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We investigate quantum statistical properties of photonic band gap reservoirs in
terms of correlation functions and susceptibilities in time and spectral domains.
Typical features are oscillations of the time-dependent correlation functions and
susceptibilities. This is because photonic bad gap reservoirs are intrinsically non-
Markovian reservoirs. The results help us to understand better how intrinsic
quantum-statistical properties of a reservoir influence dynamics of an atom inter-
acting with this reservoir.

1. Introduction

Boundary conditions influence time and spectral properties of the electromagnetic

feld. This well-known fact has a great importance in optics and generally in electro-

magnetism. Specific examples are resonators used in laser technique and cavity electro-
dynamics. In quantum optics high-Q microcavities are used for single-atom experiments
when an atom can interact in a coherent way with an electromagnetic (EM) field which
has its mode structure totally different from those in free space 1,2 In particular, in-
teraction of an (effectively) two-level atom with a single-mode cavity field was observed
[3] in the region of microwaves (with the wavelength about 1 cm). In 1987 Yablonovitch
and John independently proposed that certain periodic dielectric structures can present
forbidden frequency gaps (or pseudogaps in partially disordered structures) for trans-
verse modes [4, 5]. Such periodic structures were named “photonic band structures” or
:,_u.roﬁo,c._n crystals”, in analogy with electronic crystals which also have a (forbidden)
mwﬁ for electronic energy. For true photonic crystals the basic property of blocking
EM wave propagation must be fulfilled for all waves within some frequency range, i.e.
for all wavevector and polarization directions. That means a strong modification of
the mmjmw@ of modes (DOM) and corresponding change in propagation of light and its
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interactions with atoms or molecules within such a medium. In this way spontaneous
emission and its inhibition or enhancement appears possibly as a most repealing phe-
nomenon demonstrating potential of the photonic-band structures (PBS). A new class
of quantum electronic devices can be potentially constructed utilizing the advantages
offered by modification of spontaneous decay rate. This includes semiconductor devices
- lasers, with strongly decreased lasing threshold and with decreased losses due to unde-
sirable transitions, in particular photon cmission from the clectron-hole recombination
process [6]. Other interesting phenomena given by the nature of photonic band struc-
tures are for example lossless energy transport via the resonant dipole-dipole energy
exchanges between atoms immersed in the medium (7, 8].

If the number of degrees of freedom of the EM field is large then this field is often
called reservoir. From the point of view of statistical properties we can distinguish be-
tween Markovian and non-Fiarkovian reservoirs. The example of a Markovian reservoir
is that of the free-space vacuum radiation field. The field of such a reservoir has very
short autocorrelation time, i.e. a present value of the field is not correlated to a value
in the past. This i3 not a property of the (macroscopic) EM field in PBS. This fact is
due to the periodicity of the structure which causes that the field is back-reflected on
the boundaries of the structure and it gives rise to significant memory effects. Assume
we have an atom in one of its excited unperturbed levels. We let such an atom to
interact with the vacuum state radiation field (vacuum-state reservoir), for simplicity.
Then the atomic expectation values can evolve in various qualitative ways depending
on the properties of the reservoir into which it was inserted {9, 10]. The vacuum field
in free space has different statistical properties as the vacuum in a PBS. The classifica-
tion of reservoirs as Markovian snd nan-Markovian ones has then important influence
also on the level of practical calculations. Markovian properties enables in some cases
to obtain equations of motion [11] (master equation or quantum Langevin equation)
for atomic variables while the properties of the reservoir field are included in these
equations only via stationary characteristic functions. On the other hand, problems
including non-Markovian reservoirs require special treatment and this can be a very
involved problem. - LR v ,

Our intent is to highlight intrinsic quantum statistical properties of PB reservoirs.
The properties analyzed in this work arce of special interest because they are in a close
connection with a wide class of non-trivial phenomena that occur in PBS.

Section 2 briefly reviews definitions of reservoir characteristic functions used in this
paper. In sections 3 and 4 we evaluate shapes of two-time correlation functions and
susceptibilities of the vacuum reservoirs. We explicitly show the differences between
free-space case and the ones with the DOM modified by a presence of a gap. These
characteristic functions (or functions very similar to them) enter the usual master equa-
tion for the motion of the atomic variables. In the last section we discuss the results.
Thorough all the paper we work with simplified qualitative models of photonic band
structures. We neglect-all directional-dependcent effects, two different polarizations of
light and vector character of the EM field. This simplifications are due to a complex-
ity of expressions in realistic cases. However, the results of this work are qualitatively
acceptable for the aspects under investigation.
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2. Brief review of characteristic functions

In the Markovian theory of radiative processes [11, 12] the properties of the reservoir
enter equations via a two-time characteristic function - a complex correlation function

g, t") = Tralp, BE)E(")] = (E()E(")x (1)

where E(t) is the reservoir electric field operator in Heisenberg picture

E(t) = S.MMEQEml.S +h.ec. 2)

e .

V is the quantization volume and € is the dielectric permitivity of the vacuum. The
symbol 3 is a symbolic sum over the transverse modes. In this work we assume that
electromagnetic waves propagate in a simplified photonic crystals with an isotropic
dispersion relation. Then the symbolic sums ), have a meaning of integrals over the

modes according to the rule
Yo [ dwn) )

with p(w)dw being the number of the transverse EM modes with frequencies from the
interval [w,w +dw]. The expression (2) for the electric-field operator should also include
a position-dependent factors (like exp(ikz) in free space) depending on the geometry
of the environment and on the dielectric-permitivity function [13, 14]. To simplify the
notation and to purify the influence of effects of the different pattern of the DOM in
PBS in comparison with the free-space case we take these factors equal to unity.

Since we assume that the reservoir is in a stationary state (particularly vacuum state
in the case of the spontaneous emission), the function g depends only on the difference

=t —t". It can be decomposed into its real and imaginary parts:

with

o) = LEEEQ) + BOB)a + 5B, EO i (%)
The first one is the two-time symmetric autocorrelation function
C(r) = Re g(r) = 5(E(EQ) + BO)E()x (©)
where : i
(E(r)E(0))" = (E(0)E(7)) (7

and the two time moments are chosen to be 0 and 7. The second function is related to
the two-time susceptibility function (again real) which is defined (12] .

() = 26(r)im g(~7) = £OEIEO), B - ®)
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Spectral components (Fourier transforms) of the correlation function and susceptibility
can be introduced:

o] ge el
bw) = \ C)eerdr , Rw) = \ X(T)e . )
—00 J —o0
The function (6) tells us how the (free) field is correlated in two time moments. If this
function is proportional to 5(7) then the field in one time moment is totally independent
of the field in some other moment. The Fourier transform (9) gives the energy spectrum
of the field fluctuations. The susceptibility function expresses the ability of the reservoir
to be polarized by an interaction with other system, here a two-level atom 2. It is a
linear susceptibility, i.e. it describes small deviations of the reservoir state for short,
times from the beginning of the interaction. Since it is closely related to the imaginary
part of the complex correlation function (1) it also contains information how the field is
correlated in two different moments. The real part of the susceptibility spectrum (ie.
the Fourier transform) gives the linear response in phase with the small system while
the imaginary part gives the response out of phase [12] in the same meaning as it is in
a case of a simple damped harmonic oscillator subjected to a periodic external force.
Higher-order complex correlation functions of the field can be introduced including
different times in each of the field operators and even different space points [15]. In
general, normally ordered complex correlation function dependent on M 4+ N space-time
points (n) = (rn,ta) i defined
M) = (B (1)E vﬁv...&zv:5...&%E\v...mm:m;...mmv:iw (10)
where E(F) are the positive- and negative-frequency parts of the field operators. The
subscripts at E s are the Cartesian components from which only one is considered in
this work. The function (1) written in this notation reads

g(r) = E?é@iQJTETVQEE N HED E)ED ) +(ED (VB (")) n-
v . L (11)
If the reservoir is in a stationary state'then the last two terms of this expression vanish.
In next sections we treat the properties of this two functions in the case of a model
reservoir corresponding to the simple qualitative model of the photonic crystal with the
field in the vacuum state. )

3. Symmetric correlation function

The expressions for the symmetric correlation function and its Fourier transform
reduce to the following sums (understood as integrals in the continuous-mode-spectrum

-

2Let us have an unperturbed system whose observable I has an equilibrium value (F)eq. If this
system is a subject of a small perturbation proportional to some A(t), then to first order in the pertur-
bation

(F) = (Feq +\ dt! x(t — 1Y) .

oo
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Fig. 1. The profiles of the models of DOM used for the results shown on next figures. The
free-space dependence is proportional to the square of the mode frequency. Other curves are
models of PBS given by (21) for various edge-smoothing parameters €. We have chosen the
same value for all the dependences at w = 15w, = wp. The peak values derived from (21) are
placed at wjwy =1+ €/w, and are equal to K /(24/ew?) where K is a constant given by our
choice of the frequency wy, at which the DOM are equal. K = (wp —wy + e)w [y — Wy -

case) for the vacuum-state reservoir.

C(r) ="y & cos(wr) (12)
and’ )
Cw) =Y EL[5(w - ') + o+ ] - (13)

Up till now we did not specify whether we deal with discrete or continuous mode spec-
trum. In this section and sections 4 and 5 we apply expressions to continuous or quasi-
continuous reservoir spectra. Then it is convenient to convert the sums over transverse
modes into integrals over continuum of modes following (4). We write expression for

the DOM as follows:
p(w) = Ku(w) (14)

where K is given by
K = 4nV/(2mc)® . (15)

In free space we have the DOM

B?mmAEV — \ﬂ:?ooAEv AH@v
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Fig. 2. The symmetric correlation functions of the vacuum-state reservoirs calculated for the
same models of DOM as on Fig. 1. The free-space curve is plotted in the inset using the same
units as other curves. The correlation functions reach a maximum (finite, due to the factor n)
values at the zero time delay. The oscillating behaviour is characteristic for the models with
the abrupt gap edge causing non-Markovian character of the reservoir. The frequency of the
oscillations is approximately equal to the edge frequency w,,. Its origin is in the refraction of
the light from the boundaries in the periodic dielectric structure. The symmetric correlation
functions in this figure are even in 7. We see sharper is the edge, stronger are the oscillations in
the pattern of the correlation function and lower is the peak at the zero time delay. The second
zero point of the free-space function is located at (1 + V2)n (free-space correlation time).

with uffe®(w) = w?6(w). For non-free-space cases we take always the same constant K
given by (15). All modifications of DOM from the free space density will be given by
the function u(w). o .

For the DOM: given by a function au({w): we get from (12) and (13)

Clr) = —— \ ” wulw) cos(wr)d
; L ,

%\:‘Nmonm; AH.J

and

C(w) L

wlu(lwl) - (18)

4regc®

Utilizing the above expressions the free-space correlation function is obtained When we
introduced the exponential factor exp(—nw) into the integral over frequencies to avoid

Correlation functions ... 83

divergent integrals [12] 3.

3 h :»Imzuﬂw._]l (19)
Ime (P +TE

Cre(rim) =

We see 7% dependence of the correlation function. The correlation time can be con-
sidered as 7. = {1+ V2)n. This is the larger zero-point of the function ctree(r;m)
(see Fig. 2). The spectral density of vacaum fluctuations can be obtained by Fourier
transforming this function or by straight calculation from (13). We get

h
4meoc®

O\,.?mmﬁocv e _E_w AMOV
where we have omitted the factor exp (—nw) in the last expression. A realistic photonic
band structure exhibits complicated dispersion relation between the mode frequency and
the wavevector. In particular, frequency of boundaries of a forbidden frequency region
depends on a direction of wavevector and on the wave polarization. As a consequence,
the corresponding DOM is also a complicated anisotropic function. In this paper we
neglect all directional and polarization effects and concentrate on the qualitative nature
of time- and mnm@cmsouram@mdamzn‘m of the characteristic functions. This makes possible
to accept a simple isotropic model of DOM approximately corresponding to the so called
«effective-mass” approximation of the DOM {16, 17, 18, 10]

WPBS () = K-V 29w — wy) 1)

w—w, +€

where w,, is the upper bound of the gap, K is a suitable constant and € is a smoothing
factor. The illustration of this model of the DOM is given in Fig. 1. The modes on
the left-hand side of the gap are neglected in this model since the gap is assumed to
be sufficiently large. The true mode density far above the gap is also replaced by
other dependence which is relatively easy to use in caleulations and does not lead to
divergences. We can understand the approximations in this model via the fact that i
5 two-level system interacting with the reservoir has its transition eigenfrequency w,
near to w, and the natural linewidth ' << w E..; predominantly interacts with the
reservoir modes near the upper edge w,, of the gap. This is the reason why the DOM
can be considered effectively as given by (21) [17]. Then the model (21) is acceptable
for a qualitative description of the isotropic DOM function. In Fig. 1 we have chosen
the same DOM for the frequency w = 1.5w, = wy. Using Eq. (17) and the model (21)

we get o
CPBS (rm) = hK W — wy,

472epc? w—w, +€

cos(wr)e ™ dw . (22)
wy
We plot this function in Fig. 2 for several values of cut-off smoothing parameters €,
together with the free-space correlation function given by (19). We see oscillations in

3This o - :
This procedure can be used since we do not calculate a concrete real physical system but a model
system where qualitative aspects are not modified by the introduction of such a “cut-off”. All aspect

wnmpmw_i this paper are cut-off independent, does not matter even on a shape of the cut-off function.
ce ,
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the pattern of time-dependent correlation function. These oscillations are not present
in the case of free-field reservoir and they are extended for the times much larger than
is the free-space correlation time. This has important consequences on the behaviour
of an atom interacting with such a reservoir, if the transition of the interest is tuned
not in the smooth part of the reservoir. Reversible energy exchanges becomes more
probably in such an interaction and the reservoir can not be assumed Markovian in a
calculation of the atom dynamics. The frequency of the oscillations in the pattern of
the correlation function is equal to the band-edge frequency wy - The amplitude of the
oscillations depends on the edge-smoothing parameter €. Sharper is the edge, higher is
the amplitude of the oscillations, although this dependence can be week. The frequency
of the oscillations gives the period of the oscillations. The value of the oscillation period
can be clearly physically interpreted using a simple one-dimensional model {19] of the
PBS with periodic dielectric layers. Let the lattice period of the structure be denoted
by A. Moreover, we can simplify the model of the lattice (without neglecting any of its
features important for the model (21) of PBS considered in this paper) taking limits of
a large index of refraction of the dielectric layers and putting the widths of the layers to
very small values. It is so-called delta-function Kronig-Penney model known from solid-
state physics. It was used, for example, in works {17, 19]. Solving the Maxwell equations
in such a structure one gets a dispersion relations having gaps in the frequencies of the
modes propagating perpendicularly to the layers. The upper edge of the first gap is
located at w,, = cm/A. This gives the period of the oscillations in the pattern of the
correlation function (22) equal to 2A/c. We interpret this time as the one needed for
light to travel the distance from a particular space point to the nearest dielectric layer
and back. Then the pattern of the autocorrelation function of the electric field has
also oscillating character with the period near to 2m/w, = 2A/c. The spectrum of the
correlation function (vacuum fluctuations) is given by explicit formula. (18).

4. Reservoir susceptibility

In this section we derive formulas for the susceptibility of free space and PBS reser-
voirs for which we derived correlation functions in the previous section. We start from
expressions (8) and (9), assuming the electric field operator is given by (2) and the
reservoir is in the vacuum state. ‘We get

x{1) = W Mumwmhl sin(wT) (23)

and

. 1 2 H H . .
f(w) = -7 MMMQ Tu — +P e ird(—w' + w) + ,:&Alr\| EL . Aw&.
After conversion to integrals and separating into real and imaginary parts these sums

become
6(7)

arn2eqc® Jo

X?‘v = :AEVN\.\ w.—SAEq‘vﬁ.I:E&E ’ AMWV
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Fig. 3. .va linear susceptibilities of the vacuum-state reservoirs of the parameters the same
as on Fig. 1. The functions are odd in 7. The oscillations of the dependences has the same
character as that of the symmetric correlation functions on Fig. 2.

'
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and
1

47 €0 c3

Im{g(w;n)] = wu(w])e ™. (27)

Now we substitute expression (21) into (25), (26) and (27) which gives us the time-

dependent, susceptibility function of the actual reservoir. Calculation for the free space
[ufree(w) = w28 (w)] gives

12 g1 (v* —1%)
m2egcd (2 + 72)4

X i), = o(r) . (28)

For spectral components of x{7; n) we obtained (26) and (27). For free space this turns
into

. 1 00 (8= 1 o 3=’
Re X?mmAE“d - NU\ ‘ wre l
m ; dnZepcd” Jy wH W e »ﬁwmoeww 0 w-—uw QE (29)
E.:w
~free . 1 2 —plw
Im {3 (w;n)] = =3 wiw[?e~l . (30)
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Fig. 4. The real part of the reservoir-susceptibility spectra. The linear susceptibility has
pon-vanishing values even in the gap, clearly demonstrating that linear-response theory is
not sufficient to describe reservoir polarization due to the interaction with an atom. We use
parameters as for the previous figures. The functions are even in w.

The calculation of the principal parts see in the appendix. We obtain

1 4+ 22w?
hms‘m.moouw. dm

Re Twwmm (w; :z = +w? T:s Ei(—nw) — mlzsm.A:Ei . (31)

Due to the properties of the exponential integral function we have [20) Re[%™*°(0; n)] =
(x2epc?n®)~". For the modet.(21) of the DOM we substitute (21) into (25), (26) and
(27). We obtain the following expressions.

0 p—
YPBS(rim) = K \ WV T Y n(wr)e ™ dw (32)
’ 2n2eoc® Ju,, w— Wy T €

and

N

(w+w) W —wy T

(o] ! i Q r_ , s
mmﬁ>TWmAEwdv‘\_ _ K NU;\ w /W Wy AE Ecvmlze &r\ _ Awwv
0

X 4m2eoc®

K P S — EQQAE\ — ECV ml:&&E. . Awumv
dntegc® Jo (w— W (W' —wy +€)

The imaginary part Im Tmmmmoﬁdz is simply given by (27), where we substitute (21)
for u(w)-
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Fig. 5. Time-dependent probability that the atom remains in its exited state during the
process of the spontaneous emission into the PBG reservoir. The curves are plotted according
to the theory of Kofman et al. {18] for parameters € = 0.00lw, and C = o‘oorr.w\ 2 (expressing
coupling strength). The dependences are far from exponential decay which occurs if the atom

interacts with the free-space vacuum or even with PBG vacuum far in the allowed band. See
also Fig. 1 and (21).

Let us discuss the reservoir susceptibility function. In time domain, it is a real
function nonzero only for positive time difference 7. For free space it is given by (28).
We plot the time-domain susceptibilities on Fig. 3 for the same parameters as in Fig. 2.
Oscillating curves characterize essential memory properties of the PBS reservoir, simi-
larly as the symmetric correlation function. The character of the oscillation is the same
as for the symmetric correlation function considered in the previous section. As for
spectral components of xp(7), we have non-vanishing both real and imaginary parts
given by (31) and (30) for free space and (34), (27) with (21) for the model of PBS. On
Fig. 4 we see quite different behaviour of real parts of the spectral susceptibilities for
free space and PBS. Especially near the (upper) edge of the band gap, where the DOM
nearly diverges and towards to the gap vanishes abruptly. However, the real part of the
reservoir susceptibility is nonzero even in the gap. If we apply this result to calculate the
reservoir response due to the interaction with an atom we obtain non-physical results.
The problem is that the linear response of the reservoir takes place only for very short
times from the beginning of the interaction. In general, we have for the e.g. electric
field created by the interaction (in some fixed space point)

(B@) = (B () + BN (1)) (35)
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where (EL) is the part of the field created due to the linear response and (ENL) is the
part created by the nonlinear response. If we make Fourier decomposition of the field
(EL(t)), we can obtain its spectral components also in the gap as given by the nonzero
spectrum of the linear susceptibility. However, (EL) is not a complete physical field.
The complete physical field is only the complete field (E) (and vacuum fluctuations
but they have zero expectation value) and this complete physical field has no spectral
components in the gap. The field (EL) is complete only for very short times but in this
case the Fourier decomposition taken by an integral over large time (- o) has only
mathematical meaning.

5. Discussion and conclusions

This paper provides a view on the quantum-statistical properties of non-Markovian
photonic band gap (PBG) reservoirs. These properties have direct consequence on in-
teractions of atoms with the reservoirs. We calculated two-time symmetric correlation
functions and susceptibilities of the PBG reservoirs in both the time and frequency
domains. The comparison of the PBG and free-space correlation functions and sus-
ceptibilities clearly shows the main difference - the oscillations in the time-dependent
pattern in the case of PBG. These oscillations are responsible for the finite-memory
effects. The oscillations occur at the frequency of band edges which is given by the pe-
riodicity of the PB structure. Non-Markovian statistical properties of the PBS EM field
have direct consequence on the interactions of atoms or molecules with this field [18].
We illustrate this statement on the example of spontaneous emission from a two-level
atom. If the reservoir is the free-space one, the well-known Weisskopf-Wigner exponen-
tial decay takes place [21]. On the other hand, if the same atom emits into the PBG
reservoir, the decay can have non-exponential character and can also be incomplete (18],
depending on the frequency of the atomic transition and the position of the bandgap
edge. Non-exponential decay occurs if the atom frequency is tuned around the band gap
edge where the DOM is not a smooth function of the frequency. Fig. 5 shows the decay
into the reservoir with the DOM given by (21) for various values of the atom transition
frequency w,. These dependences are calculated according to the theory of Kofman et
al. [18]. We can see that the intrinsic non-Markovian properties of the reservoir causes
that the atom decays in the way totally different from a decay into a flat Markovian
reservoir such as free space.
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Appendix
Here is the calculation of the integral

h@énwhge

S
131w

do' . (A1)

3
w - w

First we calculate the primitive function

E&@I:E

I_(w,w',n) H\ dw' =

w—w

7 W Ei(pw —nw')
e

(A2)

where Ei(z) is the exponential integral function. Some of the properties of this function
[20):

lim Ei(z) = —c0,  lim Ei(z) = oo, lim Ei(z)=0. (A3)

z~0 z—00 T——00
Ei(z) is neither even nor odd function, but it is even in the infinitesimal neighborhood
of z = 0. Using (A2) we get for (A1)

I_(w;m) = lim [ Lﬁa.énw.?eié+~A§8|n£|ﬁ€,9§ - (A4)

w'—00
The particular primitive functions are
. 3 w3
lim I_(w,w';n) =——— lim Ei(-nw') =0 (A5)

w' =00 e ' ——00

and

o 2+qwHnte® | (2+ 2
I (wwtegn)y=e ™ ﬁ L - 4 + ( :MEVE + c“:- = Ewmwﬁu:mvw (46)

{assuming that € and 7 are very small positive values). Further,

2+ nw+ 7'’  WEi
£ Gy = LG WRR) (47)
n en
Collecting formulas (A4)-(A7) we obtain
2.2 3y
(i) = ~T_{w,05n) = 2EIeE T ) (48)

dm enw
Now we can immediately write the expression for the second principal part [see (29)]:

E\wmizE.

Niﬁsuwhg ' = I (~w;m) (A9)

w+w

Having this we can write formula for the real part of the free-space susceptibility:

Re[x[**(win)] = %F?i - Le(wim] =
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1 ﬁ» + 2n2w?

3 MWl — e WEi .
i p; +w? [e"™Ei(—nw) — e HQEV_V (A10)

This is formula (31).
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