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Black holes in spacetimes with a negative vacuum energy, i.e., with an attractive
cosmological constant A < 0, are described by the Kerr-Newman-—anti-de Sitter
geometry. It is proposed that if the specific angular momentum of a black hole and
the attractive cosmological constant are combined appropriately, the spacetime can
be considered. as consisting of causally disconnected regions with opposite signature
of the metric tensor, corresponding to opposite character of the geometry outside
the black-hole horizons and between the horizons, respectively. No photons and
test particles can cross a surface of degeneracy at a constant latitudinal coordinate,
which separates the causally disconnected regions. Differences of the properties of
the motion of test particles in the separated regions are discussed. They are given
by the different normalization condition of the equations of motion, i.e., motion in
the region with the opposite signature is of “tachyonic” nature. It is demonstrated
in the simplest case of uncharged particles moving along the axis of symmetry.

1 Introduction

In the framework of the cosmological inflationary paradigm, bubbles of false vacuum
with large values (either positive or negative) of vacuum energy-density are frequently
invoked. The bubbles with a positive vacuum energy are considered in the early, infla-
tionary, stages of the evolution of the Universe, or in the models of creation of “baby”
universes [1, 2]. The bubbles with a negative vacuum energy are investigated in con-
nection with the hypothetical phase transition leading, according to some versions of
the unification theories of interactions of elementary particles, to a bubble nucleation
process in the present state of the Universe with zero (or a very small) energy-density
of the vacuum state. Contrary to the bubbles with a positive vacuum energy, which
collapse from the point of view of an external observer, the bubbles with a negative
yacuum energy have to expand from the point of view of an external observer, covering
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the whole observable Universe, eventually, because their pressure is positive, 1.€., higher
than zero {or a very small negative) pressure of the present vacuum state. .

The phase transition leading to a state with a significant negative vacuum energy is
implied, e.g-, by standard Coleman-Weinberg one-loop Higgs effective potential for the
field ¢* = ¢!, which is given by [3]:

1 5.2 ~y¢ m.:m%l 1
a\"l.m\h% +N & + &_ ONEN
and .
B = SM@% (9g* + 6g2g™ + 39" +9X° —3g%), 2

where p and A have the standard meaning from the theory of scalar fields, while g,
g' and gy are the SU(2) gauge coupling, the U(1) gauge coupling and the top quark
Yukawa coupling, respectively. If B < 0, then the vacuum is unstable, and the Coleman-
Weinberg effective potential has a negative minimum at a large value of the field ¢. It
can be shown that sufficiently large top quark mass could destabilize the standard-
model vacuum {4]. However, if the top quark mass is less than 190 GeV, the lifetime of
the unstable zero-energy vacuum is greater than the age of the Universe. The notion of
the bubbles of negative-energy vacuum states is not restricted to the Coleman-Weinberg
theory. For example, they appear frequently also in the framework of the Kaluza-Klein
multidimensional theories [5, 6).

Therefore, it is interesting t0 investigate properties of black holes in spacetimes with
a negative-energy vacuum, described by the Kerr-Newman—anti-de Sitter geometry with
a negative cosmological constant (A <0), corresponding to cosmological attraction. For
completeness, dyon spacetimes carrying a non-zero magnetic monopole charge will be
taken into account.

In Section 2, wmmcaow_uwimﬁzmm of the Kerr-Newman-anti-de Sitter geometry are
considered. Black-hole. and naked-singularity spacetimes are separated in the space
of the parameters of the geometry. Besides the pseudosingularities of the radial met-
ric component grr, determining the horizons of the black-hole spacetimes, the Kerr—
Newman-—anti-de Sitter geometry can have also pseudosingularities of the latitudinal
metric component gge, separating regions of the geometry with opposite signature of
the metric tensor. The latitudinal pseudosingularities will be called surfaces of degen-
eracy. Although Carter [7) excludes such possibilities, it is interesting to look for a
physical interpretation of the geometry even in this unusual situation. In this paper,
attention will be focused on the properties of the black-hole spacetimes containing a
surface of degeneracy. The properties can be conveniently understood and illustrated
by the motion of test cmasngmm.wn& photons. In Section 3, the equations of motion will
be given. Character of the latitudinal motion, crucial for understanding of the nature
of the spacetimes with a surface of degeneracy, will be summarized in Section 4. A
physical interpretation of the black-hole spacetimes with a surface of degeneracy will be
presented in Section 5. In Section 6, the differences between the E@nw..wo_m spacetimes
with and without a surface of degeneracy will be illustrated by the motion of uncharged
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particles along the axis of symmetry of the geometry. Finally, in Section 7, some COIl~
cluding remarks will be given, concerning the proposed interpretation of the spacetimes
with a surface of degeneracy, and its relevance in the context of phase transitions into
states with a negative vacuum energy-density.

2 The geometry and its vmm=m0mm=m=~m~.mam0m

In the standard Boyer-Lindquist coordinates (t,7,0,¢) and the mmoEm».m._o units (¢ =

G = 1), the Kerr—Newman-anti-de Sitter dyon geometry is determined by the line
element.

A, . ‘Agsin® 2
ds® = — o7 (dt — asin®@ de)? + aﬁnn [adt ~ (r? +d?) d¢)
9 2
[4 2, P 2
Lot . df
+ >1 g o NV% ’ AWV
where ‘
1. v‘ .
&, = Iw>ﬂh¢w+nwv+ﬂn|m§ﬂ+%+m~+ﬁw, @
Ay = 14 W\Es cos® 0, ®)
N. = 1+ W\/Qwu A@V
P o= a’ cos? 6. M

The electromagnetic field connected with the geometry is given by the electromagnetic
potential

A, = wwm {(er + apcos 9)8t, — [aer sin2 @ + (r* + a*)pcos 6] 62} . (8)

The parameters of the spacetime and its electromagnetic field are: mass (M), specific
angular momentum (a), electric charge (e), magnetic charge (p), cosmological constant
(A). Tt is convenient to define a dimensionless cosmological parameter

1
y= MESN (9)

which has to be negative for the spacetimes under consideration. For simplicity we
put M = 1 hereafter. Equivalently, also the coordinates t, r and parameters of the
spacetime a, e, p are expressed in units of M and become dimensionless.

The event horizons of the spacetime are given by the pseudosingularities of the radial
coordinate, determined by the condition A, = 0. In the asymptotically anti-de Sitter
spacetimes there can exist two black-hole horizons; but no cosmological horizon behind
which the spacetime is dynamic — contrary to the case of asymptotically de Sitter
spacetimes with the repulsive cosmological constant A>0.
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Fig. 1. Functions governing the character of event horizons in the Kerr-Newman spacetimes
with a non-zero cosmological constant. The inflex points of the function yn(r;a,e) are given by
the branch of the function mwx?xETAJ located at + > 1.5 and e® < 9/8 {emphasized by extra

thick curve), where ez an+ (T e) > 0. The thick dotted line and the thin dotted line represent
the curves e2(exquy(T) and €Z(exmy(T): respectively.

The loci of the event horizons are determined by the condition

2 -2r+a?t+él

y= (00 =~ ra) (10)
(The magnetic charge p enters the Kerr-Newman-anti-de Sitter metric in the same way
as the electric charge e, therefore a re-definition €2 + p> — €% can be introduced in the
rest of this section.) The function yn (r;a,e) divergesat 7 = 0, while it goes to zero from
above for 7 — oo. If > > 0 and/or 2 > 0, yn — oo for r — 0. However, in the special
case a? = ¢* =.0 there is yp 7+ —° for  — 0. Therefore, in any Schwarzschild-anti-
de Sitter geometry with y < 0 there is a black-hole horizon located at rp determined
by the relation

1721173

1/3
1 1/3 1 1/2 A i v
=] -- —_— 1—-\{1—=— . 11
™= A ev L AH Mév - 27y ()

Clearly, rp, =+ 2 fory = 0, while rp — 0 for y = —o0.

Due to the asymptotic behaviour of yu(r;a,e), event horizons exist in the Kerr—
Newman spacetimes with an attractive cosmological constant, if the function yu(r;a,€)
has a minimum at negative values of y. Therefore, we have to consider zeros of the
function yn(r;a,€). They are determined by the relation

a? = alyy(rie) = 2r — r? — e’ (12)
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Fig. 2. Location of event horizons (solid lines) of the Kerr-Newman spacetimes with a non-
zero cosmological constant is given by the function yu(r;a,e) in three typical situations with
a fixed value of the charge parameter 2 = 0.49 and three characteristic values of the rotation
parameter a®> = 0.81 (no extreme), o = 0.5625 (two extrema at y > 0), and a? =036 (a
maximum at y > 0 and a minimum at y < 0). Only the third case gives Kerr-Newman—anti-
de Sitter black-hole spacetimes. Location of equilibria of uncharged particles on the axis of
symmetry of the spacetimes (dashed line) is given by the function Yequit (r;a,e); it is presented
in the third case only.

The function nwc_v (r; e) determines the horizons of the Kerr—Newman black holes with a

zero cosmological constant. The maximum of this function is at r = 1, where a® = 1—€2.
This corresponds to the extreme Kerr-Newman black holes. The Kerr-Newman-anti-de
Sitter black holes can exist only for parameters a and e satisfying the condition

a?+e? <1, (13)
if the relation
a? < aw?vﬁﬁ €) (14)

is satisfied. Then fixed values of a and e permit the existence of local extrema of
the function yn(r;a,e) necessarily. The local extrema of the function yn(r;a,e) are
determined (due to the condition 9y /0r = 0) by the relation

Qm

2 ;

me?vn_u?.. mv

1 5 . ;

= 3 Almi +r—e®x [PP@r+1)—é (4r® +2r - %ZH\NV . (15)
Since the functions pwx?v 4(r;e) govern the horizons of the Kerr—-Newman—de Sitter
geometry, we have to discuss their properties carefully. The reality condition of this
family of functions is

2 2
€2 Exexm))t (16)
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€ < Eex(n)— (17)
where

Cexuy() =7 {2r 1220 — P2l (18)

Zero points of pwx:; 4(r;€) are determined by the condition

_@=n)r
et = mm?x?:c.v = 5 (19)
and their extremal points are given by the relation
e = mwx?ir:w?v
= w (1672 + 24r + 11 |47 — 1{l4r — 5) - (20)

All the functions €Z(ex(n)) (), mw?i__z?v, €2 (ex(h)) HA.l are illustrated in Fig. 1, which
enables us to determine properties of the functions pwx?v 4(r;e) and yn(r;a,e). Three
qualitatively different cases for the behaviour of the function yn (r;a,e) ate possible (see
Fig. 2).

All the characteristic functions of a? and e? must be positive in order to give phys-

ically relevant results. It can be shown that mwx?TAﬁ e) < 0 for all r, e > 0. On

the other hand, al g L(rie) > 0in regions where e? < €2 (ex(h))” The relevant ex-

trema of a2 ny4 (75 e) are given by mwx?x?xlﬁﬁv at the branch lying under the curve

€2 (ex(h))" Therefore, the relevant extrema of aZ 1, L(r;e) exist for €2 < HMM M%M

with a corresponding critical value of the rotation parameter a2y, = 1.21202. .m
0 < €2 < 9/8, the critical value a2 (e), governing an inflex point of yu(r;a,€), i
determined by €2, x?:i?v. For a? < a2(e), the function yn(r;a,e) has two local

il eore

limiting case of e = 0, the function awx?v +¢.v has its maximum at Terit

CT!
extrema Y (min)(a> €) and Yh(max)(Gs e), determined by (15) and (10), with a given value
of the parameter e. For a? = a?;,(e), these extrema coincide at yerit(€) which is the
limiting value for black-hole spacetimes with a fixed parameter e. The black-hole space-
times exist for Yp(min) (@ e)y<y< Yn(max) (@ e) (see Fig. 2). The Kerr-Newman—anti-de
Sitter black holés correspond to the range of parameters

‘»S_A:::;QJ @v <y< 0. AMHV

Iy = Ynmin)(a: ) the geometry determines an extreme black hole, and for y <
Yh(min) (@) e) it determines a naked singularity.

Distribution of black-hole and naked-singularity Kerr—Newman-—anti-de Sitter space-
times in the parameter space is given by the function @EBEAPQY and can be de-
termined by a numerical code. The results are given in Fig. 3. We can see that
black-hole spacetimes can exist for all values of attractive cosmological constant y < 0,
contrary to the case of repulsive cosmological constant y > 0 when black-hole space-
times must have y < 2/27, and the extremal value y = 2 /27 corresponds to the extreme
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Fig. 3. Parameter space of the Kerr—Newman-anti-de Sitter spacetimes. The black-hole
spacetimes can exist for any y < 0; therefore, we give the (—y) axis in the logarithmic scale.
The boundary between the black-hole and naked-singularity states is given by the function
”S.AEEAP&. determined by a numerical code. The light surface corresponds to the boundary
(ya(a)) between the spacetimes with and without the surface of degeneracy.

Reissner-Nordstrom-de Sitter geometry with e2 = 9/8 [8]. Distribution of the black-hole
and naked-singularity Kerr—Newman—de Sitter spacetimes with a repulsive cosmological
constant is given in {9].

The Kerr-Newman-anti-de Sitter spacetimes can have also pseudosingularities of
the latitudinal coordinate. In spacetimes with ya®? < —1, a surface of degeneracy,
determined by the condition Ag =0, is located at a constant latitude

vaTd )

The combinations of the parameters ya? = —1 must be excluded due to the fact that for
I = 0 the geometry is not well defined. Regions of the parameter space, corresponding
to the spacetimes with a surface of degeneracy, are given by the condition
1
y <wale) = -5 (23)
The function ya(a) is also illustrated in Fig. 3. We shall see that the surfaces of
degeneracy separate the spacetimes into two causally disconnected regions.

04 = arccos

3  The equations of motion of test particles

The motion of charged test particles is determined by the Lorentz equation

Fi
SNUW\ = (eF*, + g F* )Y, (24)
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and the normalization condition

e 47 o 25
mt.\|ﬁ~|\/|. ax =—m. A v
The test particle has mass m and carries electric charge ¢ and magnetic monopole
charge g; v = dz*/dr is'its four-velocity, and 7 is its proper time, related to the
affine parameter A by the relation 7 = m\. For photons m = 0. The tensor of the
electromagnetic field Fiy = Ay — Ap;ys the tensor *F, is dual to the tensor F,., and
it is determined by the relation

*F = eavapF?, (26)

where €,vap 18 the completely antisymmetric Levi-Civita symbol. The dual tensor is
determined by the vector potential (8) with interchanges e = p, p = —¢€. The motion
of uncharged particles and photons is determined by the geodesic equations.

In the integrated and separated form, the motion of test particles and photons is
determined by Carter’s equations [7:

dr
2~ = *VRI), (27)
P Ix (r)
de
2 /W), (28)
‘2 NM ! 1P,
do 1Py ally
o= - + s (29)
P Agsin?f  Ar
dt alPy (7% + a?)IP,
P = ; (30)
Pax Ag A,
where
R = P:-A(m'r’+K), - (31)
. P \?
w = (K-adm? cos? 9)Ag — A\alv , (32)
sin @
and
P = IE(r* +d®) — Ia® — (ee — gp)T, (33)
P, = IabE sin® 6 — I® + (ep — ge) cos . (34)

The constants of the motion are: energy (E), connected with the stationarity of the
geometry, the axial angular momentum (®), connected with the axial symmetry of
the geometry, and the “total” angular momentum (K), connected with the hidden
symmetries of the geometry. Notice that E and ¢ cannot be interpreted as energy
and the axial angular momentum at infinity, since the spacetime is asymptotically anti-
de Sitter. .

It should be stressed that the radial motion is influenced by interactions of electric
(or magnetic) charges of the source and the particle, while the latitudinal motion is
influenced by their mixed electro-magnetic interactions.
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4 The latitudinal motion

We shortly summarize properties of the latitudinal motion, which is influenced by the
“electro-magnetic” interaction of the source and the test particle, characterized by the
parameter
= P9 _ (35)
p IeE
The motion can be determined by the “effective potential” with respect to the constant
of motion K = K/(aE)?, given by the relation

N2 in2 f — ] — 2 2
K, = (14 ya?)*(sin® 6 —1 .m8m 6) i nOm.Nm, (36)
(1 + ya? cos? §) sin” 0 0%

where the impact parameter | = & /(aE) and the specific energy v = E/m have been
introduced.

If there is no interaction between the electric and magnetic charges of the source
and the particle (3 = 0), the motion is symmetric relative to the equatorial plane
(8 = w/2) of the spacetime, and is allowed in this two-dimensional plane. For the
“glectro-magnetic” interaction switched on (8 # 0), the motion is asymmetric relative
to the equatorial plane, and is not allowed there.

If y > 0, the latitudinal motion is of the same character as in the well known
case of Kerr-Newman spacetimes. However, in the considered case of Kerr-Newman—
anti-de Sitter spacetimes (y < 0), & qualitative difference appears: beside the stable
6 = const orbits located outside the equatorial plane, there exist unstable 8 = const
orbits outside the plane. A detailed analysis of the latitudinal motion is given in {10}
for # = 0, and in {11] for B # 0. The discussion have to be separated into two parts:
if ya? > —1, the motion is allowed in regions where K > Ky; if ya® < —1, the motion
is allowed in regions where K 2> K, for 8 > 84, and K < K for 8 < B4; of course,
due to the plane symmetry of the spacetime, we assume 0 <6< n/2. The typical
behaviour of the effective potential is in all the characteristic cases illustrated in Fig. 4.
It can be checked easily from the behaviour of the effective potential that the surface
of degeneracy cannot be penetrated by test particles and photons. In the next Section
it will be shown, using directly the latitudinal equations of motion.

5 An interpretation of the spacetimes containing a surface of degeneracy

As can be directly inferred from Fig. 3, the Kerr—Newman—anti-de Sitter spacetimes
with a surface of degeneracy can correspond to both black-hole and naked-singularity
spacetimes. In the discussion of their character, we can consider the region of latitudinal
coordinates 0 < 6 < w/2 only, due to the symmetry of the spacetimes relative to the
equatorial plane.

The geometry (3) with ya? < —1 has the usual form with the signature +2 in the
region of 8 > 64 = arccos(1/+/—ya?). In the black-hole spacetimes, the geometry is
static outside the horizons, and it is dynamic between the horizons — see Fig. 5a. The
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Fig. 4. The effective potential of the latitudinal motion in the Kerr-Newman-anti-de Sitter
dyon spacetimes. The typical situations are illustrated for the spacetimes with or without
the surface of degeneracy; and for uncharged or charged particles. For spacetimes without the
surface of degeneracy, the effective potentials are given for ya® = —0.2, ¥ =191=-01 with
(a)B=0and (b) 8= —0.007. For spacetimes with the surface of degeneracy, the effective
potentials are given for ya® = -2, ¥ =25,1=057 with (c) 8 =0 and (d) A =-0.02

geometry is static at all radii in the naked-singularity spacetimes — see Fig. 5b. The
motion of test particles is given by the equations (27)~(34) in this case.

On the other hand, in the region of § < B4 the geometry (3) has the opposite signa-
ture —2, and the situation is just inverse to the situation in the region of 8 > 64. The
black-hole spacetimes are dynamic outside the horizons, while they are static between
the horizons; the naked-singularity spacetimes are dynamic at all radii. According to
the normalization condition (25), the equations of motion (27)—(34) govern tachyonic
motion in the region of § < 8q. The constants of motion connected with the symme-
tries of the spacetime must have opposite signs due to the signature change: py = —-®,
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Fig. 5. The spacetimes with a surface of degeneracy. The sections of t = const and ¢ = const
of the spacetimes are represented in (a) a black-hole case, and (b) a naked-singularity case.

p; = E. We can say that in the region of § < 84 the motion of test particles will be
determined by the equations of the tachyonic motion for the region of 8 > 84 (but with
opposite signs of the constants of motion ¥, E). Because of the normalization condition

dztdz” | o

e e T +m”, (37)
the motion will be governed by the equations (27)-(30) with

R = P?-A/(K- m?r?), (38)

P\’
_ 22 02 B\ Ap —

w (K + a®m® cos™ 0)Ag hmwsav ; (39)
and

P, = -IE(T+ a?) + Ia® — (ee — gp)r, (40)

Py, = -IaE sin? 0 + I® + (ep — ge) cosb. (41)

It is clear from equations (32) and (34) or (39) and (41) that no timelike and null
geodesic or test-particle trajectories can Cross the surface of degeneracy 6 = 84, because
Ag = 0 there, and (Ps/ sin 6)? enters the expressions for W (@) with a negative sign. (It
is an inverse situation to the case of the radial motion, when P2 enters the expression
for R(r) with a positive sign, and the particles can cross the horizons where A, = 0.)
In the special cases, when Py =0 at 64, the particles or photons approach the surface of
degeneracy asymptotically [10]. Therefore, the Kerr-Newman—anti-de Sitter spacetimes
with ya® < —1 can be considered as consisting of two causally separated regions.

6 Uncharged particles moving along the axis of symmetry

It is instructive to give an illustration of the different character of the motion in the
black-hole spacetime with and without a surface of degeneracy in the simplest case of
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the motion of uncharged particles along the axis of symmetry. {More complicated case
of the motion of charged particles will be treated separately [11}.)
The equation of the latitudinal motion implies: § = 0, $ =0 and

A a?m? if ya®> -1,

K= (42)

—a?m? if ya?<-L

The equation of the radial motion then implies for the motion along the axis of symmetry
the relations

PEr? +a2)? — ApmP(r® + a?) if ya®>-1, m

R(r) = A I2EX(r? +a?)? + A,m2(r? +a?) if ya? <-L (43)

There are no turning points of the radial motion, if A, < 0 for ya? > —1,and if A, >0

for ya® < —1. . .
1t is convenient to introduce a new parameter of the specific energy by the relation
F= L2 (44)
m

Then the turning points of the axial motion are given by the relation

7 = Verr(r; 9, @, €)s (45)
where the effective potential must be positive, being determined by

.. 46

<mmuq.~+m.~|v.o (46}

for spacetimes without the surface of degeneracy, while it is given by

v@ =__Br_>g (A7)

for spacetimes containing the surface of degeneracy. The motion is allowed in regions
where 4% > Ve, and P> ﬁﬁﬁ respectively. . .
The effective potential has zeros at the black-hole horizons. It is well defined outside
the horizons if ya? > —1; in this case Vg — 00 for r — 00. It is well defined between
the horizons, if ya> < -1, and there must be a maximum of the effective potential
ﬂrmﬂrmn . . .y - R
The extrema of the effective potential, determining points of equilibrium positions

on the axis of symmetry, are determined by the relation

r? — e?r —a?

= m\mnczﬁjb;mv = q.?.w +§wvw )

(48)

The function Yequit(7; @ e) goes to zero from above for r — oo, while it diverges at = 0
35 Yequil > —O- Because we restrict our attention to spacetimes with an mﬁﬁmnﬁ.zm
cosmological constant, we have to say that the function Yequit (T3 @, e) will be negative,
if the condition

.2 2
a > @w?n:..:?.w& =r°—er (49)
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Fig. 6. The effective potential of the axial motion of uncharged particles in the Kerr-Newman—
anti-de Sitter black-hole spacetimes. (a) For a spacetime without the surface of degeneracy,
it is given for y = —0.5, a? = 0.2, ¢ = 0.5. (b) For a spacetime containing the surface of
degeneracy it is given for y = —25, 2 = 0.1, e? = 0. The extrema of the effective potential
correspond to unstable equilibrium points on the axis.

is satisfied. The function aq.q)(ri€) is positive at 7 > 2, its extremum is located
at r = e2/2, i.e., out of the region where the function gives physically relevant results.
Moreover, common points of the functions a2 equin(Ti€) and aZy(rie) are located at
r=e?/2andr=1.

Extreme points of the function Yequil(T; @, €) (given by the condition 8Yequit/Or = 0)
are determined by the relation

a? = @Zyequiny(Ti€) = —3r2 4+ 2r[r(3r — €))% (50)
The reality condition of the function pwx?ai:ﬁ} e) is r > €?/3, its zero point is at

r = 4e*/3, and its extreme point is again out of the region of physical relevance at
r = €2/2. Further, it is important to find common points of the functions yn(r;a, €)
and Yequit(7; 4, ¢). They are determined by the relation ,

Ew

Ay e+ (i €)
1( . .
=3 Alwﬁm tr—elk [r2(8r+1) - (4r® +2r - mJU_H\J . (51)
Because there is

ahy(eqy2(T3€) = By £(T3 ) (52)

we can conclude that the function yequii(r;a,€) intersects the function Yequit (T3 2, €)
just at its extreme points (see Fig.2). Now, we can easily convince ourselves that in
the case of Kerr-Newman-anti-de Sitter black-hole spacetimes the equilibria positions
of uncharged particles are impossible outside the horizons in spacetimes without the
surface of degeneracy, while they exist between the horizons of spacetimes with the
surface of degeneracy, being unstable with respect to radial perturbations.

The behaviour of the effective potential Veg and V, ) (s illustrated in Fig. 6. We see

: o - : et
that the effective potentials in spacetimes with and without the surface of degeneracy
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can be considered as “complementary” . However, we must stress that in the spacetimes

- with a surface of degeneracy there is no “mirror” symmetry between the causally dis-
y

connected regions 8 < 84 and 8 > 04, because of different character of the latitudinal
motion in these regions.

7 Concluding remarks

The analysis of test-particle motion in the Kerr—Newman-anti-de Sitter geometry en-
ables an unusual proposition that phase transitions into states with a negative vacuum
energy, predicted by some versions of grandunified or multidimensional Kaluza-Klein
theories of elementary particles, could lead to changes in the structure of rotating-black-
hole spacetimes, connected with changes of signature of the metric tensor describing
some regions of the spacetimes around their axis of symmetry. The regions with the
changed signature of the metric tensor have to be causally disconnected from regions
around the equatorial plane of the spacetimes, retaining the original signature of the
metric tensor. In the region with changed signature, the equations of motion of test
particles are of “tachyonic” character. The simplest case of the motion of uncharged
particles along the axis of symmetry is discussed in the present paper, however, the
proposed interpretation of the black-hole spacetimes containing a surface of degeneracy
have to be further checked by an investigation of the properties of the motion outside
the axis of symmetry.

Clearly, the “geometric” studies presented in this paper are not sufficient to verify
the conjecture that rotating black holes can be described by the Kerr—-Newman-anti-de
Sitter geometry with a surface of degeneracy after a phase transition into a state with
sufficiently low density of negative vacuum energy. They have to be extended by more
sophisticated considerations, going behind the simple analysis of test particle motion,
and taking into account interactions of the black hole with its environment.
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