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SENSITIVITY OF RIA PROTON-NUCLEUS ELASTIC SCATTERING
CALCULATIQONS ON RMF PARAMETERIZATIONS

M. Hojsik!, S. Gmucal!
t Faculty of Mathematics and Physics, Comenius University,
Mlynsk4 dolina, Bratislava, Slovakia
i Institute of Physics, Slovak-Academy of Sciences,
Dibravska cesta, Bratislava, Slovakia

Relativistic microscopic ‘calculations are presented for v.nogn elastic scattering
from °Ca at 500 MeV. The underlying target densities are calculated within the
framework of the relativistic mean—field theory with several parameter sets com-
monly in use. The selfconsistency of the scalar and vector densities is preserved.
The sensitivity of the scattering observables to nuclear densities (and thus to rel-
ativistic mean—field parameters) is investigated.
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1. Introduction

Recently, the relativistic impulse approximation (RIA) [1, 2] has been widely and
repeatedly used for the calculations of proton-nucleus scattering at intermediate ener-
gies. These calculations have exhibited significant improvements over the nonrelativistic
approaches. The RIA calculations, in particular, provide a dramatically better descrip-
tion of the spin observables, namely the analyzing power, A,, and the spin-rotation
function, Q, at least for energies higher than 400 MeV 3}

In the RIA, the Dirac optical potential is obtained by folding of the local NN
Lorentz-invariant amplitudes with the corresponding nuclear densities. For the spin—
zero targets the scalar and vector terms give the dominant contributions. Thus the
scalar and vector nuclear densities (both, proton and neutron ones) play the dominant
role in the RIA calculations.

While the proton vector densities can be obtained by unfolding from the empirically
known charge densities {4], all other densities used rely to a great extent on theoretical
models. The various recipes are used to construct the neutron vector densities and the
scalar densities for both, neutrons and protons.

In this paper we will study the sensitivity of the RIA results on the various sets of
relativistic mean—field (RMF) parameters currently in use. Different sets of RMF pa-
rameters produce slightly different densities which (when used in the RIA calculations)
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give different predictions for the nucleon-nucleus scattering observables. This enables
us to study a sensitivity of the RIA calculations to the RMF parameterizations.

This paper is organized as follows. In Sec. 2 we outline the theoretical background
of the RTA and RMF models. Sec. 3 is devoted to calculations of the proton scattering
observables on the *°Ca nucleus at 500 MeV. The results are compared with experi-
mental data. Finally, in Sec. 4 we present a summary and draw conclusions from this
work.

2. Theoretical models

2.1. Relativistic impulse approximation

Applications of Dirac phenomenology to proton scattering on nuclei {3, 6, 7] clearly
indicated its ability to describe experimental data over a wide range of energy. Analyses
at intermediate energies using a Dirac equation with Lorentz scalar and Lorentz four-
vector (time-like component only) complex optical potentials have proven superior to
the nonrelativistic treatment, especially with regard to spin observables.

The Dirac equation for proton scattering may be written as

{a.p+ Blm + Us(r)] + [Uo(r) + Ve(r)l} P(r) = Ey(r), (1)

where Us and Uy are the scalar and vector potentials, respectively, V¢ is the Coulomb
potential, E is the c.m. energy of the impinging proton and m is its mass. In Dirac
phenomenology the optical potentials are obtained by a fit of prescribed functional
forms to elastic proton scattering data.

Contrary to the Dirac phenomenology, the relativistic impulse approximation (RIA)
{1, 2] offers a parameter—free approach to the proton scattering at intermediate energies.
The RIA is based on an assumption that the NN interaction between the projectile and
target is unmodified by the surrounding nucleons. This assumption is valid at high
energies, while at lower energies the important corrections from Pauli blocking and
exchange contributions (8] have to be accounted for. ,

The RIA consists of the use of the experimental NN scattering amplitudes. The
constraints of Lorentz covariance, parity conservation, isospin invariance and that free
nucleons are on their mass shell imply that the invariant NN scattering operator F can
be written in terms of five complex functions {one set for pp scattering and one set for
pn scattering).

Flg) = Fs + Fvriren + Fp s + Far ivaveu + Frot’ oou (2)

For spin-saturated spherical target nuclei the largest contributions arise from the
scalar and vector terms (Fs and Fv, respectively); the tensor term (Fr) is small and
is usually neglected, while the pseudoscalar (Fp) and axial vector (Fa) terms doesn’t
contribute. Thus for these nuclei the RIA Dirac optical potential is (in momentum
space)

4mik

Uope(@) = — == [Fs(@)ps(a) + 1*Fv(Dov (9], @
m
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where k is the proton—nucleus center—of-mass (c.m.) wave number, ¢ is the momentum
transfer, ps and py are the scalar and vector densities, respectively, and Fs and Fv
are the scalar and vector NN invariant amplitudes.

The Dirac optical potential in coordinate space is then obtained by the Fourier
transform of Uppt(g). This yields the scalar and vector RIA potentials to be used in the
Dirac equation.

2.2. Relativistic mean—field approach

To evaluate the RIA Dirac optical potential one needs the scalar and vector densi-
ties for both, protons and neutrons. The convenient tool to obtain them presents the
relativistic mean field (RMF) theory [9]. The RMTF mode! is now a standard approach
in nuclear physics. For completeness we write essentials of the underlying theory (for
more details see e.g. [10}).

Our starting point is the Lagrangian density which includes the baryon field (¢),
neutral scalar and vector meson fields (o, w), the isovector p meson field together with
an electromagnetic interaction. In addition, the cubic and quartic self-interactions of
the scalar meson field and the quartic self-coupling of the vector meson field have been
added to allow the model enough flexibility in describing nuclear properties.

The full Lagrangian density reads

L = iy 0" - M)y

1 1 ; 1 . 1 -
+50,00"0 = mSw% - 30 M (950)° - mnqaqqx — goPpo
H v H H 5 o ¢
|NE:=E: + MSNE=En + Nne@watenvm — QoY
1 1 _
—=pu P + smipu Pt — PN T P (4)
4 2 ¢
1 _ _
I.Nmut_\mﬂtt - @ﬁv\v.t C. Mﬂwv A\\\&.t“

where the symbols used have their usual meaning [9, 10].

The Lagrangian given above is treated in the mean—field approximation; i.e. the
meson fields are not quantized, but are replaced by their expectation values which are
the condensed classical fields. The equations of motion are then obtained from the
Lagrangian by the standard technique of field variation. The Fuler-Lagrange equations
provide a Dirac equation for the nucleon and Klein-Gordon equations for the meson
fields.

The static solution for the nucleon field is obtained by solving the stationary Dirac
equation

{—ia- V + B[M + S()] + V(r)} ilr) = eithi(r), (5)

where the scalar potential is given by

5(r) = go0(r), (6)
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while the vector potential has more complicated structure
0 0 (1-73) 40
V(r) = guu®(r) + gprap(r) + e AN(r). ™

The vector potential V(r) contains only a time-like component. The spatial currents
vanish due to the requirement of spherical symmetry. Charge conservation guarantees
that only the third isotopic component of p survives.

The Klein—-Gordon equations for the meson and the electromagnetic fields are

(A +m2) o) = o {osl) +boMlooo @ +er oot} ®
(-A +m2) L) = go TZAJ —Cu Fseo?zJ , (9)
(~Aa+m2) p°(r) = gop3(r), (10)

—AL(r) = D), (1)

where the sources are determined by the corresponding densities in the static nucleus.
Namely,

occ.

psr) = S BaltWalr), (12
) = S whre(r), (13)
() = D Uhr)msalr), (14)
AUV _ occC. .— A.._rlﬂnwv

D) = 3 ) e, (15)
. ’ (16)

Here the sums are taken over the occupied particle states only. This implies that the
contributions from negative—energy states are neglected (no-sea approximation), i.e.
the vacuum is not polarized.

The above set of equations are to be solved iteratively. One starts with an initial
guess of the fields (e.g. in the form of Woods-Saxon potentials). The Dirac equation
is then solved with these potential terms to yield the nucleon spinors which are subse-
quently used to obtain the new sources {densities). The meson and photon equations
are then solved with these sources to get a new set of fields to be used for the calcu-
lation of new potential terms. The Dirac equation is then solved again with the new
potentials to get the spinors to be used to obtain the new sources for the meson fields.
This iterative procedure is continued until the selfconsistency conditions are achieved.
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3. Results

The microscopic description of nucleon elastic scattering from nuclei using RIA
requires the calculation of the nucleon densities in the target. The RIA optical potential
employs the scalar and vector densities for both protons and neutrons (the tensor terms
are small and were omitted). With the exception of the proton—vector density (which,
in principle, can be obtained by unfolding the single proton form factor from the nuclear
charge density) all of these rely on the theoretical models of nuclear structure.

In the present work we have calculated all nuclear densities using the RMF model
with various parameter sets. It is the aim of this work to study the sensitivity of the
RIA results on the parameter set used.

In most of the previous RIA studies (see e.g. [3, 11]) the proton-vector densities
were obtained by unfolding the single proton electric form factor from the nuclear charge
densities, while the neutron—vector densities were taken as

o (r) = oY + 1% (r) — pY (MTH, (17

where the neutron and proton densities in the square brackets are some theoretical
mean—field calculations, either nonrelativistic (e.g. Hartree—Fock-Bogoliubov (HFB)
distributions of Dechargé and Gogny [12}), or relativistic ones (e.g. [13]).

Similarly, the scalar densities were constructed according to the prescription

2P (1) = o3 + 3P (1) - 47 (Olmmers (18)

where square brackets denote the results of some RMF calculations.

Tt is clear that by using such recipes the selfconsistent relationship between the
scalar and vector densities is lost. However, we believe it is important to retain this
selfconsistency, as the scalar density is not an observable. It is the pure relativistic
quantity having no nonrelativistic counterpart, and we have only indirect information
on its behaviour.

In this introductory paper we present the results for the p+2°Ca elastic scattering
at 500 MeV. The 4°Ca nucleus is of doubly-magic character and was included in all set—
of-nuclei used in the procedures for obtaining the RMF parameters [14]. The current
RMF parameter sets in use describe the ground-state properties (charge density, charge
radius, binding energy, ...) of the 4005 nucleus pretty well and, therefore, it is of interest
to see how the minor deviations in densities (scalar-vector, proton-neutron) produced
by various RMF parameters propagate into the differences of the RIA predictions of
elastic scattering observables. In the subsequent paper we will study these differences
for several nuclei and several incident energies.

We have calculated the “°Ca densities using the RMF model with the NL1 [15], NL2
[16], NL-SH [17] and TM1 [18] parameters. The values of the parameter sets used are
listed in Table 1.

The NL1 parameter set was obtained by fitting the total binding energies, the diffrac-
tion radii and the surface thickness for some doubly-magic or semi-magic nuclei along
the stability line. It provides a good description of binding energies and charge radii
for most of stable nuclei. However, for nuclei away from the stability line the results
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Table 1. The RMF parameter sets used in the present study.

NL1 NL2 NL-SH TM1

Ref. [15] | Ref [16] Ref. [17] | Ref [18]

M (MeV) 938.0 938.0 939.0 938.0
m, (MeV) 492.25 504.89 526.059 511.198
m, (MeV) 795.36 780.0 783.0 783.0
m, (MeV) 763.0 763.0 763.0 770.0
g2 10277310 | 83.01433 | 109.07714 | 100.57884
g2 176.49123 | 132.08445 | 167.57561 159.11047
mw 24.75560 29.01546 19.20894 21.45728
bs 0.0024578 | 0.0006408 | 0.0012748 0.0015083
Co -0.0034344 | 0.0020002 | -0.0013310 | 0.0000611

| 2 - - - o.oomw;m\f

are less satisfactory, probably due to the large asymmetry energy ~44 MeV. The NL2
parameters were obtained similarly as the NL1, however, with a constraint for a smaller
spin—orbit splittings.

For the NL-SH set the charge radii were used instead of the diffraction radii and the
neutron radii were added to treat the isospin asymmetry in a better way. This resulted
in a remarkably successful parameter set with an improved isovector properties and an
asymmetry energy of ~36 MeV. NL-SH was extensively applied throughout the chart
of nuclides including neutron-rich nuclei and superheavy elements {19].

TM1 parameter set differs from the previous ones by incorporating the quartic self-
interaction of the vector—isoscalar w field, as suggested by Bodmer [20] and Gmuca [21].
This term casts the density dependence into the vector potential, an effect originating
from relativistic Brueckner—Hartree-Fock calculations of nuclear matter [22].

In Fig. 1 we can compare the experimental and calculated charge densities of the
405 pucleus. The results indicate differences in charge densities produced by various
RMF parameters. The NL1 parameter set treats correctly the nuclear surface and
slightly overestimates the empirical charge density at the centre of the nucleus. The
remaining three parameter sets produce rather similar results which behave better in
the nuclear interior, however, fall down more steeply at the nuclear surface (thus giving
smaller charge radius). Similar results one may obtain also for the point scalar and
vector densities for both, protons and neutrons. ;

Comparing the RIA results obtained with densities calculated by various RMF pa-
rameters allows us to study the sensitivity of the scattering observables to these param-
eter sets.

Figure 2 shows the results of the RIA calculations for an angular distributions of
the elastic scattering cross section. The experimental data points are from [23]. The
curves represent the results for various RMF parameters used. We can observe that
differences among RMF parameter sets became significant for angles greater than 16°.
For an increasing angle this difference becomes yet greater. The sensitivity of the cross
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Fig. 1. Comparison of experimental charge density of 100 (gray area) to RMF calculations
(labels indicate the RMF parameters used).
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Fig. 2. Sensitivity of the proton elastic scattering cross section to the RMF parameters. The
shaded area represents the band of RIA predictions using the 40(a ground state densities as
calculated by the RMF approach with the various parameter sets (labels indicate the RMF
parameter set used - see text). The experimental data (points) are from Ref.[23].

section prediction on the RMF parameters is rather high. The detailed inspection of the
figure gives some preference to thr NL1 [15] parameter set among the RMF parameters
used, as iv clearly describes the differential cross section more correctly than others.
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Fig. 3. The same as in Fig. 2, except for the analyzing power, Ay.
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Fig. 4. The same as in Fig. 2, mxo..ovn mow the spin-rotation function, Q. The experimental
data (points) are from Ref.[24].

Figures 3 and 4 show the results obtained for an analyzing power 4, and spin-
rotation function Q, respectively. The experimental data for A, are taken from [23],
and those for Q from [24]. The calculations follow the structure of experimental data
remarkably well and produce a narrow band of allowable predictions, none of which can
be excluded. This indicate that spin dynamics is inherent in the relativistic formalism
and arises naturally from the large Lorentz scalar and vector potentials in the Dirac
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equation. The sensitivity of the spin observables on the RMF parameter set is weak.

4. Conclusions

We have studied the sensitivity of the RIA scattering predictions on the RMF pa-
rameters for the p+4°Ca elastic scattering at 500 MeV. The various RMF parameter
sets were used to get the ground state densities. Using them in the RIA calculations, the
minor differences among the densities propagate into the different RIA predictions for
the proton—nucleus scattering observables. It is important that in the present approach
the selfconsistent relationship between scalar and vector densities is preserved.

We have shown that there is a little sensitivity in the spin scattering observables, the
analyzing power, A,, and spin-rotation function, Q. This demonstrate that a correct
description of the spin dynamics is an inherent property of the relativistic approaches.
Since the structure of A, and Q predictions by RIA are known to be acutely sensitive
to the scalar—vector density difference (3], this further confirms the necessity of the
selfconsistency condition on the scalar—vector density relation (i.e., lower components
of the relativistic target wave functions).

On the other hand, the sensitivity of the angular distribution of the elastic scattering
cross section prediction on the RMF parameters is rather high. All the RMF parameter
sets used describe the charge density (i.e., mainly the proton density) of the “°Ca
nucleus almost equally well, thus this sensitivity may be due to the differences in the
neutron—vector densities. This conclusion will be further tested in the next paper. If
being confirmed, the RIA predictions of the proton elastic scattering observable may
became valuable constraints upon choosing the most appropriate RMF parameters.
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