e

acta physica slovaca vol. 48 No. 1, 43 — 54 February 1998

UmMWCmHOZPH HOMOGENIZATION OF BINARY STRUCTURES
COMPOSED OF ARRAYS OF DELTA-DOPED LAYERS IN HOST
CRYSTALS

Viktor Bezak
Department of Solid State Physics, Faculty of AMathematics and Physics, Comenius
University, Bratislava 84215, Slovakia

Received 4 December 1997, xﬁd:.ﬁi 12 January 1998

Diffusion of dopants in crystalline structures with arrays of delta-doped lavers is
studied theoretically. Two types of the structures are treated, The first type is
deterministic, defined by a periodic location of the delta-lavers: The second type
is stochastic, with a Poissonian location of the delta-lavers. In the deterministic
case, the r.s. deviation 7(t) of the concentration of the diffusants exhibits an
expouential long-time behaviour: 7% ~ exp(— 47°Dtja®) where D > 0 is the
diffusion cocfficient and @ > 0-is the spacing between the delta-lavers. In the
stochastic case, () decreases with'a ich slower rate: 37" (1) ~ 7 1/4 A general
qualitative ?Ecw‘::m:m.::ﬁi.v discussion is given laving emphasis on stochasticity
as a prerequisite of any realistic theory of the diffusional homogehization of sintered
materials. ’ )

. 1. Introduction

The diffusional homogenization is a phenomenon manifesting itsclf as a gradual
temporal decrease of the variance of concentration profiles C(r.1) oscillating in space
around a mean value C. In the present paper, for the sake of simplicity, we will consider
the diffusional homogenization as a one-dimensional problem. We define € as a position-
independent quantity. Obviously. if there is no reason for any change of the total munber
of the diffusants, we may take C as a paramcter which is constant not only in space
but also in time. Thus, the rariance

(1) = (Cla.t) = CF) (1)

does not depend on r and deereases 1o 20ro it = oc. If any function f(x) oscillates
(cither periodically or randomly) around an r-independent value f, we may define the
averaging () in the usual sense, assuming the validity of the identity

" A2
f={fr)) = lim 1 de f{a) . 2)

Lo~ Lo, —1/2
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The simplest mathematical formulation of the homogenization problem was pro-
ﬁcﬁ...a by Purdy and Kirkaldy [1]. These authors considered a sinusoidal initial concen-
tration profile,

C(z,0) = Qm;@,‘_ov =C + V2 7 sin(rz/lo) . (3)
The diffusion cquation .
8C(z,t) _ 9*Clz,t)
o D o2 )
is then solvable almost trivially: for ¢ > 0, the solution reads
Clz,t) = Ciin(z,t) == Ol. + /\M sin(t) sin(mz /1) (5)
with
Nsin(t) = no exp(— 7 D/I5) - (6)

AP.nnoa.Em to this result, the diffusional homogenization is characterized by a relaxation
time

Tsi I...@t >0

sin — 2D . A.Nv

Of course, the sinusoidal concentration profile is too simple to be acceptable for

assessing the homogenization rates of processes which are of interest in practice. One
of standard metallurgical methods of producing alloys consists in blending constituent
powders, compacting them, and subjecting them to high-temperature annealing. When
considering powder particles as minute spheres, we have to take into account that
their diameters may be scattered to a sizeable extent. This implics that the blend of
these particles, when sintered together, has to be regarded as a considerably disordered
granular solid. Therefore, as far back as 1972, we proposed (in [2]) to consider the initial
Mo:no.snaacs C(z,0) as a random function with the {(second-order) autocorrelation
unction :

W (jzy — 22) = ([C(e1,0) = CYC(w2,0) — C]) = g exp[— (@1 — 22)/1§] -

: ®

a,mwo superscript a is to label ‘case (a)’; similarly, the superscript b will be used moﬁwnmwmo
(b) mo:omﬁcza_:m to another autocorrelation function.) With autocorrelation function
(8), it was relatively casy to derive the function n{t):

a _ a 2 7
7Y = :\Fﬁ ") = T+wbww\~w1§ : AS

Although both the functions Nsin(t) and n{®(¢) tend duly to zcro with t — oo, the
decrease of the latter, 7@ (1) ~ t~3/4, is evidently very slow in comparison with the
exponential decrease of Ten(t). As a matter of fact, sintering experiments (as it was
wc:;c& out, c.g., in [3]) often disclosed that the homogenization — cspecially during its
final stages — really did not run as quickly as it might have been expected according
to the sinusoidal model. This ascertainment points to the necessity of developing the
theory of the homogenization kinetics as a stochastic theory. ,

Diffusional homogenization of binary structures... 45

However, not the stochasticity of C{z,0) as an abstract supposition, but actually
the definition of the autocorrelation function of C(z,0) proved to be decisive for the
determination of the stecpness of the decline of n(t) towards zcro. Let us point out
here that, in contrast to the function '@ (¢) falling down less rapidly than the simple
cexponential, there are also counter-examples showing that the stecpness of the decrease
of n(t) for some stochastic models may even outmatch the steepness of the decrease of
the exponential A exp(— Bt) with constant values of A>0and B > 0. Indeed, if we
take into account the autocorrelation function

W (|2, — 22]) = ([C(@1,0) = CYiClz2,0) — O = expl- 71— z:2l/l]  (10)

(lp > 0), we find [4] that

' . 2 ~\w
70 = W0 =no T:Asg: x : 1)

ly

Since erfct = exp(— €%)/(V/7€) for large positive values of £ (cf. [5]), expression (11)
implies the asymptotic formula

:ASQV ~ 1o mxvhl Uwv for Dt > Nw

lo
71/A(Dt)/2 |an
and the decrease of this function, when compared to the decrease of the the simple
exponential exp(— Dt/ 12), is stecper owing to the prefactor ~ 112,

The above-mentioned examples clearly suggest that, when considering real exper-
imental samples, our conclusions about the homogenization kinetics drawn from any
simplified model must be rather cautious. Even qualitative predictions may appear to a
certain extent dubious if they are not supported by extensive statistical data obtained
from thorough granulometric investigations of representative sinters. To our best knowl-
edge, there is a general lack of such data. Indeed, even a casual inspection of newest
papers devoted to problems of the powder metallurgy reveals that specialists in the ficld
still either theorize with particles of some constant radius (then they speak of monosize
ball models, cf. e.g. [6— 8}) or try to realize only some primary statistical potentialities
of the modelling of the packing of fine particles as a function of particle size and shape
distributions, often in regard to powders before their compaction and almost always on
an empirical level (7, 9] Further theoretical achicvements will probably much depend
on gathering suitable data from automated granulometric techniques enabling particle
size analyses of bulk powders using sophisticated tools of the so-called mathematical
morphology [10]- Nevertheless, even if we admit that there is an appreciable progress
in a general comprehension of how to describe granular materials, we have still to state
that extant results in the statistical characterization of these materials are not sufficient
for claborating a satisfactory and exhaustive theory yet.

Therefore, as we want to treat the diffusional homogenization as a mathematically
wall-argued problemn, it seems to us at present that it is more justifiable to pay heed to
simple models, allowing a clear probabilistic description of which we can have a good
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grasp, than to formulate complicated models that may have been called for in a realistic
theory of sinters. We share this view with Masteller et al. {3].

In the present paper we propose to study the homogenization problem for arrays
of delta-doped layers embedded in a crystalline material. Such arrays can be studied
not. only theoretically but also experimentally. The delta-doping is a modern computer-
controlled technique [11; 12]. By the delta-doping, it is possible to fabricate semicon-
ductor single crystals in which dopants (donors or acceptors) of a given kind are located
in extremely thin layers (delta-layers). We will model the initial perpendicular concen-
tration profile of the dopants in all the delta-layers by a narrow Gaussian of the same
height and width. The delta-layers are parallel to cach other. Their number 7 in a
sample of length L of some centimetres may be large enough (say about 104 — 10%) s0
that when treating the homogenization problem, we may take the sample as ‘infinite’,
neglecting end cffects. We assume that if L — oc, then n — oc and

L = a (12)
n
where @ > 0 is a constant. The delta-layers may be distributed at will. If they are
distributed cquidistantly with some spacing a > 0, we speak of the case (as). (This case
corresponds to a superlattice). If the delta-doping is programmed in such a way that
the result is an array of delta-layers distribated practically at random, in a Poissonian
way, with o signifying the mean distance between neighbouring delta-layers, we speak
of the case (bs). (This case corresponds to a model which may be considered as an
analogue of a sinter). o .
The aim of the present paper is to derive the function 7(t) for both the cases, (as)
and (bs). We take the number of the dopants in cach delta-layer the same, equal to
N;s >.0. Then, cvidently,

= p}wm Nsn . .
=0 . 13
2 a L (18]

2. Mathematical formulation of the problem

Let 7 be the coordinate of the centre of the jth delta-layer. At the initial time
to = 0, the concentration profile of the dopants rcads

2

C(x,0) = |$ MU exp | — Ll .GV (14)

(2ud) - 2uwd

J

where wg > 0. .

Assuming that D > 0 is a woll-defined diffusion cocfficient of the dopants in the
host crystal, we can casily derive the solution of equation (4) at a general time instant
t>0: )

N (r—xj)°
— expl — =7 5 ; 15)
(2m)1/2 (2Dt + wi)!/? M ! 2(2Dt + wg) (

“0 i

Clx,t) =
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For the purposes of further calculations, we rewrite expression (15) in the form of the
Fouricr integral

2
Ns [ i Yo ) g2 16
Clz,t) = |w|qw loo%a Mﬂ)\ expli(z — z;)k] exp | — | Dt + 5 IS (16)
We can directly show that (C(z,t)) = C:
1 (L2
= lim — dz C(z,t
(C(z,t)) = lim - z C(z,1)
No g L7 " 4 explitz — 7K pt + Y0)#?
=2 lim = . dk \ dz expli(z — z;)k] exp | — —
e e E M L i 2
m L' —Ns fim 2=C 17
=N Jim 7 [ k380 =N fim 7 =C- i

Let us now calculate the averaged function ([C(z,t)]*). When taking the square of
expression (14), we obtain the double sum

N? (@ —25,) + (2= 2p)’
2 _ é - g
1.2
; 2
NE - A (zj — Tja)
= - OCICYE exXp | — 2
1 3 ﬁ& = WAHE + H.EZ“ ) Awmv
X Z=@Dit w2 F 2Dt +w}
Sinee ) UGN -t (75 I
z expl| — : s
V2Dt +wi)/? Jorp2 P 2Dt + w
if I is sufficiently large, we may write the cquality
2
. NE 1 _ (Tj = T5)” ) 19)
(i = T Grrgpr T X P\ aeDirud) A

Ji.d2

The double summation in formula (19) is self-averaged. The mm_mw%mn.mmwzm (a notion
well-known to theorists working in the field of disordered solids) is given by the fact
that L — oo. The number n of the delta-layers may be considered as self-averaged.
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3. Mathematical solution of the problem

3.1. Case (as): Periodic array of the delta-layers

In this case,
z; = ja (20)
where j =0,1,2,...n— L When using the pair of indices j = 2 — 41, j' = j» instead
of the pair j1, j2, we can transform (19) into the double sum

([Cled)(z, )]) =

Zm H :l— :I- Q.N ...N
T (am)72(2Dt + w)1/? MU ee A| %Qw s_sv .s:
[¢] §=0 j=j'—n+l 0

Since n — 0o, we may accomplish the summation with respect to j from — oo to oo
and so we come to the expression ;

([Ct)(z,O)]") =

C?a 20 a2j?
y H - 5 g
@012 (2Dt + w)/? ﬁ = Wm eeﬂ 5@15%8 (22)

In order to derive the long-time approximation of the sum in formula (22), let us
now recall an analogy from the quantum statistical mechanics. Let Cg(€, &) be the
canonical one-particle density matrix of a one-dimensional system of non-interacting
boltzons confined in a box of width 7. We assume that &, & and 3 are dimensionless
variables, 0 < £ < 7w, 0 < <7 and 8 > 0. The solution of the Bloch equation

8Cs(E,60) _ 3Cal&,to)

BT o (23)
with the conditions )
C(0,66) = Ci(60) =0 and  Ciol€,€0) = 8(€ —&o) (24)
reads o~ .
Cole o) = 23 expl(= A sinGoi/m)sin(€i/) - (25)
j=1

By applying the Poisson summation formula, we can rewrite (25) (cf. [13]) as an
alternative sum: ,

Col6oo) = = T%AI Ev ) SAI Ev

(4np)r/? 48

= 27p + £ — €0)” 2mp — £ + &)?
Bl (- ) ¢ (- )

p=1
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- ssﬁn ﬁw\ﬁ@.v - ssA| sémwi%v:. se

(This sum can also be obtained by employing the method of mirror images.) Hence

Cyl€,8) =

! : -\ | ¥ p®
Eq&v.\u AH - GGAl mlmlv - GEAl 3 v + MT G%Al A v

p=1

- o= LET A e Ei%-m_sé. -

This expression for Cpl€, ) is especially advantageous if B> 0 is small. We have to
integrate this expression with respect to the variable £ running from 0 to 7

S expl— f7%) = [ d€ ol (28)
j=1 0
Fortunately, -
e~ EioJ _ S Ai E?:AJ
\camuMnm,C%A 3 \o mMﬂWSﬁ 3
= mv (xB)*
= d _ =] = .
\c ¢ eeﬂ g 2
Therefore,

o = 1/2 ] ﬁw.m.m
~-BiH=1= 1+ 2 ex Al \v% . (29)
~+NW§1 B*) Amv ﬁ W p 3
After substituting a?/[4(2Dt + wg)] for §, we can readily write down the formula

47252

(2Dt + ewvi ) (30)

a2

oo
(C1e9) (2, 1)) = €7 T + 2y o T
j=1
In this way we have got the function

:APLAS - HQQ?:V?PS_NV _ Q.Jp\m

, o0 9 . 1/2
=v2C AM)\ oxp ﬁl fl,ww (2Dt + Em;v : (31)

a2

=1
(Of course, this result could also be obtained directly, if the periodic function C(z,1)
were developed in the cosine Fourier series.) Formulac (30) and (31) are valid exactly
for all values of ¢ > 0. We may also write (31) in the form
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ples)(t) =

[o'9] : 1/2 oo 222 1/2
0 AM exp ﬁl ?My- 2Dt + Ech \AM exp ﬁl »ﬂ@% E&W (32)
‘ =

with
o< #ﬂ.w...m.w 5 1/2 5
o = () = AMU ﬁ = e& . (33)
Asymptotically, -
j - omtwd 4n*Dt a? il
Aa. v N 1
7 DEZ,\MQ@%AI QN.VQEAI mm;v for t>» 55
# (34)

Thus, we have derived the following relaxation time for the diffusional homogenization
of the delta-periodic model that has been treted here:

QN
_Téperiodic = 42D >0. - : Awuv

3.2. Case (bs): Poissonian random array of the delta-layers

When using the representation of C(x,t) by integral (16) and taking into account
its square, we are to calculate the expression

(C) (@, O]2) =

L2
Ams, 72 MU \ &2\. dky — \ dz exp {il(z — zj,)k2 —(z — zj,)k1]}

Jud2 —L/2

‘ol (o + %))

The first step is to carry out the integration with respect to z:

h\u
\ &aoxER\SIFViR wq&tﬂwlw_v.
-LJ2

(The equality symbol ~ mcans that the cquation becomes exact if L = oc. Howcever,
we will not strictly distinguish between the symbols = and =~.) Then we obtain the
expression

QQ;:Q;xJ =

&q expli(zj, — =j,)k] exp[— AMU‘I\SW;J .

mah
Jredz
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This integral has to be caleulated separately for j; = j» and for ji # j». Owing to the
property of the self-averaging, we may write

([C® (z, t)] MM m T \é% exp[— (2Dt + w3 )k”]
tatn—1) [ ak (el — k) el GDUF ey 6o

Let us now discuss the second of these integrals. In regard to the Poissonian distribution
of the points zj, we must respect the cquality

[k expltes, = )i expl- @D+ WK =

SNS..V .‘
|M &a \ ma:\ &s,GGE&:I&JEGGTQU“W +E%;~_.
L L2 L2

However,
L/2 L/2
\ aw\ &ﬁ:\ dz' expli(z” — z')k] =
L2 L/2

L/2 . oo =}
\ dk \. dz explizk] = \ dk \ dz explizk] =
N\ Lj2 —00 -0

In this way, we have proved that

ZN oS : : Sie 5.8
N ) [ dk explites — 2308 el GP4 i)
i :
Nin(n~1) .
™~ 2 ce. (37)
After putting formulae (36) and (37) together, we obtain the function
6 (OF = |
Q:::A t)]? v G = 2.% im — oo&n expl— (wg + 2Dt)k?)
Aﬁ T, 2 L—0o L oo P 0
~2 SN2 2\ 1/2 1
H.Qa. NH 2 a § . (38)
(4m)1/2 \wj + 2Dt 8nD [w2/(2D) + t]'/?
This result is valid exactly for all values of the time variable t > 0. For t = 0, we obtain
the constant .
3 a? 1/4 '
m=C A»ﬁcwv ) )
Accordingly, we may finally write down the function
1/2 2 N 1/4
) (1) = Yo = A\alv 1
(&) =10 (w2 +2Dt)!/* 8xD [w2/(2D) +1)'/* (38)
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i(t) = n(t)/C

stoch

det

0 10 20 30

L]

Fig. 1. Plot of the function 7(t)/C (in dimensionless units) for the periodic array (as) and the
Poissonian random array (bs) of the delta-layers. Both the curves correspond to @ = 20.

1 ~
duonEA@ = d@v\dAOv
I e L | i
0o S 10 7 120

Fig. 2. Plot of the function 7(t)/n(0) (in dimensionless units) for the periodic array (as) and
the Poissonian random array (bs) of the delta-layers with the same value of the parameter a
as in Fig. 1: a = 20.

4. Graphical presentation of results

To draw a graphical presentation of the functions n(t) and Ptoch(t), it is suitable
to use dimensionless variables. We take wo (the parameter characterizing the half-width
of the Gaussians at the initial time to = 0) as the length unit; then the dimensionless

paramater
.«
a=— (39)

wo
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plays the role of the paramcter a. Employing w3/(2D) as the time unit, we introduce

the dimensionless variable
. . 2Dt

i {40)
wg

playing the role of the time variable. Then it is advisable to plot cither the functions

(as) (bs)
~ det ¢ n va ~ stoch ¢ n Qv
H="—, i) =1—=—", 41
o =Tm", 1O ="7 (41)
or the normalized functions
(as} (bs)
der on 1S oen iy 1P (R)
ade ) = T ey = q (42)
7o Tlo
A2t (0) = flapem (0) =1 - (43)

Note that @ is the only parameter present in these functions.
Then, from formulae (22) and (31), we obtain the function

et 1 a kel azj? 12
7 det(f) = = 1 o e -1
i O =\ @O G+ )72 ol Wm B 4Ff+1)
oC 5y e H\M
;o I
=2 MU_ exp |~ 7 F+1) ,‘ (44)
.&“

Similarly, expression (38) is transformed into the function

stoch (¢ 1 @—\m 45
ot (d) = .
77N = G T D (45)
Fig. 1 shows the functions 7 det(f) and 7 ml».o%Q,V calculated for a = 20.
For the functions 7, 3¢t () and 7, 2och(t), we have got the expressions
= det (1) —
::c—.—:ﬁﬂv -
oG g . 1/2 oc 9 2 1/2
4n?it - 4 j?
MU exp |~ 5 (t+1) MU exp| - 53 (46)
j=1 j=1
and 1
- stoch/7y —
::c_.:n_ :v - :w+ Hv(» Am»vwv

These two functions are depicted in Fig. 2 (again for a = 20).
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5. Conclusion

The purpose of this paper was to present a theory of the diffusional homogenization
of samples with identical delta-layers. When considering each delta-layer as a source of
Ns diffusants, we may take the concentration C(z,t) of the diffusants as a sum of cequal
Gaussians at any time instant ¢ > 0. Our aim was to calculate the ran.s. deviation
n(t) of C(z,t) in two typical cases which we called case (ag) and case (bs). The case
(as) (cf. subscctions 2.1 and 3.1) denoted a deterministic situation where the set of the
delta-layers was chosen as an cquidistant array with some spacing a. The case (bs) (cf.
subsections 2.2 and 3.2) denoted a stochastic situation with a Poissonian distribution
of the delta-layers. In the latter case, a was defined as the mean distance between
neighbouring layers.

In the deterministic case, we have derived the function 79°%(t) = 7'@s}(t) in the form
of an infinite scries and proved its reduction to a single exponential function (cf. formula
(34)) in the long-time approximation. In the stochastic case, we have ascertained, in
concordance with what we had concluded long ago in (2] with -another model, that the
randomization of the initial concentration profile brings about a remarkable decelerating
effect upon the diffusional homogenization. Indeed, the function 7**°"(¢) that we have
derived in the case (bs) (cf. formula (38)) decreases to zero very slowly in comparison
with the exponential decrease predicted for 7(t) in the periodic case (as)-

A natural question arises if the calculations that we have presented here with the
intentional restriction to one-dimensional models can be repeated with analogical three-
dimensional models. Our answer is positive. Calculations in this sense should deserve
a special attention in an independent paper. .
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