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Some properties of Raman scattering resulting from the solitons excited in the
organic protein molecules have theoretically been studied in terms of the partial
diagonalization of the soliton Hamiltonian. The transition probability and the
differential cross-section of the Raman scattering are also given. The red-shift
associating with the Stokes component of the Raman scattering obtained is found
to be basically consistent with the experimental data in the systems.
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1. Introduction

We knew already that a new amide-1 band (essentially C=0 stretching) and a red shift
of about 15 cm~! from a main absorption peak at about 1665 cm~! have recently
been observed experimentally in infrared and Raman spectra of organic crystalline
acetanilide, and protein molecules [1-8]. Obviously, this phenomenon is assigned to the
existence and motion of solitons in the organic protein molecules, and this red shift is
directly associated with the Stokes component of the Raman scattering corresponding
to the energy gap between the soliton and exciton existed in the organic molecular
crystals and protein molecules [1,2,8,9]. Therefore, to study the properties of Raman
scattering of the solitons is helpful to “understand and clarify essences and natures of
the solitons excited in the organic molecular erystals and protein molecules. What is
the purpose of this paper is to study the properties of Raman scattering resulting from
the soliton motion, and to compare the theoretical result with the experimental datum.
This paper is organized in the following manner. The theoretical analysis in Sec. I leads
to dynamic equations of motion in the organic protein molecules and we find out the
soliton solutions of the equations. In the Sec. III we make the partial diagonalization of
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the soliton Hamiltonian and estimate the red shift of scattering lines resulting from the
solitons. The transition probability and differential cross-section of Raman scattering
are studied in Sec. IV. ,

11. The model Hamiltonian and the equations of motion of the solitons
excited in the organic protein molecular

According to our results studied, the Hamiltonian describing the collective excitation
resulting from the localized fluctuation of intramolecular excitation and deformation of
structure of the molecular chains caused the energy released in ATP hydrolysis in the
organic protein molecules is ever represented as {9-18]

H= .m‘aﬂ + .m.ﬂ? + mm:? A.‘_,v
where
He, = H\m.SMﬁw...SEW\wMUﬁw lssm\wmﬁzﬁzi 2
n n n
Hyn = 1/2M 3 P2+ B/2) (Ra= Rn1)? 3)
Hint = mXxa \M MUA.N:.TH - ma—!wvﬁw@ + mxz2 MUAMN.:(: - mw:vﬁ:ﬁ:n:. TS

They represent the properties of the intramolecular excitation caused by the localized
fluctuation, and, the features of sound vibration of molecules caused by the deformation
of structure of the molecular chains, and, the interaction between the two models of
motion in the organic protein molecules, respectively. Where m is mass of amide-T
vibrational quantum (exciton) generated by the intramolecular excitation in a peptide

group, Wo and w; are the diagonal and non-diagonal elements of dynamic matrix. wo 18
also the Einstein resonant frequency, wEEWﬁ:;i is the interaction between the nearest
neighbouring amide-1 vibrational quanta in the molecular chain, and p, = m7n are
the normal coordinate of @rm nth vibrational quantum in the molecule and its canonical
conjugate momentum, respectively; M is the mass of an amino acid molecule in an
unit cell, 2x1 = Owp/OR and 2x2 = Ow?/OR are the change of energy of vibrational
quantum and of coupling interaction between the neigbouring vibrational quanta by
unit extension of molecular chain, respectively; Rn and P, =M R, are the canonically
conjugate operators of displacement and the momentum of the molecule ; 3 is the elastic
constant of the molecular chains of the protein molecules. :

Due to the fact that the intramolecular excitation and the vibration of molecu-
lar chains are all quantization, therefore we introduce the following canonical second
quantization method: [9-18]

r = (2muwo/R) 77 (B} + bn); D = (Fimuwo/2) (b — b2) (=), i=+-1) ()

R, = (h/2M Nuw,)?*(ag+at e, Pn= iy (N, J2N)E (at, —ag)e™ " (6)

o
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where w, = 2(8/M )2 sin(rog/2) is the frequency of a phonon with wave vector ¢, N
is the number of unite cells in the molecular chain, ro 1S the distance between the
molecules, bi(by) and ] (aq) are the creation (annihilation) operators of the exciton
and phonon, respectively.

Utilizing Bas. (5)-(6), Eas. (1)-(4) become as

H =Y colbiba+1/2) - TS (B bnsa + b bagn) + D Tuoglag ag +1/2)
n n q

+ MU lo(@) (it bn + bab?) + g1(@) (b7 bt + bnbia)] (ag + a* ) exp(inToq) (7)
n.q

where
alq) = (A/2MNwe)'/ (xa/ Awe)[expliroq) — exp(—irod)]

Ssvu3322§%39§3§2921%7Lf €0 = hwo, J = hwi/4wo.

Utilizing the Heisenberg’s equations of operator, and in the condition of normal density
of excitons we here study (we here study not the properties of exciton in the case of high

density), the equations of motion for the operators, b,, aq and awn are, respectively, of

the form

ihbn “”Mwﬁ,m*_““mav:.‘@A@:+;.fgg‘ﬁv;.Mmuﬂwmﬁnvvz.fQHAQVA¢=+;,*@zlwzﬁpn¢.gwnvawzﬂon
q

(8)
ihag = lag, H] = hwgtq + Mumsv@w@: +bab) + 91(@) (b3 batr + bub )T (9)
n

ihat, = et Hl= —Twqat,— ME?S@H? +D.b5)+ g1 (@) (bt b + ozﬁ+3ml§.2

(10)
Due to the fact that the collective excitation generated by the localized fluctuation and
deformation of structure has coherent feature in the organic protein molecules, therefore
the trial wave function described this state in the system should ever be denoted in the
following form [9-18]:

) = & (14 e85 ) 10)es - VA O an

with
U(t) = exp | Y _(1/ih) (un(t)Pn — (1) Bin) (11a)
= exp MU AQQSDM - QMSPL (11b)

9

where [0)¢z and |0)p, are the excitonic and phononic vacuum states, respectively. We
here choose the normalized factor X' = 1 in the following calculation for convenience.
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Using the formulae of expectation values of Heisenberg equations, Egs. (8)—-(10),

0

., 0 )

(Dlag|®) = (®llag, H]I2) (12)

and Eq. (11), we can get the following equations of motion

s.?v: = hwopn — .NAG:+H + G:IHV + MU FAQV AQQ + QHQV Pn
q .
+ g1(q) ((aq + Q*lnv Oni1 + (0g + a*,) Pn1)] €700 (13)
ihitg = huwgerg + 3 [20@)len(® + 91(@(@hns1 +@hpn-1)] emine (14)

ihat = —hwo, — 3 [20@len@F + 01D Phpnir + Phpn-1)] €01 (15)

n

From Egs. (14)~(15), we can get

iy +6ly) = ~wglaZ,y — ag) or (&f,+ Gig) = dwg(d, — 6rg)

(&, — g) = —hwglog +ag) = D [49(@leal” +201(0)(@hpnia + Phpn-1)] e
n

Thus we can obtain from above two equations

@, +dg) = —wiag+aty) =D [(4g(gw/h) onl®

n

4 (201(Q)we/B) (Phpnss + Phpn-1)]e " (16)

From Eq. (6) we may obtain the Fourier transformation, ::@Y of the variable 5...8 M_um.
of the form o -

un(t) = N-*% Mﬁns mxvm.nev“ (z =nrg), where ug(t)= Am\mgsavw?q +al,)
q

: o (17)
Substituting Eq. (17) into Eq. (16), we may obtain

iy + WUy = Y :E;Egzi snro)len’

n

+ (mxa/ @MwoN)) (expirog) = Dlhionss + paipn-)| exp(—inroq) (18)

Egs. (13) and (18) are just a set of differential equations of motion described the col-
Jective excitation and the collective motion. Very obviously, to find the solutions of the
above equations is very difficult. However, if we study only the case of low frequency
vibration of molecular chain, we may make use the long wave-length approximation,
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i.e., sin(gre) ~ gro, (€7 — 1) ~ igro, and let wy = Vog, Vo = Am\ivw; is the sound
speed in the organic protein molecular chains. Thus Eq. (18) become as

Uy + VEqug = N7% S [(ig) (hroxa /(4Mwo)) lion?

+ (iq) (Aroxa/ (2Mwo)) (@5¢n+1 + ©ren-1)] g~ (19)

Now multiplying Eq. (19) with IV —% exp(inroq), and summing over the wave number,
g, simultaneously, and again making the continuum approximation

d o
@nt1(t) = @n(t) £ 10 mme:@ + SB;@N?S oy pal(t) 2 oz, t)
9 8% .
Unt1{t) = un(t) £ ﬁowm:i& + Aﬁw\wc%.czﬁv +..., un(t) = u(z,t) (20)
and again utilizing Eq. (17) and
il SN _
ml&w:?v& =N"2 (ig) u,(t)exp(igz), (I=12,..) (21)

q -

we can transform Eq. (19) into the following non-linear equation

& ? i
%iﬁs = «\%mﬂ:?.a = [hiro(x1 + x2)/Muwo] mm“ﬁﬁ t)? (22)
At the same time, using Egs. (20)-(21), then Eq. (13) becomes as
L0 0% o]
3%8?2& = (g0 — 2J)p(z,t) — Jrg Mmmﬁﬁa, t) + (hro(x1 + x2)/wo) GAH“&M:?:&

(23)
Eqs. (22)—(23) are a set of complete equations of motion of excitons and phonon in the
organic protein molecules. Using now the boundary conditions:

o(00) = g (£00) = u(£00) = Uy (+00) = 0 (24)
and let ¢ = z — vt, thus the solution of Eq. (22) is of the form

8 e = Zeutant) = o G +32) / (Men(V? = VNl (29

Inserting Eq. (25) into Eq. (23), we can get

., 0 , 62
S%SA.\PS (g0 — 2)p(z,t) —~ &ﬁw%ﬁﬁaus

[B2r2(a + x2)?/ (Mu (V2 = V)] le(z, )Pe(e,t) . (26)
The solution of soliton of Eq. (26) is of the form

-+

@(z,t) = (11/2)*% sech QWXH — 1z — a\Sv. exp { T.@ﬂ\w.?mv? — 10) — Esatt/h]}

T0 -
(27)
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and
u(z,t) = [-ha + x2)/ (2woB(1 — 5%))] tanh AAWIOVAH —Tg — <3v (28)
where . .
L=GJal, G =R ) (VG- 5) (29)
From Eq. (11b) and Eq. (11c), we may obtain
—i/R (P — Tnlin) = S (ayad ~ agag) “(30)
n q

Utilizing Eqgs. (6) and (17), we also can get
g = (Mwg/20)} ug +i (1 [2Mhuwg)E mg (31)

Again using Eqgs. (6), (11), (17)-(18) and 7y = M, at last, we can oEm.E

o (t) = ZlWM?SmLﬁ

s TEE J2RN)Y un(t) + 6 (1/(2MNw,))? k:.;é exp(—iqz)

iR + x2)TM (wq + V)] (AMVwo(l — S?)hNwgsh(rrog/2p)) €7
ag exp(igVt) (32)

I

In such a case, the energy of the soliton can also be found out, i.e.,

Eul = \ HC
e 2 2 |0y : 4
= [ N —2ntelt + 1 57| —Glet'| ¢
1 [ ‘ oul>  |0u .,
= mo|§+%<N\t&1%&?@13&:@3 (33)

where Eyp = g0 — 2J — E*(x1 + x2)* /4882 Jw, (S = V/Vo) is rest energy of the soliton.
The mass of the soliton is

Mo — 4 1+ 3L~ 3822 = S4/2) 8B TV (1= 8 >m (39

Therefore, the energy and the rest energy of the soliton is small about i*(x1+ x2)%/ pmm&
Jwg(1 - 5%)? and B (a +x2)*/480%Jw than one of the exciton, E = €0 —2J+mV /2
and By = €0 — 2J, respectively, but the mass of the soliton is greater than one of the
exciton, m. So, the soliton is in stable state.
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III. Partial diagonalization of the soliton Hamiltonian in the system

In order to diagonalize partially the soliton Hamiltonian Eq. (7), we should naturally
transform it to the intrinsic reference frame moving with the soliton at velocity V. In
this case the soliton Hamiltonian Eq. (7) must be replaced first by

H=H-Y hkV(b}bs + af ax) (35)
k
where "
by =N"2 Mumxv@w:ﬁovﬂ_ b = (b1)* (36)

Since the soliton excitation in the system is connected with the deformation of molecular
chain or intramolecular distances, it is very necessary to pass in Eq. {35) to new phonons
taking this deformation into account. Such a transition is realized by the replacement
R,P = at,a,— A}, A, according to the following relations:

of =3 1/V2hN Tze@w Rn —i(Mw,) ™% i exp(inroq),

At =af -N"3ay;  Ay=a,-Nloq (37)

where At (A) is the creation (annihilation) operator of the new phonon. The coherent
phonon state (lattice distortion) then becomes as the vacuum state of the new phonons:

10)pn = exp [(egay — agaq)] 10)on (38)

where there is that ;
. A0)pr =0 (39)

Now we carry out the canonical transformation for the partial diagonalization of the
soliton Hamiltonian, i.e., we here introduce

Bt =S ea(®bt; Ba=(BHY Do @imea) = duws 3 or()gh (n) = Sax
n A n

(40)

The partial diagonalization of the Hamiltonian implies the diagonalization of that part

of the Hamiltonian which does not contain the creation and annihilation operators of

the new phonons, Eq. (37). The condition imposed onto the function @x(n) to realize

such a diagonalization are equivalent in the continuum approximation to the following
problem on eigenfunction ¢(n/A) and the eigenvalues Iy

_“ 5? 0

—J=— - Asm\a\\ﬁovy

pwe — 242 Jrd Sech®(un) + 0 — 2. “p(n/A) = Ex p(n/))  (41)

The ma:mw&o: (41) is analogous to Eq. (26). It has the unique bound state solution,
which satisfies the boundary condition Eq. (24), to be

p(n/s) = Cﬁo\wvw Sech(un) mxtﬁu‘a\:\@%ﬁw: (42)
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with the energy

Es = g0 — 2J — B2V2[(4Jr2) — u2J (43)

Simultaneously, it has also a unbound state solution, which does not satisfy the bound-
ary condition Eq. (24), to be

p(n/k) = ?:o th(un) — ikrq] / A,\Mﬂ (1 — :Saz exp [i (AV/(273) + kro) n] (44)

with the dispersion relation:

Ey = €0 — 2J — B2 [(4Jr2) + (kro)2J (45)

The Eg is less than that of the lowest unbound state EY = g9 —2J by the value p?J in
the statical state. The functions ¢(n/)) are normalized as the following form

[ inwiietnsk) = stk - ko)

—00

/ " dn o/ = 1;

o0
[ o msetmp=0 @0

oo oo
éﬁmnm B} creates an unbound exciton with the wave vector k, while B create an

excitation which is localized at the lattice distortion.

In obtaining MQ T».C the parameter n was assumed to be continuous and the chain
Fonm\mw to tend to infinity N — oo. Consequently, the wave vector k proved to be the
continuous value which runs from —oco to 0. In the following we mainly use a discrete

description. The continuous description is transformed into a &moamnmo:mwnnon&bmg
the relations: ;

\louo&: — MU“ .\WM&Q — 27/ (Nro) MU.

p(n/s) = ps(n),

%Qﬂd - w\ﬁcv ~% AZ\wﬁvm\iﬁ s

o(n/k) = (N/2m)3pi(n)  (47)

Thus, the Hamiltonian Eq. (35) being partially diagonalized becomes as [16,18]

H = G?/24J+ E,BYB, + M% EcB{ By + Y h(wg — VOAT Aq
+ (1/VN) Mm h(wg — Vg)(1 - mummvimﬁ + 35
+ (1/VN) M F(k,Q)(Bf, B4, + AY)
a9
+ (/N) M Fk,q)(BY B_x + B B,)(AT, + Ay) (48)
q,
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where
Flk,q) = [2irbadnh/ (wo(G +4Jirgk))] (hJJGNw,)?
x  [x1 (e¥70 — e7H70) 4 x2(€¥97 — 1)] sech mwaﬁw J(qg—k)/G)
1 . 3 .
Flk,q) = 1 Aww\AMZENELV * [xa (e — e™Hm0) + x2 (e — 1]

[G* — 4iGJ(k + 3q)rd + 16k(k + q)r§J?]

X G = 4Gk + 2q)r3 + 16(k + OreJ2K]

(49)

are the coupling constant of the bound state and the unbound state with the new
phonons, respectively. Now notice that the distribution amplitude of the intramolecular
excitation, Egs. (42) and (44), are found if an exactly specified deformation potential
is assumed to be given a priori. In this case, however, the bound state Eq. (42) unlike
the unbound ones Eq. (44) is self-consistent with the deformation of chain. Such a
self-consistent state of the intramolecular excitation and the deformation form a soliton
which in the intrinsic reference frame is stationary.
Really
mmu_ovmn_@vm: = (Bs + QN\MPJQM_OVS_@VEF (50)

From Egs. (42)-(45) we see clearly that the soliton energy is less than that of the low-
est excitonic state (k = 0) by the value of the binding energy, p*J/3. The exciton
states unlike the soliton ones are delocalized. In general, at the given deformation
in the molecular chain containing intramolecular excitations two types of states are
possibly localized solitonic and delocalized excitonic states. The soliton is a dynamic
self-sustaining entity resulting from a self-trapping of exciton interacting with the de-
formationic molecular chain. Due to this self-trapping of the exciton, the energy of the
system drops about 242 J/3 (It is just equal to the deformation energy of the molecular
chain, W = 1/N 3 Ti(wq — V,)lagl? = 2u?J/3), thus, the energy of the soliton is less
about p2J/3 than that of the lowest excitonic state, i.e., there is a gap between the
solitonic and excitonic energy spectra with the value of u2J/3. Just so, a red shift of
about 15 cm~! from a main absorption speak at about 1665 cm™! of amide I vibra-
tion in a peptide group in the organic protein molecular crystals appears in the Raman
spectra. This red shift have been observed in the Raman scattering and Infrared ex-
periments [1-8] for the crystalline acetainilide and the protein molecules, and so on.
This energy, 42J/3, is the binding or forming energy of soliton. If utilizing the values of
the physical parameters of the organic protein molecules, we can find out the binding
energy of the soliton and the gap. For example, J = 155 x 10722 J; 8 = (13 — 19.5)
N/m; x = 2 = (20 — 62) PN, X =2 = (2-8) PN, wo = (2 — 4) x 10* 871,
w = (2-9) x 10" g1 po = (4-5) A for the protein molecules, we can, thus,
estimate the binding energy of the soliton to be about 12.73 em™!, which is basically
consistent with above red shift value (15 cm™1) of spectral lines observing in the Raman
scattering experiment. This result shows that the red shift of the Raman spectral lines
is resulted from the motion of the soliton in the systems. Meanwhile, this shows that
the soliton is actually present in the organic protein molecules. In the follows we will
calculate the transition probability of the Raman scattering.
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1V. The transition probability and the &m.mnmdnw& cross-section of the
Raman scattering resulting from the solitons

On the other hand, from above results we can see that identification of the corresponding
Stokes component of the Raman scattering spectrum can prove to be one of the ways
of detecting experimentally the energy gap between the soliton states and the exciton
states and, hence, the solitons themselves. Hereupon, the calculation of differential
cross-section of the Raman scattering resulting from the solitons is very necessary and
reasonable. In this section we will estimate the size of differential cross-section arising
from the motion of the solitons.

We here think the Raman scattering process to carry into effect via some inter-

mediate states of molecular chains associated with the soliton, for example, electronic
excitation whose Hamiltonian is

He=" em(®)DfnDim (51)
km

where D (Dgm) 18 the creation Amzzwrmmﬁonv operator of the electronic excitation of
mth band with wave vector k and the energy em(k). At the same time, let the incident
light wave be quantized in the volume V' = NrS' and denoted by the Hamiltonian

Hg =Y hweCh,Cor (52)
Qo

where Qm.q (Cqo) is the creation (annihilation) operator of the photon with the wave
vector @, the energy hwg and unit polarization vector £-(Q).

According to the property of above partial diagonalized Hamiltonian, Eq. (48), the
interaction Hamiltonian among the soliton, electronic excitation states and light wave
leading to the Raman scattering may be represented as the following form

m_.i = H\»Z KXmm AQVU.(..N 3sba:~.@.~%| by
. q q

kk'qmm'

+ H\.~<¢MU M X A@UMSU‘?IS&HS\IA
kk'q mm'

b VY Une(@(Chy + C-ao)PGm = D_q.m) (53)
Qom

i.e., we here consider the interaction between the soliton state and the electronic ex-
citation states, where Xmme and Xomm are the interaction coefficients between the
intramolecular excitations and the electronic excitations with different wave vectors,
respectively, Umqs (Q) is the coupling constant of electronic excitations and the light

wave, 1.e.

Ue(Q) = —ien(0) /o)t (8(Q)dn) (54)

here d,, is the dipole moment of transition from the ground state of electron into state
of mth band, and here 7_axis is directed along the molecular chain-
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We now study the probability per unit time of the transition of the “light plus soliton
(or exciton) and clectron” system from the initial state to be of the form

1

18 = C...10@ BF(0)ex | JT(Ra)3CAT)™ ) (O)pn 10} (55)
q

to the final state to be of the form
|fk) = C4,10)q Bf 10)ex T~ @) | 00 100 (56)
q

under the action of the perturbation potential, Eq. (53), where the initial state consisted
of the photons with the wave vector @o and polarization &g, A&cv and the soliton moving
with the velocity V and the new phonons and the electronic excitation, while the final
state consisted of the photons with the wave vector (J and polarization &,(Q) and the
exciton (or a certain delocalized intramolecular excitation) (without solitons) and a
certain number of ordinary phonons and electronic excitations. Where |0 >¢ and |0 >.
are the vacuum states of the photons and the electronic excitation states, respectively.
Obviously, the representations of the initial state and the final state we here adopt have
somewhat especial forms. According to the perturbation theory in quantum mechanics
[21-22], in this case of interest the probability of transition from the initial state to the
fina) state mentioned above can be determined by the expression

d . d i t1 ty
MSA@oQoI@QV = MMm m_nMw:_ \loo&? N.oo&m \loo&w
x (K| Hine(ts) Hine (t2) Hine (82)18) 1* (57)
where Hine(t) = exp(j Hot/B) Hint exp(jHot/h)

km

Hy=H + Hg + He —h>_ KV D Dim = mMS -V)C5,Cas (58)
Qo

However, we ever are more interested in the long-time behavior of dW /dt for estimating
this probability. By straightforward calculation the transition probability can approxi-
mately be represented as .

AW @
m — = =5 X
i—oo di 202

M AQON - @NVQQQSDAQQV ﬁkﬂ*:oﬁ@ou - @uv + VNSSQAQON - @nL QMQAOV
i Amsyo AQONV = ?EOOV AMAQnV - }\E@v

AQN - @chqQozso AQOV ﬁxﬂ:ﬂzc AQN - QONV + \/x\E.:EAQN - OOuL QMBAQV ’
AmSOA\QONv + g@ov AmAIQNV + §E©v
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Re \ooo dtexp Mrw Tﬁ — W — Ej + h{wg, —wa) + hGo — Q) .ﬁ +gt) + m.@v

: \“ dk ?:& + (kr2)ch? Awwﬁes =~ BVﬁL (59)

where

o) = UNS Ml (exp(=ilwq = V) =15
q

() = AN P sinl(e - Va2

B = E,+eo—2J— W2 VEATrg —1*J (60)

the off diagonal terms of the following matrix

UKy = (fk"|exp S.MU?L@&% (AF +ALk)
q

exp | —t MUAEQ -Vata.t] - (AL + A_)|B) 35
g

are negligible unless || and |k"} are of the order of 2/ or less in above calculation.
Since small wave vectors do not significantly contribute to the sum when 72/2p > 1,
we may replace U (kk") by I(kk") bpr, where

I(kk") = i@kt (7" AT exp &M?L\sﬁ?ﬁ

q

exp. —iY (wq — Va)ag agt | AxlB)

q .

= exp((we — kV)) exp (9(8) + <) (62)

If the velocity of the soliton is small or V — 0, thus we can approximately get
g(t) = go %%oa?xgl&&pwav — 1) dz/ sinh z, where go = 201 + x2)2 hjwiwa Vo, wa =
2uVy/rom. 11> 0.002/wa, then g(t) is well approximated by

g(t) = ~go [Ln(wat/2) + 1.587 + im /2]
and ‘ ,
¢(t) = —490 \8 z sin?(wqtz/2) dz/sinhz = 290 (1 — mwa /2 + cth(mwat/2)) (63)
0

we notice that

lim ¢(t) = =7t here v = goTWa = B a + X&»N#&w.ﬁ»&ﬁ =4p®J/hn (64)

t—o0
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Now let

2 = =
As(@, Q) = B — B+ 512 + huig = Mgy =M@= o) -V (65)

Since the solitonic velocity is small as compared with that of light, the last term in Eq.
(65) can be neglected, thus we may get

2
Ags = B — Es + er + A(wg — wQs) = Bks (W0, Qo) (66)

for V — 0. Utilizing above results of Egs. (64)—(66) we may obtain

Re [ dt explrt = 0) = £ (3@ = )1/
_ @20 T - g0) {1+ [(Bua(@ = W) i} T cos(anln/2 =) + )

If using again above values of physical parameters for protein molecules, we can get
that go = 0.006 — 0.011 < 1, thus we can get

Re \ ™ it expl—t — g() — i (Bks(0) = W) t/R]
]

s (242 wa 7)) [B27 + (Bes(0) = wy'] (60

Utilizing the above results obtained we can find out the integration over k in Eq. (59)-
As a result, for the transition probability, Eq. (59), we can get

_dw _ 7’rp
lim — =
t—roo dt 4hp

M A.@ouvl @LQ@:SAQQV ﬁkﬁSaa@ON -Q.)+ VNS:SAQQN — @nvw QMSAQV
mmo AmﬂoAOch - m\EDov AmAQNV - m.EOv

X

AQN - @o,n,vqg:sn@cv ﬁkﬂEoAON - QONV + VN::.:cAQN, - @onL QMEAQV ’
(Emo (—Qoz) + Twqo) (e(-Q:) + hwa)

{o2 £ (0w - @ @ro)|
+ th? T\M Qbi\bw +(Qoz — @LSL + ww

(27 + Do) (VT @820 /1))

-+

(68)

N

{2[Bu(@ - W)" + (7]

[
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According to quantum mechanics [21]-{22] the cross-section of Raman scattering is
closely associated with the above transition probability, Eq. {68), thus we can find out
the cross-section. Due to the fact that the transition probability, Eq. (68), has a sharp
peak, when the frequency of scattering light in vicinity of incident light frequency wgq,,
therefore we only are of interest to the cross-section of Raman scattering in such a case.
In fact, it is only worth to study the Raman scattering in such a case. Therefore, the
expression for the differential cross-section of the Raman scattering resulting from the
motion for the soliton in such a case for the organic protein molecules can be represented
as

Nds ~ dwod  4n? dt  167u3JhC®

(@os = QWoumal@0) [Xoo(@ox = Q) + Kruna (Qo: = Q)] Uem(@)
2 (Emo(@oz) — Pwqo) ((Q:) — fwg)

mmg

(@s = Qo:)Urarmo(@) [Xonn(@: = Qos) + Fonmo(@: = Q)| Uim(@) ’
" (e (—Q02) + hisgy) (6(~ Q) + )

dN d?s V22 dW réwd, wh M
a

.N
. AOOm 6o — M.co (sin 8 sin 6 cos p + cos eo8m 8% A:J)\MS.»M Ep\\élmov
Qo

1
2

L2 [(@n0) - w7 + 007 (V8@ =+t - (8100 - wy|}

sech® T|E|0Hm AoOm fo — “a (cos 8o cos 8 + sin 6 sin 6 cos ﬁvv._ 88
2puc wQ,

where d§} = dfdyp sinf is the element of solid angle in direction of the scattering light
propagation, fp is an angle between the incident light Q¢ and Z-axis,  is a angle between
the (o and the Scattering light g, ¢ is a angle between the projection value of the vector
0. on the XOY plane and X-axis. Obviously above the result of the differential cross-
section of the Raman scattering resulting from the solitons has the following properties:
(1) the frequencies of scattering light are very close to that of incident light; (2) the
shapes of scattering spectral lines for a fized direction of scattering are, in the main,
decided by the function

AV I (242 wa/7) 7%

L2 [(@u0) - )+ @] (V8@ =W + (1 = (300~ W)}

|

Also, the scattering indicatrices (angular dependence of the scattering cross-section)
depends mainly on the orientation of the dipole moments of electronic transitions from
the ground state to the resonance electronic levels in this case of p2J < hwg, < e(0),
but the scattering indicatrix in this case of 0 < fwg, < 12 J —26,(0) or (u?J +£(0)) <
hwg, < 260(0) is independent of coupling strength, when the frequency wq of the
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scattering light approach to that of the Raman peak; (3) the maximum of the scattering
light is attained at the wQ of the order of wg, — (> J/3+2J —¢€o, i.e., the most probable
scattering in this case is that accompanied by the transition of the chain from-the
soliton state into the exciton state, when there are no deformations. Therefore, if we
pay attention above the properties and remarkable asymmetry of the lines connected
with the corresponding energy dependence of the density of delocalized states in hand
(the long wave side of lines are smoother and the short-wave ones sharper) we can
determine the existence of the soliton in the organic protein molecules from analysing
the different properties of the Raman scattering spectra obtained experimentally.
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