latitudinal motion is independent of the charge of test particles (for a detailed
analysis see [9]). It is important that the motion along constant latitude is possible out
of the equatorial plane. Introducing new parameter

I'=E?-m? \ (26)
we can state that if the conditions

I'>0,Q+®%<a’ (27)
are fulfilled, the motion along a constant latitude § is determined by the relations

Q = —a’T'cos?¥, (28)

2 = a?T'sin 6. (29)

It can be shown (see [11]) that these conditions can be combined with the conditions of
the motion on constant radial coordinate, allowing the existence of circular off-equatorial
orbits in the field of Kerr—Newman naked singularities. However, in order to obtain a
spherical shell, particles moving along different circles with constant latitude must have
different specific charges. -

3 The stationary spherical shells

There is an additional possibility of the motion along trajectories with 8 = const, if the
conditions

E=m,Q=%=0 (30)

are satisfied. The charge parameter
€

must be restricted by inspecting the equations of motion. For the constants of motion
restricted by the conditions (30), Carter’s equations of motion simplify to the following
form:

dr [ R

M% = 0, (33)
d¢ r?2+a? - Zr
.&lq. = —Qa AH - D 1 A.wuc

‘ 24 a2 (rP 4+ a2 -7
Mm = —a’sin%@ + ?. i v Aﬂ>+ - L ) (35)
where
R 21 2 2 2_2y.2 22
— = (1-2)r ?. +a v + AN —e vﬁ -~ a“e’, (36)
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For Kerr—-Newman naked singularities (a® + €% > 1) there is at all radi
A=r*-2r+a®+e®>0. (37)

A negative sign on the r.h.s. of (32) corresponds to particles that move towards the
hole, a positive sign corresponds to the outward motion. Notice that it is evident from
(36) that charged particles falling from infinity must have

Z < 1. (38)

(Particles with Z > 1 can reach infinity only with E > m.)
The turning points of the radial motion, determined by equation R(r) = 0, are given
by the condition

Z =2\ (ria,e) = .w [ +a?+ /AG + ) (39)

which restricts values of the charge parameter Z.

The “effective potentials” Z% (r;a,e), determining regions forbidden for the radial
motion, are independent of the latitudinal coordinate . Especially this property of
the effective potentials enables construction of a, stationary spherical shell, if the charge
parameter of its particles corresponds to an extreme point of the effective potentials.
Now, we have to discuss properties of the functions Zi(r;a,e).

Clearly, for the naked-singularity spacetimes these functions are well defined for all
radii, since A > 0. Both the functions Z§(r;a,e) diverge at r = 0; there is Z¢ — —00,
and Z§ — co. Further, for r — oo, there is Z¢ — 1, while Z% — co. The zero point of
Z" (r;a,e) is located at

e?

IMJ
turning points of uncharged particles are located at the sphere r = r,. Extrema of
Z% (r;a,e) are given by zeros of

(40)

T, =

mNWHHIﬁ&ﬂuﬁﬂlyv...an?lpwlmuv. (41)
or 2 2 /A(r? + a2)

i.e., by solutions of

B(r;a,e) = (r* - awvm (F?+a®) A~ [*(r-1) +a? (r—a®- %:N =0. (42

For r — oo, there is 0Z% /0r — 2, while 82t /or disappears as
9z (1-¢?)

8r T u?
Therefore, we can conclude that for r — oo the function Z%(r;a,e) — 1 from above
(below), in Kerr-Newman spacetimes with e? < 1 (¢2 > 1).

At those r’s which are the solutions of (42), the circular off-equatorial (6 # w/2)
orbits can exist for particles with E = m, & = @ = 0, and corresponding value of Z,

(43)
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Fig. 1. The reality condition of the family of functions €2, is given by :w?xv& (solid lines). It
is fulfilled outside the shaded region: The zero points of €2, are given by nw?& (dotted line).

given by (39). These circular orbits, forming a stable stationary spherical shell, can
exist only in the field of some Kerr-Newman naked singularities; their characteristics
will be given later. Now, we shall prove in a straightforward way that no such orbits
can exist outside the event horizon of black holes. In the case of extreme black holes
(a® +€® = 1) there is

B(r;a,e) = Im.lv? - Cu?h +2r8 p a2 4 g2 = QAY (44)

and we immediately see that B (r;0,e) <0at all r > 0 — the orbits cannot exist in the
field of extreme black holes. In the case of non-extreme black holes (a? + €2 < 1), it is
clear that at r > r, the inequality

B(r;a,e) < —a®[(r* + a?r? — aY)A + 273 (r — 1)(r —a® —¢?)
+a*(r —a?® - e’ <o (45)

holds — the orbits cannot exist outside the outer horizon T+ =1+(1-a%-¢e?)1/2 |t
will be shown later that such orbits cannot exist even under the inner horizons.
Ina naked-singularity spacetime with parameters a, e given, the radii of stationary
spherical shells are determined by the relation
e’ = mwﬁw (r;a)
2 2
— a

Z 2 Tq.m +a%)% - 2a%r + sign(r? — a?)(r? + a2+ a?)2 = AQ»L (46)

Denoting the radius of such gz stationary shell as ry, the specific charge of particles of the
shell is given by Z* (r; q, e) or Z% (rs;a,e). Forr = oo {and any value of the parameter
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Fig. 2. The behavior of the functions
el s determining the radii of stationary
spherical shells. There are three qual-
itatively different cases of the behavior:
(a) a® <1, (b) 1 < a® < 27/16 = 1.6875,
(¢) 27/16 < a®. The functions e (r;a)
(solid lines) and eZ,,(r;a) (dotted lines)
are represented by the sections of ¢ =
const. The values of the parameter a? are
given in the figures on the a®-axis. Posi-
tive parts of these functions are physically
relevant only.

a), there is €2, , (r;a) — oo, while €2, _(r;a) — 1. Zeros of the functions €2, (r;a) are
located at 7 = 0 and r's expressed by the relation

a? = nm?xv (r) =% 47
The reality condition of this family of functions is

a? > aw?xv+?v, . . (48)

@ <@g (), (49)
where

e =7(2 -2 2/(1-1)). (50)
The functions awﬁ ex)+ are defined at r < 1. There is a maximum of mw@c 4 atr=23/4,

where afy = 27/16 = 1.6875. If a2 < 1, there are no zeros of 2.+ (r;a) at r = a, because
the function Dm?imi lies in the region “forbidden” by the functions aw?xv 4 (see Fig.
1).

A minimum of the function e2.(r;a) is located at r = 1, if a® < 1. Then there is

e _(r=1;a) =€ =1-a?, (51)
ex min
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and the function eZ, (r;a) determines maxima of the function Z (r;a,e) at r > 1,
and minima of Z{ (r;a,e) at r < 1. The other minima of the function Z% (r;a,e) are
determined by the function e?,, (r;a). The functions e (r; a) are illustrated in Fig.
2a in the case a® < 1. Clearly, they must be positive in order to give physically relevant
results. If a® > 1, there are no extrema of e+ (r;a) in regions, where €2, (r;a) > 0.
Then €2, _(r;a) > 0 determines the maxima of the function Zt(r;a,e), while €2, , (r; a)
determines the minima of Z% (r;a,€). For 1 < a? < 27/16, the functions e2 . (r;a) are
given in Fig. 2b, for a® > 27/16, they are given in Fig. 2c.

Now, it is clear from the behaviour of the functions eZ.1(r;a) that no stationary
spherical shells can exist even under the inner horizon of Kerr-Newman black holes.

The stationary shells can exist only if the charge parameter Z > 1. Particles with
Z < 1can fall from infinity; they will return back from a, turning point given by the func-
tion Z? (rs;a,e). Contrary to the case of Kerr naked singularities, no “radially” falling
particles can reach the surface r = 0 of Kerr-Newman naked singularities. Uncharged
particles have turning points at'r, given by (40). Particles with Z < 0 (attracted) have
their turning points at r, < r,, and particles with Z > 0 (repulsed) have r, < ry if
Z < e+ (4a /) but v < 1, if Z > €2 + (4a%/e?). For particles with Z = 1 the
turning point is at r = @, where .

5 Q.umw

al = ——.
1—¢?

(52)

Now, the physical relevance of the effective potentials Z% (r;; a,e) will be determined.
We shall consider only particles in positive-root states, which have positive energy
relative to local observers (e.g., the locally non-rotating observers). For such particles
there is dt/dr > 0. Particles in negative-root states have negative energy relative to
local observers, and dt/dr < 0; such particles constitute “Dirac’s negative energy sea”
(for details see [6]). Using equations (35) and (39) we arrive at

(r2 + a?)*/2
Aljz -

d ;
MTM = —a%sin?g F

dr (53)

Therefore, the stationary shells determined by the function Z% (rs;a,e) have dt/dr <0,
and their particles are in the negative-root states (unphysical from the point of view
of classical physics). Physically relevant stationary shells with particles in the positive-
root states are determined by Z* (r;a;e) giving dt/dr > 0. We conclude that the
physically relevant stationary spherical shells in the positive-root states can exist only
in the field of Kerr-Newman naked singularities with the parameter €2 < 1. No such a,
shell can exist, if ¢* > 1; only shells in the negative-root states are possible in this case.

We illustrate the behaviour of the functions Z5(r;a,€) in the case of naked singu-
larities with e? < 1, allowing existence of physically relevant stationary spherical shells,
in Fig. 3. For comparison, we give the functions also in the cases of spacetimes not
allowing the existence of such shells in Fig. 4: for naked singularities with e2 > 1 (a),
extreme black holes (b), and non-extreme holes (c}. Further, we restrict our attention
to the Kerr—Newman naked-singularity spacetimes with ¢2 < 1. We give the charge



558 Z Stuchlik, S Hledik
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Fig. 3. The behavior of the effective potentials Z% determining radial motion in the field of
the Kerr-Newman naked singularities with e? < 1, when physically relevant stable stationary
spherical shells can exist. They are determined by the maximum of Z% . The regions forbidden
for the radial motion are shaded. The potentials are drawn for a® = 1.69, e? = 0.09.

parameter Z of the physically relevant spherical shells as a function of the parameters
of these spacetimes in Fig. 5.

The azimuthal equation (34) implies the turning points of the ¢-motion to be given
by

mm

Z = Nﬁﬁj mv =2~ Am%v

Iﬂ-‘.
Common turning point of the radial and azimuthal motion exists Just for uncharged
particles at r = r,. For particles of the stationary shells there is

d [r? + a?

Stationary spherical shells around Kerr-Newman naked singularities 559

Fig. 4. The effective potentials for
three cases in which the physically realis-
tic stationary spherical shells cannot ex-
ist: (a) naked singularities (a? + e? > 1)
with e > 1, potentials are drawn for
a’ =036, e =2 (b) extreme black holes
(a® + ¢® = 1), potentials are drawn for
a® = 0.36, e = 0.64; (c) non-extreme
black holes (a® + e < 1), potentials are
o | drawn for a® = 0.36, ¢ = 0.49.

The shells are corotating relative to distant static observers with the angular velocity
given by the relation

d¢ _ a(r? + a? — VA)
dt (2 +a?)2 + a?/Asin® 6

(56)

Rotation of the stationary shells is differential due to the latitudinal dependence of
the angular velocity. We can simply convince ourselves that the shells are corotating
relative to distant static observers.

We now give the velocity of the stationary shells relative to the family of locally
non-rotating observers. The LNRF components of the velocity of charged test particles
are given in Section 2. For particles of a stationary shell they read:

I

0, (57)
@ = o, (58)
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Fig. 5. The dependence of the charge parameter Z; of the physically relevant stationary
spherical shells on a? and e2. The function Z° (rs; a,e) is defined on the region 0 < e? < 1,

al+e?> 1, ie., on the subset of the region of naked singularities restricted by the condition
2
e” <1.

@ [ + o — VA ¥ e sine
o . 59
Y (r2 +a2)3/2 — g2\/Asin? 6 >

We can see that the stationary shells are counterrotating relative to the family of locally
non-rotating observers.

Distant static observers can, in principle, determine radius of a stationary shell by
using photons moving along the geodesics of principal null congruence (the outgoing
PNC photons). The observers can distinguish such photons since these photons are
characterized by a specific point in their plane of sky (see [12]).

The PNC photons move along 6 = const surfaces with the constants of motion
® = aEsin’f, Q = —a?E2cos* § (see [9]). Using Eqs (13) and (16), we find that an
outgoing PNC photon radiated out at a given ry and ¢ will reach a distant observer at
r* and time t* after the time interval Atyn = t* — t given by

2=% |smspan—tos T 2 g (60)
ar — :
Va? +e? -1 va?+e? -1 va? +e? —1

The redshift z of the PNC photons as measured by distant observers gives informa-
tion about the position 75 of a particle at the moment of emission of the PNC photon.
The standard formula, 1+ 2z = (U%kg )em/ (U%ka)obs, Where Usns UG, are 4-velocities of

+ — arctan
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Fig. 6. The redshift z(rs; a, €) of the PNC photons radiated by the physically relevant station-
ary spherical shells as a function of parameters a? and 2.

the emitting particle and observer, ks kS are 4-vectors tangent to the null geodesics
at the moment of emission and reception of the photon, leads to the expression:

(2~ 2Z)r - e+ /R/m?
7= A :

The redshift is independent of the latitudinal coordinate of the particles of the shell,
being determined by the parameters of the spacetime and the radius of the shell by the
relation

(61)

2 + a2
2 —2rs+a?+e?

z(rs;a,e) = 1, (62)

where r; = ry(a, e) is given by the function el._(r;a). We illustrate the dependence of
the redshift on the parameters of the spacetimes in Fig. 6.

4 Conclusions

We have shown that a stationary shell of charged dust with constant specific charge can
exist in Kerr-Newman naked-singularity spacetimes with e? < 1. The shell is corotating
relative to distant static observers, but counterrotating relative to the family of locally
hon-rotating observers, and its rotation is differential. Distant static observers can
obtain an information about the position of the shell by measuring the redshift of the
outgoing PNC photons radiated by particles of the shell. The redshift will be finite and
independent of the proper time of distant static observers. No such phenomenon can
be observed in the case of Kerr-Newman black holes.
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