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We study the recently defined number-phase Wigner function Sy p(n,8) for a
single-mode field considered to be in binomial and negative binomial states. These
states interpolate between Fock and coherent states and coherent and quasi-
thermal states, respectively, and thus provide a set of states with properties
ranging from uncertain phase and sharp photon number to sharp phase and un-
certain photon number. The distribution function Sy p(n,8) gives a graphical
representation of the complimentary nature of the number and phase properties
of these states. We highlight important differences between Wigner’s quasiproba-
bility function, which is associated with the position and momentum observables,
and Snp(n,8), which is associated directly with the photon number and phase
observables. We also discuss the number-phase entropic uncertainty relation for
the binomial and negative binomial states and we show that negative binomial
states give'a lower phase entropy than states which minimize the phase variance.

1. Introduction
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has been used extensively in quantum optics for solving
ace as well as for studying the nature of nonclassical
he Wigner function gives a graphic representation of
certainties in the quadrature amplitudes of the field for
squeezed states. It has also been used to llustrate quantum decoherence where the
decay of the coherence of a IAaCroscopic superposition state (a Schrédinger-cat state)
is represented by the decay of interference fringes in W (z, p) [2].

Wigner’s function is defined with respe
momentum observables, or cquivalently,
single-mode electric field in the optical ¢

ct to the canonically conjugate position and
the quadrature amplitude observables of the
asc. In classical mechanics, however, one can

23




24 A Joshi ct al.

also give a phase-space description of the single-modc field in terms of the intensity and
the E:.wwm as well as in terms of the quadrature amplitudes. A great deal of attention has
been given in the last few years to the definition of an acceptable quantum-mechanica]
nocsﬁm.%mg of classical phase and there are now 3 number of Emarmﬁmanm_q,&mﬁozﬁ
moizmrmgm [3, 4, 5, 6,7 8,09, ,5_ available that give a mutually-consistent physical
Qmmun:.n:os of quantum-mechanical phasc. An important feature of this common de-

number [11]. The advent of this well-defined description recently led one of us (12, 13)
to define g n:mmm-nwocmc:ma\ distribution which has properties analogous to gomm of
the origina] Wigner function but which is associated with the canonically conjugate
phase and photon number observables [14] rather than the position and momentum ob-
servables ysed by Wigner. Thig quasiprobility &mavcaos, which we shall cal here the
number-phase Wigner function Snp(n, ), is defined on the infinite-dimensiona] Hilbert
mﬁm.nm which supports botl the canonica] phase and photon number probability distri-
butions. The § ~Np(n, ) representation of Fock States, coherent states Squeezed states
.m:a Schrédinger cat states (in terms of even and odd coherent states) m&m been studied
in Ref. [12, 13] and many :zmammazm features related to the phase and photon number
properties of these states have been discussed. While for some states, e.g. intense co-
herent states, hoth W (z,p) and Snp(n,8) were found to be qualitatively similar, for
omrmu states such as the Squeezed vacuum they were found to differ significantly. qﬁa
difference can be traced to the different variables £, p or N ; ﬁm upon which the functions
are based. This difference allows Snp(n,8) to give an alternate phase-space description

.Hs this work we study the nature of Snp(n,6) for a single-mode field prepared in
a binomial or g negative binomial state. Binomial and negative binomial states have
been studied well previously and g possible method for their experimental generation
has also been proposed [15, 16, 17, 18, 19]. Binomial states display antibunching and
m.cv-muommmoimz statistics as well as Squeezing. The dynamics of a field prepared inj-
ﬁ._m:% in one of these states interacting with a two-level atom has been reported in the
literature within the framework of the um%:%-O:SEEMM model and many interesting
effects relating to collapse-revival phenomenon of Rabi oscillations have been obtajned
[17,19]. A binomial staté is “Intermediate” between a Fock and a coherent state in
gm\mm:mm that the Fock and coherent states are two different limiting cases of binomial
States [18]. Thus by varying an appropriate parameter (e.g., photon number variance)
for fixed mean photon number g binomial state interpolates between a state with ran-
dom phase (Fock state) to one with sharply defined phase (coherent state). w:::ml*w
negative binomial state is “intermediate” between a coherent state and a quasi-therinal
state [18] and thus a negative binomial state interpolates between a coherent state
and a state which have even more sharply-defined’ phase. Morcover both binomial and
negative binomial states can exhibit squeczing which is o bhase sensitive effect. Thus
the wronos number and phase propertics of these states is clearly important and the
Snp(n, ) function allows us to study these propertics in a vivid .WH.EE:.Q: manner.
. S\Nw also study in thig paper the number-phase entropic uncertainty relations for
binomial and hegative binomial states. Entropic uncertainty relations [20, 21, 22. 23]
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act as an alternative to the more familiar Heisenberg uncertainty relations [24]. They
give a finite lower bound on the entropic uncertainty associated with pairs of observ-
ables, which, in our case, are the number and phase observables. In general, different
approaches are required to treat the problem depending on whether the spectrum of
cigenvalues for the opcrator considered is continuous or discrete and bounded or. un-
bounded. Recently Rojas Gonzéles et. al. [25] presented a unified approach for treating
all types of operators. For this purpose the general method for formulating canonically
conjugate operators given by Pegg et. al.. [26] was used. This method allows one to
derive the entropic uncertainty relation for an infinite dimensional system from the
general form of the relation for finite dimensions. The number-phase entropic uncer-
tainty relation was used recently in a study of the emergence of Schrédinger cat states
in a field interacting with a Keorr medium [27). The minimisation problem of finding
the number-phase uncertainty state is considered in (28] and the minimum uncertainty
state relations between the photon number uncertainty and the phase uncertainty are
presented. A very interesting description of quantum mechanical states based on opera-
tional approach to a phase space measurément are studied by Buzek et. af. [29]. These
authors[29] have derived general entropic uncertainty relations which reflects the phase
Space uncertainty of the quantum mechanical state in a given measurement and they
have illustrated it with many examples. Shanon entropy of position and momentum
for the stationary quantum states of the harmonic oscillator as a function of its energy
is calculated and corresponding entropic uncertainty relations for them are determined
along with some examples[30]. Very recently, phase-intensity uncertainty relation from
quasiprobability distribution are reported by Orlowski et al[31]. We study here the
number-phase entropic uncertainty relation for binomial and negative binomial states
and look at how the number and phase entropies change as these states interpolate
between Fock and coherent states and between coherent and quasi-thermal states, re-
spectively. Our study complements and extends recent work by Gantsog et. al. [32] who
examined the number-phase variances of these states. In particular, we compare the
phase entropy and phase variance of binomial and negative binomial states with that
of Airy states (33, 34]. Airy states are important because they approximate states with
the minimum phase variance for given intensities and thus they give, approximately,
the lower bound on the phase variance.

The paper is organized as follows. In section 2 we give a summary of the statis-
tical properties of the binomial and negative binomial states. In section 3 we use the
numbcer-phase Wigner function Snp(n,6) to illustrate graphically the photon number
and phase propertics of these states and in section 4 we discuss the number-phase en-
tropic uncertainty relation and examine the associated number and phase entropies.
We end with a discussion in section 5.
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2. Binomial and Negative binomial states: a brief review

Binomial state’

The binomial states are defined as [15]

- M
2. M) = 3" C(p) 1)
n=0
where
M! :
Q:ANuv = ﬂjﬁz AH 'Nuv?\l-,—u—\w. n= Q‘ u; M\w\‘ 0 M p M Hu ﬂwv

b =1 Cup = dn,ar and binomial State reduces to the Fock state |M). In other
extreme, for p — 0 anq M — oo but with Mp = @ held Constant, the binomial state
becomes 3 coherent state with mean number of photon 7.

Negative Binomial state

The negative binomial states are defined as [18, 19]

l9,w) = 3" Culg,w) |n), 3)
n=0
where . A -
f
Q:Aﬁ.gv - MAQ:MTS%V q" AM _ Qve..:_:u‘ TC

with w N. 0, . 0<¢<1, n= 0,1,2,....,00. The probability of finding n photons in
state (3) is given by the negative binomial distribution

_ (n + w)!

P,
nlw!

Q: a - QVS.:u Amv
whose mean and variance are given by

= q 2 q
n =1 —_— = & —
( 1_.SvH p (An) Q+EVEN. (6)
The Mandel Q parameter for the negative binomial state ig given by

U=l@anym 1= oL (7)
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which is always positive since 0 < g < 1. This implics that the photon statistics of
the negative binomial state is always super-Poissonian. For w — 0, the photon number
distribution reduces to the Bose-Einstein distribution with a mean of i = WW and the
negative binomial state becomes a quasi-thermal state. In the other limit for w — 00,
g = 0, but with & = (1 + w)q/(1 - ¢) held constant, the photon number distribution
reduces to the Poissonian distribution and the negative binomial state becomes the
coherent state |a) with a = /7.

3. The number-phase Wigner function

The number-phase Wigner mcznami Snp(n,0) is defined as the expectation value of
the number-phase Wigner operator Sy p (n,6) which is given by [12, 13]

wzl? 0) = (@n)! M:IU exp(2ik6)|n + k) (n — k|

k=—n

n—1
+ > exp[2i(k + 1)g]jn + EYn—k-1]}, (8)

k=—n

in the Fock basis for n = 0,1,2,..... and 8 real. The second sum on the right-hand side
is defined to be zero for n — 0. Alternatively, this operator may be expressed as

%issnsi-_\ee?y.:s:5%%?%-&% ©)
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where [0} is a phase state [35, 4, 5, 7, 9] which belongs to the rigged Hilbert space [36]

and is defined by

o0
16) = (2m)71 3" exp(ind)|n). (10)

n=0
We note that |6) is the weak limit of the Pegg-Barnett phase state [5]. It is straightfor-
ward to check that these two expression for Sy p(n, ) are equivalent by taking matrix
clements of (9) in the Fock basis and comparing with the corresponding matrix elements
in (8).

The position-momentum Wigner function [1] defined as

Wi(z,p) = ()1 A / " exp(—2izy)lp + y)p - %@v“ (11)

in which |p) is a momentum cigenstate, is formally similar to Snp(n,0). Comparing (9)
and (11) we find that apart from the different limits of integration, there is the cxtra
factor 1 +exp(i) in (9). The origin of this factor is duc to the discrete nature of photon
number observable [13].

The number-phase Wigner function has a number of defining propertics which are

directly analogous to those of the position-momaentum Wigner function [13). Those that
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are HEvon.:a for us here are that § ~Ne(n,0) is real and its marginal distributions are
the ccz.zmrmca number and phase probability distributions, P, and P8) respectively,
These distribution are given as follows: .

’, \ Swp(n,0)d0 (12)

1

> Swe(n,8) (13

n=0

P(8)

e L = (I, P©) = (G and Sxp(,6) = (S p(m.0)Lf) for arbitrary
state | f).
We now use the S ~NP(n,8) defined above to study quantum properties of the binomial
and negative binomial states of the ficld mode.
Binomial state

The number-phase W igner function Snp(n,8) for the binomia) state (1) is given by

M:U exp(2ik8)p™ (1 — p)M—npp
[(n+ k) = k)M =7 = E)Y(M —n + k)1/2

k=—n b

exp(2i(k + 1)8)p"~1/2(1 — p)M-n+1/2 )y
— [(n+k)(n—Fk— DM —n~k) (M —ntkat 1)1i/2

Snp(n,8) = (2r)~!

n—1

(14)

for 0 < n < M and Snp(n,0) = 0 otherwise, Here, and in the remainder of this paper,
we take the paramoeter P to be real and non-nicgative. For the case of reference we give
Sn.p(n,8) for both the Fock and coherent states as follows. The Sy p(n,8) for the
Fock statc |11) is | S

. Sn.p(n,8) = (21)716,, oy, (15)

which is represented mngnmEﬁmmEvg as a raised ring of radius A/ above the (n, §)
planc. The phase is complétely random whereag the photon number is sharp. For the
coherent state |a) with a real and positive we find . r din

Snp(n,6) = SP=laf?) ML, oxp(2ik6)|af

(2m) Pl (G S ICIIAYIIVE
n—1
exp(i(2k + C%:Q_u.:i_
+\..H1: [((n+k)n—-k— nyLe Cmv.

which is approximated by a two-dimensional Gaussian as follows [13]
Sn.p(n,8) =~ (2m)~! cxllmTiumJcxllA: — la?)/2]a)?]

for o > 1.
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Fig. 1. The Snyp(n,0) representation of the binomial state |p, M) with 7 = pM = 10 for
various values of M and p. Sy p(n,0) is represented in cylindrical coordinates as the “surface”
2 = Snp(n,8) above the points (z,y) with = ncos(6) and y = nsin(f). The triad in the
upper right corner gives the axis scaling in arbitrary units (a.u.). The surface is drawn as
curves of constant n (concentric rings incremented by unit one) crossed by curves of constant
8 (radial lines). The representation in (a) for M = 10, p = 0.99 approaches that of the Fock
state [10). In (b) M = 11, p = 0.9 and (¢} M = 20, p = 0.5 the binomial state clearly
displays nonrandom phase and a spread in photon number. In (d) with M = 1000, p =001
the representation approaches that of the coherent state Ja) with [«]? = 10.

Since binomial states interpolate between Fock and coherent statoes one would expect
that Sy p(n,6) in (14) will give a picture which interpolates between the completely
random phase of the number state and the relatively sharply defined phase properties of
a coherent state. This is indeed the case as shown in Fig.1 in which we plot Sy r(n.8) for
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= pM =~ 10 with P varying from (.99 to 0.01. It can be seen that ncar p = AEM.Z&,
P = 0.99) the features of Snp(n,8) resembles that of the Sy p(n,0) representation ofa
Fock state, Le., the phase ig nearly random and the photon number is relatively mrw.mb._%
defined. As we decrease p (Fig.1( b)-(d)) the phase becomes less random and the photop
number becomes more uncertain. In Fig.1( b) with p = 0.9 the phase is already far from
random although it stij] has a broad distribution centered op 0 = 0 and the phétop
number hag spread over a few integer values. ‘This trend continues for p = o.m ﬁumm.
I{c)) and p = 0.01 (Fig.1(d)). In particular Snp(n,8) in Fig.1(d) is quite similar o
that of coherent state le) with a = /1p. "t

states. The radial variable T = /22 + p2 of the Wigner function Wz, p) for Fock States
has a Laguerre polynomial dependence and thus it is not sharply defined ip marked
contrast to the Kronecker delta dependence of the “radial” variable n of .w\,:ug,&. in
(15). The reason for this is that the Square of the radial variable o= g2 4 P? of
W(z,p) is associated with the symmetrical ordering of the number operator N — ata

with respect to & and gt and not NV jtself [37]. That is,

e

= [ WenE? sy

by A:@*@E_mwsv 7, b (17)

where ﬁrwa represents the symmetrica] ordering [37] with respect to 4, at and we find
= (N241y 71 = (N*+ N1y 76 = A.\<u+w>\~+w\<+wv, etc. The square of the radial
variable is clearly not associated directly with the number Operator. Moreover, ‘while

the angular variable ¢ = arctan(p/zx) does have Phase-like propertics [38], nevertheless,
it is associated with the distribution

l\')'

&\gv = \ooo W(r COS @, 1 sin ¢)dr

which can have negative values and which can differ significantly from the (non-negative)
canonical phase distributiog P(6) given by (13) for some states [39]. Thus the mzmc_mw
variable of the Wigner function W(z, p) does not represent the phase observable. This
Places Sy r(n,8) in the unique position ag being the only quasiprobability distribution
currently available that gives a direct representation of number ang phase ﬁwowml@.wm
and thus of number-phase 83@?3&331@. .

Next we consider the state given by the superposition of two binomial states

) = Clip, ary + xp(iN)[p, M)]

where C is o normalization constant. In Fig. 2 we give a plot, of the associated Sy p(n, )
function for mean 7. = pAM 2 10 for different valyes ofp. For p very near 1 (e.g., p = 0.99
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T

=
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(d)

Fig. 2. The Syp(n,0) representation of the m:vmnucm;moﬁw of .E:oBmm_ states Q:Pm .N__M ) Mm.
- A>,\.. 3] Ev_z ,E:w values of M and p are the same as in Fig. (1). r.;m.nmmnmﬁMwEHm mmna
Mwwmm_ Mm m.nrzwmm:mmu cat states cmerge as the component states become distinguisha

approach coherent states.

in Fig. 2 (a)) we find the Sy p(n, 6) function approaches that om nwmmm,%oow ,faaa.wmaﬂ M Hnwvnr\wM
we reduce the value of p the features of S ~np(n, ) ﬁmwm a a.nwmnﬁ c Mmon e
the modulus of the overlap of the noBvowogm of the ng.:E mcvmwvo o uv\ﬁﬁ
by [{p, M| exp(iNn)|p, M)| = |1-2p®|/?" which is approximated by ox%TUMnoBMm /7]
for ﬁuu“« 1. The e~ point for i = 10 oceurs at p & 0.97 m:a.a.rm 9@. m%. nes very
= F = 0.9. Thus the binomial superposition mgn.m moa.zcdmmv :
i el d 9 and we expect to sce the characteristic interference

,‘\u,.n “O 5
distinguishable states at p Sdinger cat states at this value of p. This is indeed the

fringes associated with the Schr
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MMMMmmm MMMM :H _w M H_m.mw IAE. NM Go m.mcwo there are two symmetrical ridges above the
The almee, constne ¢ = M an moio. Interference fringes above ¢ = ~7/2and § = /2.
Fen eight of the ring m&o«.‘o the circle n = 10 can be thought of as
renen g MM%S,B M:mnmmmo:nm. The .Eamnmmgsno fringes hecome more and more
time two separate hill g nm. neep as .mrcs.d m Fig 2 (c) where p = 0.5. At the same
Emerge ot L mmq_%. Er%:d quite similar to those representing aorono:nmggm,
et s o 12 mwm Emmr =0 and ¢ = We eventually obtain the Snp(n,8)
o e “ o% erent state ,i:om I proportional to (Ja) + | — a)) Wwith
o P = 0and M ~> oc as illustrated in Fig. 2 (d). This analysis

€ superposition of two binomial states allows a systematic study of the
growth of the quantum interference in g Schréodinger cat state.

Negative binomial state

states i -
the mmwzws,“:m:;mm m:vmauo.m;_oa._ of the Fock states. The Syp(n,8) can be studied in
ay as for the binomial state. The Sy P(n,8) representation of the negative

Snp(n,0) = (2r)~1 M.HJ\ €XP(2tk0)g™ (1 - q)=+1(n + w)
Wl(n + K)(n ~R)172

!

k=—n
n—1 exp(i(2k + C%vnzl_\wﬁ 2 g)wH (n + w)!
2 §7v , (18)

hk=—n

is plotted in Fj i . . . . ‘
B inF 1g. 3 for several negative binomial states with fixed mean photon number

i = i
:mmmwo,\wﬂmzmwdmns (w =40,5,2,0). For w large (Fig. 3 (a), w = 40) the Snp(n, ) of
o al s mﬁm._e“ w) ow_o".wmq resembles to that of a coherent state with 7 — 10
nogatin i Pproaches in the limit 1 — o with ¢ = o —_ For lower values of w the
g Inomial states becomes increasingly super-Poissonian and correspondingly the

S n G
N p(n,0) r €presentation movwgm significantly from thag of a coherent state as shown in

@Gmoﬁoa further in the next section.
é#wumwwwoww_m_ WEN% M__aumn a._mmmm:\m Ezoﬁwﬁ state g, w) becomes a quasi-thermal state
same mean photon wh ri ::nho@ =q A 1 .IS oa:.m_ to that of 2 thermal state of the
maximizes the ppoq er % = Ti—¢- It s interesting to note that this distribution
ranging from, BWSQ MMOMEJ GH entropy for fixed i and it is m:ﬁmnd by many states
with mlu;amw% real ¢ Oﬁwww_w«:,om. M: Nuz_ﬁv Ai to pure ..w@ncm =0 /\chvﬁﬂzv_:v
SAOERATO, for e .:“ . CsC states, ﬁ.romc with the minimum phasc uncertainty (as
» 10T example, by the phage variance) are given by

oo
M /\MA,MUEG In) = n:,,\ﬁ_af w = 0)

n=0

v.
H
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Fig. 3. The Swp(n,8) representation of negative binomial states |q, w) for fixed # = 10. The
values of w are (a) 40, (b) 5, (¢) 2 and (d) 0. The representation evolves from one which is
very similar to-that of a coherent state to one which has more sharply-defined phase and a

broader photon number.

for arbitrary real ¢ up to an unphysical overall phase factor. That is, phase-shifted
negative binomial states are the maximum-photon-number-entropy states which have
the minimum phase uncertainty. Fig. 3 (d) gives the Syp(n,6) representation of these
extreme states. There is a relatively narrow ridge extending along 8 = 0 which illustrates
the relatively sharply-defined phase of these states. The radial dependence of the height
of the ridge is not the exponential P, = ¢"(1 - ¢) onc might expect. Evidently the
oscillations in Sy p(n, 6) in the planc surrounding the ridge contribute in the integral
P, = [Snr(n,0)dd to yicld the required exponential distribution By
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Fig. 4. The number and
and (b) M = 30 are plotte
corresponding entropies for coherent states (dashed curves) and the discrete and continuous
limits, In(27) and In(er) (dotted lines). In (b) the approximate analytical expressions for the
entropies Egs. (28) and (29) for binomijal States are plotted as dash-dotted curves,

Fig. 5. Entropic uncertainties
coherent (dashed-dotted curves s
states. Negative binomia] states
including Airy states,

4. Entropic uncertainties for ::wzvmn and phase
The entropic uncertainty relation for number and phase ([23], sce also [25])
Rs + Ry > In(27) (19)

gives the lower bound of the sum of the Shannon entropics Ry, Ry associated with the
phase and photon numbar probability distributions P6) = (81N, P, = [{(n]F}? for
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25 T —

Infer)
2
In(2x) {

0.5

Fig. 6. Entropic uncertainties (crosses) for binomial states for fixed i = 10 as a function of
the integer variable M. -

Entropy

Fig. 7. Entropic uncertainties (crosses) for negative binomial states for fixed & = 10 as a
function of the integer variable w. The phase entropy is minimized at w = 2. Also shown
for comparison are the corresponding entropies for a coherent state of the same mean photon
number (dotted lines A, B, C)

any given state |f) where

R, = l\. P(8)1n P(8)dd, (20)
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0.05
0.045
0.04

0.035

Phasa vartance
(=]
2
T

Cohaerent state

Rv = -3 PP, (21)

n=0

The only physical states (ie. states with finite moments of the photon number [5)
to satisfy the cquality in (19) arc the number states for which Ry = 0 and R, =
In(27). All other physical states give an entropic sum Ry + Ry which is greater than
In(27). In particular, the entropic sum for the coherent states Jay with @ = laf> > 1is
approximately In(er) [23,-25]. This is an example of a more general result, as follows. If
the Fock state cocfficients (n]f) of a given state |f) change relatively “smoothly” with
increasing n such that (i) the sum in

oG

1) = 2m)"1 3" oxp(—ind) (n| f)

n=0
can be approximaged reasonably well by an integral, i.c.,

61f) ~ f(9) = (\Wﬂ xp(—iz6) f(z)dz (32)

and (ii) Ra can be approximated rcasonably well with the sum in (21) replaced by an
integral, i.c.,

v~ [Tl P ) P (23)

S0
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where f(z) € I2iga suitable function of the continuous real variable 2 with the property
that f(n) x (n| f) for non-negative integer n, then using the fact that the sum of the
entropies associated with | f ()1 and |£(z)|? is bounded below according to [20]

- \ FO)2 In | 7(6) 2d8 - \ F@F I [£(@)Pde > In(en) (24)

we find
Ry + Ry R In(en). (25)

The right-hand side of (25) is, in fact, the lower bound for the position-momentum
entropic uncertainty relation [20); its value of In(en) is significantly larger than the
lower bound In(27) in (19). Thus (25) gives a more restrictive lower bound for states
for which the approximations in (22) and (23) are valid.

For the particular case of an intense coherent state |} a suitable function flz)is
given by the Gaussian f(z) = 2ma)-1/1 exp{~(z — 7)?/4n + izg] where [a)2 = 7 > 1
and ¢ = arg(a). This function f(z) and its Fourier transform f () satisfy the equality
in (24) which again shows that intense coherent states give the approximate equality in
(25). #

Both bounds in (19) and (25) will be important in our analysis below. We shall
refer to them as the discrete (In(27)) and the continuous (In{er)) bounds since they are

associated with discrete and continuous distributions, respectively.
Binomial states

The simplest, nontrivial binomial state [p, M) occurs for M =1 in which case it is
a superposition of just two Fock states:

o M=1)=,/1 = pl0) + /p|1). (26)

The number and phase entropies for this two-state superposition have already been
calculated by Rojas Gonzales, et al. [25]. In particular, the entropic sum R, + Ry
was found to rise smoothly from from the discrete bound of In(27) ~ 1.84 for p=0to
a maximum of In(87/e) a 2.22 for an equally-weighted superposition at p = 1/2 and
back to In(2x) at p = 1. Clearly the increase in number entropy exceeds the decrease
in phase entropy as the state Ip, M =1) changes from a single Fock state (p = 0) to an
equal-weighted superposition of two Fock states (p =1/ 2).

Similar behaviour is also evident in Figs. 4 (a) and 4 (b) where we have plotted
the entropies s, By and their sum (solid curves) for the binomial states |p, AT with
M =10 and M = 30 as a function of the mean photon number 7 = pA. The curves
I'epresenting the entropic sum Ry + Ry rise rapidly from the discrete limit of In(27) to
maxima of approximately 2.35 (M = 10) and 2.37 (M = 30) at 7 =~ 1. In this region
of low 7 the binomial states comprise-of a superposition of just a fow Fock states. For
example, the first fow Fock state coefficients (np, M) of the binomial state with p = (.1
and M = 10 (i.c. 7 = 1) are 0.59, 0.62, 0.44, 0.24 and 0.11 for n = 0,1.2,3 and 4
respectively. The rapid rise in Ry + Ry between i = () and 72 &~ 1 can he attributed,
therefore, to the increase in Ry exceeding the docrease in Ry as the binomial state
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changes from being a single Fock state (A =0)toa superposition of just a fow Fock
states (71 & 1). This behaviour is also reminiscent of weak coherent states as found by
Rojas Gonzélez et. al. [25]). In fact binomial states |p, M) are closely approximated
by coherent states of the same mean photon number 7% cven for finite Af provided
P =7n/M « 1. This is verified in Figs. 4 (a), (b) which show that the entropics R,
Ry for the binomial state (solid curves) follow closely the corresponding entropies of 4
coherent state (dashed curves) of the same intensity for % up to about 1.

As the value of 7 increases the entropic sum Ry + Ry tends towards the continuous
bound of In{en). This approach to the continuous bound is readily explained in recalling
the De Moivre-Laplace approximation: for p ~ 1 /2and A > 10 the binomial coefficients
are approximated rcasonably well by a Gaussian as follows, '

M!
nl(n — M)!

(1 — 33::.“« (2rAn?)—1/2 exp[—(n — mvm\m.\v:J (27)

where An? = p(1 - /M) and 71 = pM. Using this approximation for the number mﬁm%

.ncommsc:?, of a binomial state and then approximating sums over n by appropriate
ntegrals over n in the calculations of Ry and Ry yields

1 0 4% 3
Ry =~ 3 In(2reAn?) ~ R$oR 4 WEC —-a/M) . . (28)

1 ._ 1 _ ‘
R, ~ 5 _z?.m\mbzu.v &y m\a,wrzﬂw In(l —a/A) (29)

where RP" ~ L ln(2nen) and R§" o 3 In(me/27) are the corresponding entropies of a
coherent state of the same intensity [25]. The validity of these results is illustrated in
Fig. 4 (b) where the right-hand sides of (28) and (29) are plotted as dash-dotted curves.
From (28) and (29) we find that while the entropies Ry, Ry for binomial states differ
significantly from the corresponding coherent state values for & ~ M /2, the entropic
sum Ry + Ry is approximately the same as that of the coherent statos of the same
mtensity. R Tt L . RS

‘There is a reflection Symmetry in the entropic uncertaintics for the binomial states
about the point 7 = M/2 (ie., for p = 1/2) due to the symmetric naturc of the Fock
state coefficients in |p, A7 ) on interchanging p with 1— p- This symmetry can be seen in
the solid curves in F igs. 4 (a),(b). The point of reflection, p = 1 /2, is the point where
the binomial state has the broadest spread in photon number and, correspondingly, the
narrowest spread in phase. The question that arises naturally here is: how sharp is the
phase at this point? To answer this we compare in F ig.6 the entropic uncertainties for
binomial states with p = 1/2 with that of coherent and Airy states as a function of the
mean photon number, Airy states are defined by

[4) =C Y Aifa™"(n 4 ) - 2.34]|n),

n=0

where Ai(z) is the Airy function [40], € = 0.86, C is a normalization constant and a is
an adjustable parameter that determines the mean photon number [33]. These states
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approximate phase optimized states which are states with the minimum phase variance
for a fixed mean photon number (33, 34]. In particular the phase variance of Airy
states is proportional to 1/72.in contrast to 1/f for coherent states. Fig. 5 (b) shows
that binomial states are closer to minimum entropic uncertainty states compared to the
coherent and Airy states. However, Fig. 5.(a) shows that both Airy and coherent states
have lower phase entropy for the same mean photon number.

We turn now to a sequence of binomial states similar to that represented in Figs
1(a) to 1(d). In Fig. 6 we plot the number and phase entropies and their. sum for the
binomial state |p, M ) with fixed 7 = 10 as a function of M. The curves clearly display
the transition of the number.and phase properties of the states as they interpolate
between the Fock state |10) at M = 10 to approximately the coherent state |a) with
lal = V10 for M =~ 20. The maximum in Rg + Ry at M = 11 can also be attributed
to the binomial state at this point being a superposition of a few Fock states similarly
to the corresponding maxima in Figs. 4 (a), (b).

Negative binomial states

In Fig. 7 we have plotted the.entropies Ry, Ry and their sum for the negative

binomial state |g,w) for fixed 71 = wﬂlu.l:l%va = 10 as a function of w. This sequence of
states follows the transition from a quasi-thermal state (w = 0) to an approximate
coherent state (w > 40) as depicted by the S, Np(1,6) representation in Fig. 3 (a)-(d).
The photon statistics of these states correspondingly changes from super-Poissonian to
Poissonian and we find, not unexpectedly; that the number entropy in Fig. 7 decreases
with increasing w. Complementarity suggests that the phase distribution should cor-
respondingly broaden and thus the phase entropy should increase: This is indeed the
case for w > 2. But what is perhaps surprising is that the phase entropy increases as
w approaches 0 from w = 2. The reason for this [32] can be traced to the fact’ that
although the width of the peak in the phase probability distribution P(6) reduces with
decreasing w, the peak in P(6) “sits” -on a broad plateau whose height is largest for
w = 0. Clearly there-is a non-zero value of w which gives'a lower phase éntropy than
that of both coherent states and quasi-thermal states of the same intensity. For #i = 10
the optimum value of w is 2. We have found by numerical analysis that the optimum
valué of w depends on the value of 7. For example w = 2 gives the minimum phase
entropy for values of # from 6.1 to 36.4, whereas w = 3 gives the minimum for 7 from
3.8 t0 6.1. 5

It is interesting to compare the behaviour of the phase entropy with that of the
phase variance found by Gantsog et. al. [32] recently. In F ig. 8 we have plotted the
phase variance [5, 10] R

(Ag%) = (¢?) — (9)? (30)

where

(9") = \: " 6" P(6)dd (31)

T
of the same sequence of negative binomial states as in F ig. 7. Also shown in this figure
are the phase variance of a coherent and Airy state of the same intensity (dotted lines).
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We immediately sce that the phase variance is, for the most part, less than that of g
oormmm:ﬁ state and, in fact, approaches that of an Alry state at w = 6, Morcover, the
point where the phase variance is minimized (w = 6) differs markedly from the v.o:;
,iz.zd the phase entropy is minimized (w = 2). This difference can be explained b
:oﬁ.:ym that entropy depends primarily on the “height” of 3 distribution wheregs ﬂrw
variance depends on the “distance” from the mean with the net result being that the
phase variance is more sensitive to the rising plateau in P(8) as w approaches 0 thap
the phase entropy.

. Finally we compare the number and phase entropies of the negative binomiaj mnma.m,m
with that of the other states considered in this paper. The solid curves in Fig. 5 (a) (b)
are the entropies Ry, Ry and their sum for the negative binomia] state |g, w) for S,Enr
the value of w is chosen to minimize the phase entropy. The m:%ogm:n,vom:a here is
that the phase entropy of negative binomisa] States is lower than that of the all other
mmmnmm considered including the Airy states. This clearly shows that while Airy states
8ive approximately the minimum phase variance, they do not give the minimum phase
entropy for a given intensity. What states do give minimum phase entropy remains an
open question which we are currently Eémﬂmma:m.

5. Discussion

<<.m have examined the number-phase complementarity displayed by binomia] and
negative binomial states, Ip, M) and lg, w), as they interpolate between Fock and coher-
ent states and coherent and quasi-thermal states, respectively. We illustrated the EE.Q
of ix.w number-phase Wigner function Sne(n,8) to give a direct graphical representation
o.m .Q:m complementarity. We highlighted the differences between Wigner'’s quasiproba-
bility function W(z,p) and Snp(n,8). In particular, while Wigner’s quasiprobability
function W(z,p) is very useful for representing the quantum nature of position and
momentum it does not give, in contradistinction to Snp(n,8), a direct representation
of photon number and phase, since €.g., the marginals of W{z,p) are not the HE,Evmm
and phase distributions, . This shows the advantages of using Sy p(n, ) for studies in
which the number and phase properties of states are of interest. u

and phase entropies for binomial states. We found that the photon number and phase

entropy of a binomial state is greater than that of the corresponding coherent state.
For negative binomial states we €xamined the values of w that minimize the phase
entropy and found that for the range of 7 values studied the optimum values of w
were finite and nonzero, That is, the optimum states are intermediate botween quasi-
mrcwﬁm_ states (w = 0) and coherent states (w — 00). We also found that the phasce
variance of negative binomia] states with 72 = 1() closely approaches (from above) that
of an Airy state of the same intensity.  This extends recent work by Gantsog et al.
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[32]. The important point here is that Airy states give approximately the least phase
variance for a given f [33, 34] and thus it indicates that negative binomial states can
have extremely low phase uncertainty. Indeed, we found that negative binomial states
give a lower phase entropy-than that of an Airy state of the same intensity. This last
result underscores the importance of solving the yet-unsolved problem of finding the set
of states that give the minimum phase entropy for a given intensity.

In conclusion, we have used the number-phase Wigner function and the number-
phase entropic uncertainty relation to gain further insight into the nature of the photon

number and phase properties of binomial and negative binomial states.
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