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In this paper the new model of dispersion of the optical constants of the amorphous
solids is presented. This model adds to the Lorentz model of the classical oscillator
the acwuaGB-an:ubwop— concept of the gap. Moreover, this model respects the
existence of the tail in absorption of the amorphous material. It is necessary to
point out that this new model is acceptable from all the point of physics. It can be
employed for solving the inversion problem within the fields of both optics of thin
films and optics of solids. The results obtained for a thin film of hydrogenated
amorphous silicon using our new model are introduced as well.

1 Introduction

Good knowledge of the optical constants of solid state materials is important for new
technologies in practice. Two basic groups of the methods can be utilized for deter-
mining the dispersion dependences of the optical constants of solids. The methods of
the first group are based on the separate interpretation of the optical quantities of the
system containing the material studied at the individual wavelengths, i.e., the optical
quantities measured are treated at every wavelength separately {these methods can be
called the single-wavelength methods). The latter methods are based on interpreting
the entire spectral dependences of the optical quantities of the system measured within
a certain spectral region, i.e., on curve fitting with the aid of dispersion relationships
(these methods can be called dispersion methods). The dispersion relationships are
given by the physical models of the material forming the system studied.
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The single-wavelength methods are the basic ones enabling us to obtain the optical
constants of the materials under investigation without knowledge of the model of the
dispersion relationships of these materials. The disadvantage of these methods is the
fact that the optical constants obtained by the methods mentioned need not satisfy the
Kramers-Kronig relations in consequence of systematic errors of these methods. These
systematic errors can be caused by the fact that the model of the system containing
the material studied employed for determining the optical constants do not respect
the perturbations, for example, roughness of boundaries, inhomogeneities of layers,
existence of interlayers etc. Thus, these methods are useful for systems which can be
described by simple models, i.e., flat surface model, ideal single layer model etc.

The advantage of the latter methods is given by the fact that these methods enable
us to obtain the optical constants of the materials forming more complicated systems.
In this case the correlations between the parameters describing these more complicated
systems are smaller for the dispersion methods than for the single-wavelength methods.
The disadvantage of the dispersion methods is implied by the fact that it is necessary to
know an appropriate parameterisation of the optical constants of the materials forming
the system studied. All the present dispersion relations used in the broad spectral
region (i.e., for example, the formulae of Cauchy, Sellmeier, Lorentz, Forouhi etc.) do
not describe correctly the behaviour of the optical constants of the materials in the
vicinity of the gap. This fact causes difficulties if it is necessary to express the spectral
dependences of the optical constants of thin films formed by absorbing materials within
the broad spectral region. We encountered with these difficulties at our optical studies
of hydrogenated amorphous silicon layers. Therefore we had to propose a new model
of the dispersion dependences of the optical constants of this material fulfilling the
Kramers-Kronig relations. In this paper the description detailed of this model will
be presented. The spectral dependences of the optical constants of the hydrogenated

amorphous silicon determined by means of our new dispersion model will be introduced
as well.

2 Description of the models of optical constants of amorphous solids in
the interband region

The basic model of the optical constants n (refractive index) and k (extinction coeffi-
cient) of amorphous solids in the interband region is based on the idea of the classical
damped Lorentz oscillator. Within this model the complex dielectric function E) is
expressed at follows:

é(E) = e1(E) +162(E), (1)
where
A(E? - E?
a(E) = 1+ (B l@me +Mmmw“
ABE
MMAMV = AM@% — MNvN T mM‘mMu AMV
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E = hw is photon energy, A, B and E; are the parameters corresponding .8 the
model (4, B and E; are the strength, linewidth and resonance energy .Om oscillator,
respectively). The optical constants n and k of materials are connected with ¢; and e
as follows:

e =n’—k* and e = 2nk. 3)

The model of the Lorentz oscillator is satisfactory for the description of the ovﬂoﬁ
constants of the materials in the region of the interband transition. However, this
model does not incorporate the concept of an optical energy band gap E,. .H_S:mq. the
optical energy band gap of semiconductors and dielectric can not be directly determined
from this approach. o

For the amorphous solids the valence and conduction bands wﬁ:‘o; simple forms on
contrary to forms of the bands of crystalline dielectrics and semiconductors. The forms
of these bands of the amorphous solids are namely similar to the form of 2.5 bands of free
electrons (i.e., similar to the parabolic bands). Thus, nzpﬁ:B-Emow.wEwm_ ﬁwmﬁ.ﬁmﬂm
imply that the expression of e, of amorphous solids for photon energies in the vicinity
of E, is given in the following way (see e.g., [1]):

e(E)=a(E - mnvm ; 4)

where « and J are constants.

The fundamental quantum-mechanical approach (see e. g., [2]) do not Hmmm. to equa-
tions for the optical constants enabling us to carry out reasonable vmawsmnmn_mmﬁoﬂﬂ of
the inverse problem (within the inverse problem one &mnmaawumm. the values of the optical
parameters characterizing solids and thin solids film on the vm,m_m of the measured <mEmm.
of the optical quantities such as the reflectance, m:wcmoama.do parameters mwn.v. Forouhi
and Bloomer [3] therefore developed the approach m:@E.Em them to derive formulae
for the optical constants of the amorphous solids expressing the dependences of these
optical constants on photon energy and the band gap E, , i.e,,

B,E +Cq
mE) = nldt o pEr o
A(E — Eg)? 5)
K(B) = E?-BE+C(C’
where

A( B?
manmm||ml+m@mnmw+6vv

Gl = m me +C) .W - mmhq_

and Q = /C — B%/4. |
They utilized these formulae for interpreting the spectral dependences of the optical
constants of the thin films formed by amorphous silicon and the other amorphous ma-

terials (the measured spectral dependences of the optical constants of the amorphous
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Fig. 1. The spectral dependences of the refractive index n and extinction coefficient & of the
hydrogenated amorphous silicon layer calculated using the Forouhi and Bloomer model for the
values of the parameters presented in Ref. {3].

silicon-films were taken from Ref. [4]). If the values of the parameters A, B, C, n(o0)
and E, found for amorphous silicon by these formulae are used for calculating the
spectral dependences of n and k (see Ref. [3]) one obtains the curves plotted in Fig.
1. From this figure it is evident that the spectral dependence of k exhibits a peculiar
behaviour, i.e., that the values of k are different from zero in the range of E obeying
the following relations: E < E, (Note that Forouhi and Bloomer [3] determined the
values of the constants mentioned above by means of the spectral dependences of the
optical constants of amorphous silicon corresponding to the range 1.6-3.2 eV). One can
see that the spectral dependences of k evaluated by the Forouhi and Bloomer model do
not exhibit a reasonable physical behaviour within the broad spectral region.

To remove this physical &monmvm:n% we tried to develop a new model of the op-
tical constants of amorphous materials exhibiting the properties acceptable from the

physical point of view. We required in order that our model might fulfil the following
requirements:

1. The function €»(E) must be an odd function according to the photon energy F.
2. The complex function é(E) must satisfy the Kramers—Kronig relations.

3. At the vicinity of Ey the behaviour of the function é(E) must correspond to the
the model of Lorentz oscillator (see eq. (2)).

4. The behaviour of the function €(E) must fulfil eq. (4) for the values of E close
to Ey.
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Fig. 2. The courses of the function f(z) for several values of the parameter a.

5. The values of €;(E) must exhibit small values different from zero even MoH the
. values of E smaller than E, because amorphous solids have levels of electron
energy corresponding to bound states inside of the gap.

From the foregoing requirements concerning é(E) it is evident that the function
€2(E) can be written in the following form:

ABE
€(E) = 773 _ 2\ + B2E?
(B —E?)* +

G(B), (6)

here G(E) is a function which modifies the classical Eo&& o.m the ﬁoﬁﬁﬂﬁa-%@%@ow.
McB the point of view of the concept of quantum mechanics, i.e., this function

takes into account the existence of the gap, i.e.,
b
om =1 (55| -
where the function f is defined in this way:

0 for <0 o
z) = 1 for z>1 8
@ az + (3 — 20)z + (a — 2)2°
for O0<z<1l.

It is clear that the function f(z) is given by a cubic spline for the values of z laying

i f the function f(z) are plotted for three
0 and 1. In Fig. 2 the courses o .
WMMMMmMm ?M:ﬁmamamnmﬁ a. This cubic spline was constructed by means of the following

conditions:

0)=0, f(0)=a, ©)
“MHW =1 and f'(1)=0.

The symbol f* dencies the derivative of f owing to .
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From the preceding formulae one can easily see that for reasonable values of o
(e.g., for @ = 1) and for the values of E near to the value of E, the dependences of
the functions e3(E) expressed by egs. (6) and (4) converge each other. The constant o
introduced in eq (4) is than expressed by means of the parameters defined in our model
through the following equation:

_ ABE, a \° (10
T BI-E)?+BE \E,—Eg) )

To be able to include the existence of the levels inside of the gap into our model we
can express the function F(E) by the following convolution:

1 7 T (E-s)2
F(B) = 7o \ Gls) e~ 5@t ds, (11)

where 0F represents an extension of the absorption edge connected with the well known
tail in absorption of the amorphous solids. From the foregoing it is implied that the
function €;(E) is given as

ABE
A.mww _ vaw +.mme muﬁmv Cmv

NMAMV =

Further, the function ¢; (E) must obey the following equation expressing the Kramers—
Kronig relations:

o0

al(B) =1+ w \ sl & &) &gl B—8) 5 13)

S
o

1t should be pointed out that the integrals taking place in Eqs. (11) and {13) must
be solved using an appropriate numerical procedure which can complicate the inverse
problem in practice. However, this complication is not too important with respect to an
efficiency of contemporary computers and with respect to a possibility of a paralelization
of these computers. We employed our model for determining and interpreting the
spectral dependences of the optical constants of hydrogenated amorphous silicon-films.
Detailed results concerning this study will be presented elsewhere. In this paper we
shall only introduce final results expressing the spectral dependences of the optical
constants of a chosen film of hydrogenated amorphous silicon determined using the
model presented here.

By using a combined method of both spectroscopic multiple angle of incidence el-
lipsometry and near-normal spectroscopic reflectometry we determined the values of
the parameters of our model for the chosen film of hydrogenated amorphous silicon
as follows: A = (11.47 +0.04) eV2, B = (2.43 £ 0.03) eV, Eg = (3.891 = 0.003) eV,
B, = {1.728+0.006) eV, éE = (0.105+0.005) eV, a = 2.78+0.05 and b = 1.728 £0.003.

In Fig. 3 one can compare the spectral dependences of the optical constants of the
samples of hydrogenated amorphous silicon determined using our model and Forouhi
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Fig. 3. Comparison of the spectral dependences of the refractive indices n and extinction
coefficients k of the hydrogenated amorphous silicon layers found by us (solid curves) and by
Forouhi and Bloomer {3] (dashed curves).
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Fig. 4. The spectral dependences of the extinction coefficients k of the samples of hydrogenated
amorphous silicon found by us (solid curve) and Forouhi and Bloomer [3] (dashed curve).

and Bloomer model. Note that in Fig. 3 these spectral dependences are only plotted
in the spectral regions in which they were measured. The comparison of the curves
plotted in Figs. 1 and 3 implies that the Forouhi and Bloomer model is not usable in
a broad spectral region (i.e., the Forouhi and Bloomer model can only be used in the
relatively narrow spectral region corresponding to photon energies greater than value
of E,.
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From Fig. 4 it is evident that the application of the model of Forouhi and Bloomer

[3] is not reasonable for photon energies smaller than value of E, from the physical
point of view.

3 Conclusion

In this paper the new model of dispersion of the optical constants of the amorphous
solids has been presented. This model adds to the Lorentz model of the classical oscil-
lator the quantum-mechanical concept of the gap. Moreover, this model respects the
existence of the tail in absorption of the amorphous material. It is necessary to point
out that our new model is acceptable from all the point of physics. It can be employed
for solving the inversion problem within the fields of both optics of thin films and optics
of solids.
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