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In the past years spectroscopic ellipsometry (SE) was applied to materials science
problems as an optical technique for non destructive depth profiling and charac-
terization of multilayer structures and interfaces with considerable success. The
measured optical response of the multicomponent and/or multilayer structure un-
der investigation can only be related to actual material properties by a model
calculation. The successful application of ellipsometry is not only determined by
the quality of the measurements, but more importantly by the quality of the op-
tical model. Several examples for the different application of SE are reviewed.
Two recent examples of multilayer analysis illustrate possibilities: in the first
example damage created by ion implantation in single-crystalline silicon and in
silicon carbide was characterized using ellipsometry and Rutherford Backscatter-
ing Spectrometry (RBS) in combination with channeling. In the second example
electrochemically prepared porous silicon layers {PSL) were investigated by SE.

1 Introduction

The past years have seen widespread use of spectroscopic ellipsometry (SE) in different
fields of research. Ellipsometry offers great promise for characterization, monitoring
and control of a wide variety of processes, especially in microelectronics.

The requirement for the formation of very shallow junctions in silicon necessitates
the application of high depth resolution analytical methods for the investigation of the
depth distribution of implanted dopants and that of damage created by implantation.
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and amorphization. SE is an established method for determination of damage depth
profile generated by ion implantation (1-4]). Fukarek et al. investigated 250 eV and
10 keV boron implantation damage using in-sity single wavelength ellipsometric etch
“depth profiling and non-destructive variable angle of incidence SE {5].

It is of considerable interest to investigate the optical properties of amorphous semji-
conductors, one of the straightforward methods js SE [6]. Surface and interface phe-
nomena were investigated also using SE (7). Pintér and co-workers investigated the
nucleation and growth of MW-CVD diamond films using SE and ion beam analysis
methods [8]. Tonova and Konova developed a new algorithm for ellipsometric depth
profiling [9,10]. Lehnert et al. performed in sity characterisation of oxide and polycrys-
talline silicon layers at high temperatures using a spectroellipsometer integrated in a
vertical LPCVD-batch furnace [11]. v

Dielectric function of bulk of 4H-SiC and 6H-SiC was determined by Zollner and
Hilifker using spectroellipsometry. The ellipsometric angles from 0.72 eV to 6.6 eV were
measured using a rotating analyzer ellipsometer with compensator. The compensator
allows accurate fneasurements even for large gap materials [12),

Kryzanowska et a]. investigated refractive index anisotropy of porous silicon layers
with columnar structure using single wavelength (A = 632.8nm) multiple angle of in-
cidence ellipsometry {13]. The porosity of their samples was in the range 23% - 70%.
Formulas for Fresnel refraction coefficients, corresponding to uniaxially anisotropic film
on isotropic substrate, were applied to determine ordinary and extraordinary refractive
indices of porous Si layers. They assumed that the values of extinction coefficients were
negligible at thig wavelength.

Fried et al. made systematic study on thin porous silicon layer of different porosities
formed by electrochemical etching and followed by thermal oxidation and electrochem-
ical oxidation. The oxidized and the non-oxidized PS layers were analyzed by spectro-
scopic m::umoﬁmnaa spectroscopic Smmnnoﬁmng and secondary mass Spectrometry. [14].
Molnar et al. applied SE for the characterization of porous silicon layers fabricated for

2 Experimental

2.1 Ion implantation

To investigate damage profile 150 keV Net were implanted at room temperature in
(100} silicon. The implantation dose was 1 x 10" atoms/em?. To reduce the possible
effect of the native oxide layer the silicon substrates were etched in HF solution before
inserting them into the implantation chamber. In addition, silicon substrates rmi:m
usual native oxide layer were subjected to Ne implantation, too. In the case of SiC, 209
keV Alt* ions were implanted into 4H-SiC. RBS and channeling techniques with 2 MeV
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Fig. 1. RBS spectra recorded with a detector placed at scattering mum_w of Hamﬂ_. For compar-
ison, the spectrum measured on a virgin (unimplanted) silicon sample is also included.

and 3.5 MeV Het ions were used in the experiments. To evaluate the spectra we used
the RBX code written by Kétai [16], which can also handle channeled spectra.

2.2 Preparation of porous silicon layers

Porous silicon layer (PSL) formation was Umnmoisg. in an nmmo: anodisation cell rm%Mm
ohmic back contact and using HF /ethanol containing solution as an electrolyte. : am
specimen to be etched is placed at the anode while a Hu.n electrode is used as a o.Mn o mm
in a galvanostatic regime with constant current density in the range of 10 - wo HM Jcm a
Local doping level and HF concentration of the m_mnnno@n.m.m_o:m with the applie n%imnm
density determine the porosity obtainable. Ethanol addition mo the m._moﬁoa;m mﬂ mm.nm_
the wettability and release of bubbles from the surface .m<o~<5m during electroc mn:omwH
reaction. Interference colours in the thickness range of :.;mnmm.ﬁ go from yellow throug

gold and violet up to royal blue. Corresponding etching SBmm+5:.mm mn.oam -Hmam
depending on process parameters. PSL formation on .aov of an n-p junction enefits
from the hole injection obtained from the forward biased diode, thereby ensuring a

lateral homogeneity.
2.3 Ellipsometry
In reflection ellipsometry the experimental result is given by:

P = Ry[R; = tan ¥ exp(iA)

where p is the complex reflectance ratio. R, and R, are the complex mSmEc.am nmmmoa.o:
coefficients for the parallel (p) and perpendicular (senkrecht, s) Uo_mENmSo:.m relative
to the plane of incidence. tan ¥ is the intensity ratio and A is the relative phase
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With reference to the work of Aspnes, Theeten, and Hottier [17], the quantity used
to describe the agreement between the experimental data and the spectrum calculated
on basis of a selected optical model is defined as the unbiased estimator (o):

1

TN,

MRnOm Dwxu anm Dmm_nvm + (tan wav —tan Gm»_nvﬁ

j=1

where N is the number of wavelengths and p is the number of fitted parameters.
Aspnes and his co-workers accept as valid, models with unbiased estimators ranging

from 0.09 to 0.01 [17]. The unbiased estimator also serves to help limit the number

of parameters that can be selected for a given model. In the modelling process, if

the number of parameters increases, the unbiased estimator could decrease, increase or
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Fig. 3. Damage depth profiles for the 150 keV Ne implanted silicon sample extracted from ion
beam analytical measurements (line) and from SE (*)
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Fig. 4. Backscattering specira of ion implanted 4H-SiC sample. For comparison, spectrum
measured on not implanted (virgin) 4H-SiC sample also shown.

To get damage profile from SE data linear regression analysis (multiparameter fit-
ting) was used. In several cases Monte Carlo search was applied to get the initial data

set for iteration.



446 T Lohner, N Q Khidnh, Zs. Zolnai

4H-SiC A=632.8nm |
150 |- - .

#SiC2ev1 “a_
& 200 kev Al ¢
< | o.8x10™ N 1
100} * measured A '\
< | —-caiculated A _/

+ measured y vV
- [ —calculated y L
g I 4
o
" ¢,=0.0099 ]
> thickness=498nm
n=2.93
| k=0.38
ol m;ml_l.m..-ﬂ[ﬁ. Fig. 5. The measured and calculated ellipsometric
Angle of Incidence [deq] ”%ﬂ“ﬂm&%ﬂ% MMMMM@E SHBSIEIGS o i A

g

3 Results and discussion

Figure 1 presents the RBS spectra of o’s scattered through 165° for the Ne implanted
sample that was HF etched prior to implantation. For comparison, the spectrum mea-
m:nwm on a virgin (unimplanted) silicon sample is also included. In accordance with
MS wﬂnnmm range calculations, a partially disordered region is observable around 250 nm
epth.
For the evaluation of ellipsometric data of the 150 keV Ne implanted sample we
used the optical model consisting of a native oxide layer, a thin totally amorphous

damage profiles (with four independent parameters, position of the maximum, height
refractive index of each layer (at each wavelength) is calculated from the actual damage

level by the B-EMA using the complex dielectric function of ¢-Si and ion-implanted

wSoS.EOCm silicon (a-Si) [19). Figure 2 shows the result of SE fitting together with
€xperimental data for the 150 keV Ne implant.

silicon has certain limitations.
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Figure 4 shows the backscattering spectra of 200 keV Al implanted 4H-SiC sample.
The energy of the analyzing He beam was adjusted to 3.5 MeV, at this energy the non
Rutherford scattering cross section ensures an enhancement factor of approximately 6
for the carbon, in other words, this makes possible to obtain sufficiently high backscat-
tering yield for carbon, too. The aligned spectrum taken on the implanted SiC sample
shows a heavily but not completely damaged layer with a thickness value of about 500
nm (one can observe a partially damaged thin region near-the surface).

Figure 5 illustrates the result of the single wavelength ellipsometric characteriza-
tion: the measured as well as the calculated and values are shown versus the angle of
incidence. For the evaluation the one layer model was applied, the refractive index,
the extinction coefficient and the (average) thickness of the damaged layer were chosen
as free parameters, the refractive index and the extinction coefficient of the substrate
(single crystalline SiC) were taken from the literature [20]. The layer thickness values
obtained using ion beam analytical measurement and ellipsometry are in rather good
agreement, i, is important to note that the evaluations for the two methods were really
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In th i i ;
sl mMmmnwﬁ%m@nMBm:n concerning the spectroellipsometric investigation of thin oro
oo, 2 56 nmr .mmS.Emm A.cmmg psd psl and ps4) was prepared with the same zv i %
bor Y, : e etching SSmw Le. the layer thickness was varied between nominaj) 0 2
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or the analysis of SE daia we .
i used the conventional i
romer ! ada method of assum -
M mhmm Mw e MUME& Eo.a& m:a.mgcm the model parameters (layer thicknesses m”wm mH_H o
Hr: Ot the constituents in the layer) by linear regression vomme
e P i .
compie HMMmMM.m GOMm:ma first as a mixture of void and crystalline silicon Le. the
ve index of the layer wag calculated by Bruggeman mmmoﬁ,\m_ m.ﬁ.a:::

published by Jellison [21).
The spectrum corresponding to the thinnest layer is displayed in Fig. 6. Tp
- 6. e
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Sample No | MAIE Spectroellipsometry
One layer model One Layer model
¢-Si + void p-Si + void
tnm] | porosity{%] | dlnm] | o | porosity{%] | dnm] | o
ps6 43 72 40 0.13 72 41 0.10
psd 62 73 56 0.21 73 60 0.12
psl 87 71 85 0.21 73 88 0.14
psd 102 69 4 105 | 0.31 70 107 | 0.34

Table 1. Results of evaluation of ellipsometric measurements on porous silicon samples. The
column labelled MAIE contains layer thickness values (t) extracted from the one-wavelength
multiple-angle-of-incidence ellipsometric measurements. d and o show the layer thickness val-
ues and unbiased estimator for the evaluation of spectroellipsometri¢ data using the one layer

models.

PSL was divided into two sublayers to obtain proper agreement between measured
and simulated spectra describing a porosity gradient. Figure 7 presents the measured
spectra of the thickest sample together with the results of multiparameter fitting.
Table 1 summarizes the layer thickness values resulting from the evaluation of one-
wavelength multiple-angle-of-incidence ellipsometric measurements and SE measure-
ments together with the porosity values and values of unbiased estimator characterizing
the quality of the fit using one layer model. Comparing the results presented in Table 1
and in the Figures 6-7 one can observe a significant reduction in the values of unbiased

estimator in the case of two layer optical model.

4 Conclusion

With proper optical modelling both single wavelength and spectroscopic ellipsometry as
sensitive non-destructive non contact optical methods can be used for characterization
of layers modified either using ion bombardment or electrochemical treatment.
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