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Following Gupta’s linear approximation, the scattering of various spin particles
(scalar mesons, neutrinos, photons, vector mesons, gravitinos, tensor mesons and
gravitons) in ‘the static gravitational field, described by Schwarzschild metric, is
studied. Using S-matrix formalism in the external field approximation, the rules of
Feynman type for diagrams are derived, and consequently, the corresponding cross
sections are obtained. We shall notice that in the small angle approximation, the
differential cross sections of massive Klein-Gordon, Dirac, Proca, Rarita-Schwinger
and tensor particles have the same form, and in the ultrarelativistic case they co-
incide with those corresponding to-the zero-rest-mass mesons, neutrinos, photons,
gravitinos and gravitons. In other words, in this limit case the gravitational parti-
cle scattering does not depend on their spin, according to Viadimirov’s ideas. As
particularly important result, we point out that helicity is conserved by the scat-
-tering process of the electromagnetic waves, whereas for the gravitational waves
helicity is not conserved.

1. Introduction

In the present paper, using S-matrix formalism (1] and Gupta’s linear approximation

[2]! .

V=99 =17 — xyY, (1)
the scattering of various spin particles -massive scalar mesons (in the Klein-Gordon
-Fock formalism {3]), neutrinos (Dirac field), photons (Maxwell field, following Mitske-
vich’s ideas [4]), massive vector mesons (Proca field), gravitinos (Rarita-Schwinger field
[5]), gravitons and massive tensor mesons - in external gravitational field (static field,

YI'he 3-vector components are labelled by Greek indices, while the 4-vector ones carry Roman
indices. The exceptions will be mentioned especially

0323-0465/98 (© Institute of Physics, SAS, Bratislava, Slovakia 55




56 D Tatomir et al.

_described by Schwarzschild metric) is studied. Here 9, nY, and y¥ are the metric
tensor, the Minkowski tensor - &mm.ﬁwr-f-d and the tensor of the weak gravitational
field, respectively, g = det(g;;), and x = V1670 (in natural units), G being the Newton
constant. '

2.The gravitational particle scattering and corresponding effects

In order to describe the interaction between the gravitational field and other fields,
to the expression of Einstein Lagrangian, the matter field Lagrangians written in the
curved space (obtained by using the principle of minimal coupling [6]) are added:

Lot = V=o{ (09938, — m + LRygrg]
+H[FF 7w, - T 500 4 7)¥]

~59% g1 FyiFy — ﬁ 29"97'G};Gu - u2gii B Ni 2)

+36TH (B,555; 0, — Vit Y95 94)

+w.®~.a%.~.£b3:9@0592“: _ b&w@mw@b\vv.
Here ¢ and ¢* are the operators of charged KG field (asterisk signifying hermitic con-
uﬂmmowozv, Nﬂ&. = \».w.:. - .Aﬂu. = .Au.i. - \ﬁs.h and kﬁT QQ. = .mu.:. = ‘wmﬁ. = m.w.h. = .ms.i. and
B; are the tensor and potential of the Maxwell and charged Proca fields, respectively,
®;; are operators corresponding to the massive charged tensor field, ¥ and ¥; are the
components of the massless Dirac and massless R.S. fields, respectively (with ¥ = P50,
U, = ¥:7°), %7, 4° are the generalized Dirac matrices, ¢4 ig the completely antisym-
metric Levi-Civita tensor, R is the scalar curvature and m, p and M are the masses
of the corresponding particles. Also, commas and semicolons denote the partial and
covariant derivatives, nmmmmnn?mdm
In the Dirac and R.S, mm“Em‘ case, using the vierbein formalism [4], the covariant
derivatives of the v, ¥ spinors and ¥;, ; spin-vectors are, respectively:
fH\m.w.”nH\LI,HJ&..H\, qﬂ&”ﬂ"u..*laﬁ.?
3)

i =Yi; 4+ GT;,

S|

Vij = ¥, ; - T;¥,
where . .
U = $%%
(4)
L. £ =
Yig =Yg — T,
are the Fock-Ivanenko spin cocfficients of affine connection, I'f; being the Christoffol’s
symbols. The generalized Dirac matrices may also be expresed in terms of the usual
ones, as:

V' =LUo(0), % = Li(o)y(o) (0=T.4), (5)
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where the vierbein coefficients obey the following constraints:
L'(0)LI(0) = g,  Li(o)Lj(0) = 9ij- (6)

Following Mitskevich’s ideas [4], the expression of the Maxwell field Lagrangian
written in the curved space:

1 .
Ly = lwa\lnmaﬁ» - m<l.e}1&.? (7)
/ith
" AL =0, (8)
becomes:
. T G G
Eip= :W,\nlimi&i ~ AideR%) = S[V=g(ALAY - b)) 9)

that besides a divergence is

Ly = IW =99™ g7 (Aij Ary — RijArAr), (10)
where R;; is the Ricci tensor. .
Taking into account the de Donder-Fock gauge: (y/~gg); = 0, developing all
quantitics in series in terms of X - according to (1) - , i.e.

V=g=1-1xy..., v =y,
.QQ.” QIX#C.T,.J QC.”QC.;?XJQ.T..J

i =yl — Lyiiy T =Sx(R*+hfk, —hy ¥) 4+ (11)

maﬂwxb:.}»+... R=—-1xy,*+.

¥ o=~ Dxvihii 4 Wi = k4

and passing to the flat space, the first-order interaction Lagrangians between the grav-
itational and matter ficlds have the form?
1

‘1 . Y
Lige. = —x[#56.jvi; + 2®"m7y — 2y.4)], (120)

Ly = rwx@.ﬁ: )05 = U yi(1 + ) ¥sy,, (120)
H A
N\w._\v - lWXﬁbT»%»Q?.&» i \s.;.i. s \C.».L,v + mf..\...f.h.b\.» + .A...L..A».Lw\;. + M.\AT#&\S\.M—\%,V
C
-—

2We specify that in relations (12¢) and (12f) the scatieri & occours at small enough angles, when
the covariant derivagive may be replaced by usual one, according to Vladimirov’s ideas (7).
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LY = —x(G'.Giru; 2B*B.y:: 12d
P XA i TikUie + i u.ﬁdv. A v

1 = S
hm.w. = T3 XEijk (75 Ym ) Vit Vs Ym ¥;) Y, (12¢)
; 1 * * ) * x’ i
LY = limeiecéz + D5 6Py rhi + M*®7 &y juy), - (121)
where ) g

i =Yij + 305y, Ry = Yij — 364y,
(13)
— 1 e
Ui =i - 105y, y =y,
Yis s being the usual Dirac matrices and dir is the Kronecker symbol. :
In order to study the scattering of gravitons in the classical gravitationa) field itself,
following Gupta’s ideas [1], the first-order self-coupling gravitational Lagrangian is given
by

Ly = = 3xhijty; ,
(129)

tij = w?i.éig ~ iy - 3655 (Yt mYrt,m — w.ﬁs.ﬁsz,

tij being the energy-momentum pseudotensor of the weak gravitational field. -
As external field we consider the static gravitational field described by Schwarzschild
metric, i.e.: ; . .
xMe
4r|E|’

where Mg is the central body mass (the source) that creates the field (for example, the
Sun), |z being the distance to this centre.

The processes are described by Feynman diagram presented in Fig. 1. Here, k and
mmnvﬁm:mmt Amvvmmxmv,mmxmzw p and &.Sﬁ.soﬂqmms:@,mmxgg are the four-momenta
and polarization vectors Ao:m:mo_,mv‘% the initial and final particles, respectively (a,b =
1,2 for real photons or gravitons and ¢,y = 1,5 correspond to the massive tensor
particles) whereas (r), (s) (ry8 = 1,2) denote the polarizations (spins) of the initial
and final Dirac and R.S. massless particles, and q is the four-momentum of the virtual
graviton (¢'= 7'~ k and 9 =po— ko =0 - the conservation of the energy). R

According to the standard quantum field theory, considering for real gravitons ¢ = (
and choosing for photons and gravitons the gauge in which €1 = 0 and e4; = 0 (the
transverse-traceless gauge), respectively, the parts of Lagrangians ( 12} - casted into the
normal form - are3

Vi () = 8i4bj4y(E), y(@) = (14)

w{ — H *{ — . 2, ext 1 ext
ML o] = ~x{o7 @9 @ @)+ )9 () fmy @)~ @)},
, : . (15a)
1

NLB @) = —gx ?ZEiHImV&%E-ﬂu@?:3%3@%5 (15b)

3

In formula (15¢) the Symmetrization with respect to the photon-labels is considoreq
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P o,

kK e (k) IM,
Fig. 1. The first-order Feynman vertex. The wavy line Tepresents a graviton (external static
Fig. 1. The first-order Feynman vertex. The wavy line represents a graviton (external static

gravitational field). The dashed line represent either scalar, spin-1 /2, electromagnetic, vector,
spin-3/2, tensor or gravitational quanta.

NI @] = —x{3[47 @)1 @) + A3 @A @)]
x[hizk@ + higt o) ~ izt o) (15¢)
A @A @R @) + 340 @) 4 (@)hert, (@)},

=]

N[LP @] = ~x[61 7 @6 @pust! () +Ruu-xa&iEﬁiu (15d)

Tt =) (+)

NIERs )] = ~xeiin [B @ ¥l @) - T4 @57 ¥ (@) yizt(2), (15¢)
(=) (+) ext
2?%;&& = lxﬁsa} Aavﬁt Vi (z)

(15f)

+65ik @SN (@) + Mgl T @ @ @),

u. — €.

NLG @) = —5xu ) @iy o), (159)

where (+) and (~) denote the positive and negative frequency parts, corresponding to
the annihilation and creation of particles in x, respectively. .

Using the S-matrix formalism we deduce the rules of Feynman type for a_.«_,mwx‘:.i
in the external gravitational ficld approximation, by which we can calculate the matrix
clementg (p|Slk) in the mentioned approximation.
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. Thus, taking into account the Fouricr transform of the static external gravitational

potential:

and choosing for photons and gravitons the gauge in which
@B =3 =0, dNELE = a5
(17)
i B) =)@ =0, &k = &@E =0,

the matrix clements in the cxternal field approximation, corresponding to the diagram
in Fig.1 are, respectively:

iy 2, - 5
Aﬁh%_\nvmfﬂ = lﬂ%uffa\”ﬂ .\ _%wv Tyi@,%l&&

+w¢§n _«mSQ:WQQQRL (7- - §)d3q (18a)
= Fr.c.(k, p)é(qo),

WISk = 3t | 4 [60 @ AN RN + T i1+ 95t )
XA%EA@& + —%CWQAE - &&u%

= Fp(k,p)d(qo), (18b)
1

ISt = o {34 [ = 20600 + (G — L i
~ OB = 30501600 ] (&2 Rl (ke — o0 Byl ]

~(8jabka — 16;0)el (B)e Pk, + 3 (6iabja ~ Lo, i)
X8kabustagse” Bl (7)) 607 - £ - ytq
= F(k,p)6(qo0),

(18¢)

OIS = i T [ @k Bk [ - @]

XA%\A&.\.A - I«M;V + tv\mlmm\.»mvc;eﬂv AEABW

Sp—k— Qdq
= WA\uA\ﬂ,Nuv%AQCVV

(18d)
WISk s = r:.l‘w\m S NM_A%_E ?i&imii@ J:i
X" (B)ys v (B)] (7 — K = @yt (18¢)

=Fp.s(k, 329;
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(pISIR)r = ——Dte [ ﬁ ot (Bels (P)pukibiadis + e (B)et (M) kipy

2(2m)24/kopo o T:
X(diadis — 30u) + M3e}, QL (p)
X (0ig0pa — im; 5 8(p - 3%
= E\puv&@y

pIS|k)e = [IF J 5861 japik; el (B)el (5)6 (5 — k- §diq

1ar?
= Fe(k, p)d(qo)

4(2m)2 >ovo

(18f)

(189)

where , 7 and u;, W; are the positive energy massless Dirac spinors and massless R.S.

vector-spinors, respectively.
After calculation, we obtained

. 2 a
ix“Me
Fk ¢ (k, 5 @k.c.(k,p)
x.c(k.p) = 8(2) kok? sin’®
x*Me k
.TJUQA*NVV Awﬂvv \ﬂmmw %@UA va
)

ix* Mo &
mﬂvﬁcﬁﬁv MAM\\HV \m.c i W@.:A .Nuv
.2
ix*Me
Fp(k,p) = 5 @r(k,p)

p(k.p) 8(2m)2kok? sin? © 5
2
Frs.(k,p) = 16(2m 2K sin’ mw.@x.m.A »P)
5 b
1x* Mo
Fr(k, 5@k, p)
r(kp) = 16(27)2kok? sin® © 5
2 p
X" Mg
; (K, p
Falk,p) = 16(27)2kg sin® MQmA 2
where .0
Qralk,p) = |Qﬂ + K cos? m,v

. 5 1 PR S VN
Qo(k,p) =1 (D) [2ikora(1 + v5) + 5 (ki + pi)yi(1 +55)] " ().

(a ()
Qui (k. p) = ki cos® el (B)eM (7) — % N Epacy )k,

I\D]v

(19a)

(195)

{(19¢)

(19d)

(19¢)

(195)

(199)

(20a)

(200)

(20¢)
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Qrikp) = (£ cos® $ + ) e (F)elr) ) + 272 sin? SN (Bl ()
Fiko [N Bypielf) () + e (R)e et k| - be Bl ;. -
Q.06 0) = T B) (€0 (ky + pr)ysa) !l (F) (20¢)
Qrlhp) = (050 + 22) 0 ety 4 2o P3P E, o)
(20g)

Qc(k,p) = ead (B)el’) ().
g over

The %m.oqczam._ corss section results by averaging over the initial and summin
the final spin (polarization) states of particles 8]:
> 1E(k,p)?

f.sp.

do = (2n)? k2dQ, (21)
i.sp.
where dQ? = 275in 94O is the Em:;ov::& solid angle element in the direction of

cEnmE@ particles. Thus, we ?ﬁd
; £ g
; (22a)

3 Mo
==X |Qk.ci.(k,p)?,

Fra | =
m@i&é?@: %
2 w.\g
Fpl2 = X [C] 2
W_ Pl = | renmare| Qo n)P, (225)
.sp. \ 2 sp. :
: XM, ©
F = =] 2
M_ arl? m/l’ﬁi PEpeRe) MM_QEQPE_J (22¢)
sp i.sp. 0 2 pol.
20, F
M:ql = |x/® = o (k. )2
p> " sermare ;M_@:Js_, (22d)
2
(22e)

2
X Me 1 .
16(27)2k3 sin® € MM_Q\N.%AFE_N,
= pol.

/

D |Frs? =

\.u.ﬁ. ..ut.
: 20, 1

|Fr|? =] _XMe | 1 & )2

MU 16(27)2koR? sin? © 5 W_Qi , D)l

5. isp.

N

(227)
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2
’ Mo 1 5
Fal® = = . (kyp)? 22
> 1Fe SR | 32 Qxa kD) (229)
f.sp. i.sp. 2 pol.
On the one hand, for the calculus of the polarization sums over photon or spin-1 meson
vectors and spin-2 meson or graviton tensors, the following completeness relations [8,9]
are used: N
. - = kok
D e (E)es (B) = dog = bap — ~%2, (23¢)
a=1 -
. Ay, (A (T kik;
S e (k)N (k) = Dy = 655 + —a (23d)
A=1 )
2 . ] kikj .
#Dj + Dy Dy = wq ko Dy =0 F >M.Mq (235)
(239)

e Y e R
=1

MQ?& Ap_\VQMv e

respectively.
On the other hand, to evaluate the spin sums for positive energy massless Dirac
spinors and R.S. spin-vectors, the following projection operators - written in the covari-

dapds, + davdg, — dapdyy,

ant form [8,10] are used:
L2 Wik
+(EY = ") (g 23h
P (k) M: (Bt (F) = 552, (230)
M:EQ&QEQ& 5 (Ginke + mﬁs\,«.\e = vikj —viki) = -2k
~ m:a H 2 ¥y dikg
(23e)
obtaining
> 1Qolk,p)* = mﬁml?\af+:n.+n_;)>._2+§v>;$?.§ va + (ki +p;)v;) :i
sp.
: (24b)
; respectively:
1
mCEmzii‘:ﬁﬁ\n Qns +N¥VAW> :TN;vaVAJ\m YaYm Ve Yi ‘w)\A)\,\)\uQ:v
(24¢)

wm. |Qr.s.(k,p)|* = — Tok2
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After laborious calculus 0rres i i i
ous calculus, the corresponding differential cross scctions are given by

“ 1114

da H+E~8%% N

dog ¢ = AQ\E@vmmm:A ww o ; (25a)

dip = B\,&mammw cos? w, (256)

dops = AQ>~®vummMM~% cos? W, (25¢)

dop = AQ\_&@%&M“W AHMCW.NVN ~ mw_“w% (2 — w? sin? .Wv , (25d)
dogs = AQ\E@KEMMW cos? W. (25¢)

; 2\2 2
dor = AQ.\—N@vNW:ﬂ__’,‘b%. A_Nﬁ:g.mv +.mwT_l+Ep.ulL Tmﬁlguvu

w(l—w?})

7

(25f)

201 — 22 cin2 © 2y o . ;
+24w*(1 — w?)?sin 3 + 16w(1 — w?)sin 2 + 8ubsin® O] sin? =

o 20 1

. = 132 .
dog = AQ\—NQV e % AQOM = + Zgipt m.vv. (259)

2 8

where we denoted by w the ratio &/ ko (with kg = VK2 + m?, 4/ R+ #? and V2 + M2
nmmmmwséqy in agreement with results in I:Hm-év obtained in different manncers? F,
ma%ﬁo:, it is worthwile to mention that the gravittional scattering of massless .m:a
massive Wm particles is rarely studied in concrete applications [13 20] even it exists an
outstanding general approach by the use of extended mcvonmgiao,m [5].

Ty

Q:UM@JMMOWEM.ma_w_wmzo:m_ scattering of neutrinos is analysed by Boccaletti ot al, {15] starting from
S ,%3 mmrw‘u\oa%::arm oﬂoa&\waoioﬂci tensor T}, of matter field and the weak gravitational
:m:ﬁl:ﬁm. 'y hat there is no difference between a two-component and four-component
nohwmo?_uﬂmu_.n%nﬁho: Uo:mao:: the m?;m.:o:m_ and m*annwoimm:o:n ficlds and calculation of the mm«ma"
i g 1o one of the &:do crucial pomﬁ.o», Einstein theory, i.c. the bending of a light beam in a
g ational field, were studied by Boccaletti et aj. [16], Mitskevich [4] and Lotze [17],who used the
::n”ﬁmm:o: Lagrangian (28), equivalent with our one (10). , i
Concerning the scattering of massive vector particle; ,
cralise the Vladimirov’s ones obtained at small anglc
At last, the scattering of gravitons in ¢
18], Mitskevich [4] and Lotze [17], st

S on Schwarzschild background, our results gen-
In Succkelberg forn
ational field were anal;
stein Lagrangia
oned authors, apart,
od based on Green's

2
=0, in agreement v
n formalism.
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3. Discussion and conclusions

Taking into account the relations (25a,d,f) the differential cross-sections in the small
angle approximation become:

ideTue , 5 d? 1+ w?y2 massive
dojgie” = AQE@K%A%V = doRin", (26)
)

i.e., they are the differential cross-sections of Rutherford type. As we can see from
(25d,f) the expression for aqwmwm.:a is exactly the differential cross-section for the mas-
sive scalar particle (for instance, scalar mesons); therefore we can interpret the second
term in relations (25d,f) as being the spin contribution of the massive vector and tensor
particles, respectively. In the same approximation the scattering of massless particles

occours identically. Indeed we have

, dQ
ATesiis’ = (CMo) s = dopusser (27)
2 2

On the other hand, as we can-see from relations {25), in the backward scattering
limit case (ie. for © = 7), the differential cross-sections for electromagnetic waves
vanishes, whereas for gravitational ones it is not. According to de Logi and Kovacs [18],
this fact means that the helicity of photons is conserved, while for gravitons the helicity
is not conserved.

Comparing these results with thosealready obtained by us [11-14,20], we shall no-
tice that in the small angle approximation, the differential cross-section of massive
Klcin-Gordon, Dirac, Proca, R.S. and tensor particles have the same form, and in the
ultrarclativistic limit (w — 1) they coincide with those corresponding to the massless
Kicin-Gordon particles, neutrinos, photons, massless R.S. particles (gravitinos) and
gravitons. In other words, in this limit case the gravitational particle scattering is spin
independent, in agreement, with Vladimirov’s results [7].

Finally, we can conclude that unlike the mentioned authors [4,16,17], who used the
interaction Lagrangian

. 1 ik _jt
Lar == V=99" 9" F;; Fy, (28)
we have started from Lagrangian (10) (cquivalent with (28), besides a divergence) which
explicitly contains the covariant derivative. This fact scems to us more naturally, be-
cause in order to determine the appropriate first-order interaction Lagrangian, we have
used the principle of minimal coupling in Quantum Gravity.
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