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COHERENT STATES OF THE PSEUDOHARMONICAL OSCILLATOR

Dusan Popov
University ”Politehnica” of Timisoara, Department of Physics, Piata Horatiu No. 1,
1900 Timisoara, ROMANIA

Received 2 June 1997, accepted 15 December 1997

For the pseudoharmonical oscillator we have built the creation and annihilation
operators and the corresponding coherent states. After the deduction of the den-
sity operator expression in coherent-state representation in two ways (by their
definition and by solving the Bloch equation), we have calculated the expected
values of some characteristical physical observables.

~1. Introduction

Although the molecular vibrations are anharmonical, in most cases the harmonic po-
tential model is being used, due to its mathematical advantadges. But, an anharmonic
potential which permits, also, an exact mathematical treatement is the so-called ” pseu-
doharmonical potential”. This potential is pointed out still in ref. [1], but just recently
there has reappeared an intcrest for it 121, {31, [4].

The effective potential of the pseudoharmonical oscillator (PHO) is:
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where rg is the equilibrium distance between the nuclei. As it admits the exact ana-
lytical solution of the Schrédinger equation, we consider the PHO , in a certain sense,
an intermediate potential between the harmonic oscillator (HO) potential (an ideal
potential) and the anharmonic potentials (such as the Morse potential, the more "real-
istic” potential). A comparative analysis of the three-dimensional harmonic potential
(HO-3D) and the PHO is made in ref. [3]. .

Using the technics of Molski [5] (for the Morse potential), we can rewrite the PHO
ceffective potential as:

Eﬁtm . % ﬂ. u 3«8& . .
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where the changed cquilibrium distance is:
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and the new appearing rotational Parameter a is defined ag follows:

1
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] The o.vnmm:ma Bmc._nm (2) indicate that as a consequence of the action of centrifugal
orce, which operates in all systems with rotational degrees of freedom, the equilibrium

m_mgznmmzomommmm To = 1y, that is, the equilibrium configuration changes [5]. Also,
there appears the effective rotational energy: :

2
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which leads to the modification of the energy eigenvalues m_Mw. of the PHO,

On these i i Sdi : . .
wS(r) is nosﬁamzz_og, the morwoa:_mon €quation for the reduced radial function

; 2
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So, the rotational case (J #0) is implicitly reduced to the non-rotationg) (J=0)

The radia] eigenfunctions and eigenvalues have been calculated in ref.[2] and we
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where we have used the notation:
mw %
B={({_X)*
(%) g

. . , ;
Here ﬁ (z) is m.EE, S gamma function and L3 (z) - generalized Laguerre’s polynomial.
Hrw aim of this paper is to construct the coherent states (CS) of the me and to

determine the expected values of some physical quantities by using the CS, This will be

done by Qc&:n:_m the expression of the density operator 9 .? the CS-re

?«w ways: by their definition and by solving the Bloch cquation for a ¢

which obeys the quantum canonical distribution. !

presentation in
uantum system

Coherent states of the pscudoharmonical oscillator 3

2. Lowering and raising operators

Inref. [6] it is shown that a shape invariant potential Hamiltonian may be factorized
until an aditive constant as follows:

2
HY = 5=+ Vi) = oo, + By, (19

where the operators (non Hermitian) are of the following kind:

ay =ia1p - bW, (11)

af = ~ta p — bW, (12)

The constants a; and b; must be determined, while the operator W is connected
with the potential «O@ ) as follows [6):

- ; h oW
(p) 72
«\ku Aﬂ.v = hwb, LW B s yl@ﬂ + E;. Aw‘wv
In the case of PHO (1), after ordinary calculations, we obtain the following expres-
sions:

1. 11 N1 119
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t=_lp 11 )iy Lt1o 1
aj wmw‘_.ww AQ+mv~.+wwmm¢.“ (15)
2
mouwmaiv-sw 7. (16)

We will demonstrate that the operators a; and a¥, which act as lowering and raising
operators on the vibrational quantum number v of the reduced radial cigenfunction
ugy (), are just the creation and annihilation operators of the vibrational quanta.

Using eq. (7) it is €asy to demonstrate that the equations bellow are valid:

ay uy (1) = Voultl(r), (17)
aj ugti(r) = Vous(r). (18)

In the deduction of these cquations we have using the following cquations, involving
the generalized Laguerre polynomials [7]:

MEE = Ly (19)

dr? v
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oLyt (2) = wLl(a) - (a+1-z)L8t (). . (20)

After the clementary calculations, from ¢q. (17) and (18) we obtain:

+ o
ayasug(r) = vul (r) (21)
and this equation shows that the operator
.\< = a.wa J (22)
18 just the number-particle Operator in the vibrationa] state with the fixed rotational
quantum number J, i.c. [v,a >. On the other hand, egs. (17) and (18) show that
nrw OUonmmww @J acts so that it decreases the vibrational quantum number v with the
unity and increases the rotational parameter o with the unity, while the operator aw
increases the vibrational quantum number v with the unity and decreases the rotational
parameter o with the unity. i .

5@5 egs. (17), (18) and (21) we obtain that these operators satisfy the usual
¢anonical algebra: )

+1
FTQ.LIH. (23)
which was to expect.
In this manner we have constructed the annihilation and creation operators for the

vibrational states of the PHO, with the fixed rotational quantum number J (which, in
other words, play the role of 4 barameter).

3. Construction of the coherent states

i The EO-M.WU can be considered as a limit oscillator of the PHO. This limit is called
the harmonic limit” and for a certain physical observable 4 is defined as [4]

.;=5 AP = lim 4®) — 40

o %%A A7, (24)
le,\.*.w

EI.VMSO

where the index (p) reffers to the characteristical quantitics of the PHO, while the index
(0) %cmoam to the same quantitics of the HO-3D (which has the frequency wy)
hen it is to be expected that the coherent states (CS) of i i
A ﬁr 0y Mvm arn o a1 wr
the CS of tho mesX (CS) ¢ PHO are similar with
Let be 2 the complex variable involved in CS. Then, we define the CS as:

aylz,J >= 2z, J >, (25)

where the Q:m.unE: number J (or, cquivalently, a) plays the role of an integer paramotor.
By expanding the CS in terms of the basis set vectors v, J >= Jv,a(J) >= v, >:

o
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o
_N“,\VHMAFQ_NVKV_FQV‘ (26)
v=0
we obtain:
ajlze,J >=3" <v,alz,d > ayfv,a > . (27)

v

For the basis vectors [v,a >, eq. (17) is:

ajlv,a>=\olv-la+1> . (28)
Using eqs. (26) and (27) and the orthogonality relation of the ecigenvectors, we
obtain:
AFQF&VH% <v-la+1z,J > . | (29)
This reccurence relation leads to:

2"

(v)z
From eq. (26) and using the property that the CS are overcomplete but non- or-
thogonal:

<wv,alz,J >= <0,a+1z,J> . (30)

1, ,. 1 .
<z,J|z,J>=exp AN;N - m_,.\m_lv - m_iwv , (31)
it is easy to demonstrate that:
1,
<0,a+1z,J >= exp Alm_u_lv (32)
and so, finally, the CS for PHO are-
1 o\ 2
: = —-= > .
lz,J > GGA w_w_ chnw (w03 |v,a (33)

We obscrve that, formally, the CS for the PHO have the same form as the CS for the
HO-3D, with the remark that, for cach CS, the complex variable z is connected to the
quantum rotational number J as g, parameter. In other words, it exist an one-to-one
correspondence between the coherent states [z,J > and points in the complex z plane:
lz,J >= 2(J), but, due to the notation simplification rcasons, we didn’t write the
complex variable z(J), but only z.

The expected value of a physical observable 4, which characterizes the PHO, with
respect to the CS |z, J > is, then:

‘

* v

T <, aldlv,a >, (34)
(o'l }

Z z

<z J[A|z, J > = exp (—1=?) M

0!
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which shows that iy the diagonal clements in CS-representation contribute all elements
(diagonal and non-diagonal) in [va >-representation.

If the operator 4 is just the normalized density operator of a quantum gas of the
pscudoharmonical oscillators, in thermodynamical cquilibrium with the reservoir (ther-

mostat) at temperature T and into the rotational state with the quantum number J,
le.:

H oG
M&E = % men Almm,hwvv lv,a >< o, af, (35)
J =0

which s diagonal with respect to the v, a >-basis, then ¢q. (34) becomes:

<z JpP2, > = qu. exp (—|z[?) M _vAM_I_.V exp AI\Q@@V . (36)
J v=0 i

Using eq. (8), we immediately obtain:

2
IS = e [0 B e (-an)].
J

(37)
The quantity qu ) is called the vibrational Statistical sum for a certain rotational
state pointed out by J. Its expression is obtained as follows:

e <}
20 =1r0p = [T 9 1 (38)
0
where the radia] density matrix for the PHO was deduced in ref. [4]:
) 2 mw
(p) / mw- , 1 3h
r, 3 = < Sl
P Aw. f) = exp AQ 4 ﬁcv m_zrhw,e (ref)z
meoo, o, huw S
X exp N‘lﬁ ?. + ' v nOebhqg Ly Sinh \qu:. Awwv

We use the following integral involving the modified Bessel functions | {7):
00
\ dz exp (—azx)l, (bx) = j (40)
0 (a2 — p2)? T+3ml%v&
and finally, we obtain the expression for the statistical sum:
2, hw 1
zm _ nw- , — g — 41
d P {5 g o f g Mmm:r\w% (41)

On the other hand, it is demonstrated that the diagonal CS-representation of the
density operator (called the Q_m.:?:rm:amamr.«:_ representation) is [8]:

Cohcrent states of the pseudoharmonical oscillator B 7
&2
P = 2l 2\ I >< 2 ]|, (42)
pi = | ——=p) (@)

so that, we have:

°2 p P * *
<z,JpPz,J > = mﬂmbw:?g exp [~|2f? — |22 + 2*2' + 24’ ] (43)

We shall determine, in a simple manner, the diagonal elements bwu :NV of the density
operator (42) for the PHO. Evidently, the r.h.s. of the egs. (37) and Qwv E:mﬁ. be
equal. We suppose that the function m.wn ;Nv must be a gaussian &m.nlccao: m.::n:.oz.
This , because the gaussian distribution appears wheneaver there exist a lot of identical

sources which emit independently one of another [9]:

PP = Crexp (=sl2'?), (44)

where Cy is the normalization constant and s s a positive constant, which must be
determined. - ..
We consider that the complex variable 2’ is:

!

z2' = rexp (ip) (45)
and so, the integral from €q.(43) becomes:

2 &ﬁ

o0 -
Ir) — \ drrexp[-(s+1) %] — exp(acosy + bsiny), (46)
0

0
where the constants are:

a = 2r Re z; b=2rImz. (47)

The integral with respect to ¢ is of the kind [7]:

27 ]
\ do nOm@oom.ﬁ+nmm:€+:€vmu€?oom.€+em_:€v =
0

(A+4B)% I, (VT=iD) + (4 - iB)} I, (VT ¥iD)

= = , (48)
[0+ @+’
where the following notations have been used:
\AH@MI%J:%IQMW B =2 (ab+pq) ;
QHQN+.%IE.NIQN“ D =2 (ap+bg) . (49)

Inourcasen =p=g4 - 0:B=D=0;,C = 4)z|%r? and finally, we obtain:
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I'r9) — o \o drr exp Hl (s +1) ﬁJNc (2lz|r) , (50)

T, re N.Z are ﬁTO wﬁwvmmm m.CH—Oﬂu s Om. the sec i
OhOEQ W:MQ. w " passing 3 Bt ) (e}
winere ] “ O : ¥ P m to mTﬁ\ w@UVAL M.EBOE 1S

Io(z) = Jy(iz), (51)
we are dealing with the integral of the following kind [7]:
\8&&&5& exp Alamamv,\ (bz) = o F

After these calculations btai Thecli e .
and (4) » We obtain the checking CXpression, via egs. (37), (41), (43)

EWVANQ = [exp awzcv = 1] exp [-|2[? (exp (Bhw) — 1)] (53)

and, then, the density operator 5P i i
hen, Py of the PHO can bo written in the diag, -
Sentation in respect to the CS: e

P d2z'
PP = [exp (Bhw) — 1] - exp [=12]? (exp (Bhw) —1)] 2", J >< 2, J. (54)

USS.o S%mn Mvmmmm ..wﬁ_wmm _ﬁEm expression has the same form as the corresponding ex-
ssion for the - 8], which was to be expe 5
pected, as a consequenc
form of corresponding CS. “ uence of the same

4. The Bloch equation

0
I.@IQE.A\EV ANJNJQV — m.“ﬁv AN.«

o
P Oz*

v PP (=", ) (55)

. (p) /_ = *
lim p7 (2%, 2" 8) = exp(2*2'), (56)

: (r) .
where p P’ (2% 2% 8) is an analytic: i i 3 :

; Ytical non-normalized function in vari; 5 2! ; #
defined as follows: vatiables 2" and -,

)« s 7 :
Pl (22 8) =< N».N_b.ﬂ\:wnk > exp AW_N_N + W_N\_uv : (57)

DC &) e e 4 .
(109 sM Nc the A\L_:CES_ algebra of the operators a; and o (23), in the Hamiltonian
'C MUSt replace Y speiepnEps . -
ust replace the creation operagor @.wr by 2* and the annihilation operator a,
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by % (this fact is valid only when the Hamiltonian is built from the normal-ordered

operators) {10].
We try to find the solution of eq. (55) as an exponential:

h.mi (2*,2';8) = exp ﬁﬂmi ANJ_N‘ME_ , (58)

which leads to the solving of a new equation of the Hamilton-Jakobi kind from the
analytical mechanics:

P . %QAE
|Mm&s (2*,2;8) = HP | - i~ (59)
lim G'» (2%,258) = z°2'. (60)

3—0

For the PHO rotational Hamiltonian (10) (with J as a parameter 1, eq. (59) be-

comes:
2
mw” .
y e, (61)

a (p) w0
—=GP = hw
a8 Oz*
The solution is a sum of the general solution of the homogeneous equation (that is
an equation with the separable variables) and a particular solution (like a free term).

It is easy to prove that the solution is:

h
QW,+%3+:|

mw?
4

Qw; (2%, 2" 8) = lmmlw& (a+1)+ 5 TS+ 2*2' exp (—fhw) . (62)

The non-diagonal elements of bwu Vin CS-representation are obtained from eq. (57):

h 2. 1.5 1 ..
< z, ,\_b.as_\i\ >= exp ﬁlu-wls (a+1) +QSM 72— M_NT - M_N\_N + 2% exp Almgvg .
(63)
‘We must remark here that this density operator , which satisfies the Bloch equation,

is 2 non-normalized operator. By considering egs. (37) and (41), we obtain the same
operator. So, we have obtained the density operator expression into two alternative

manners.

5. A short application

As an example of using the creation and annihilation operators (17) and (18) we
present a short application by making the calculation first of the expected value of
the ordered products Aawv.snw and, later, of the internal cnergy of a PHO quantum
gas, UP). Let us consider the system of N identical pseudoharmonical oscillators (the
quantum gas), without interactions, in thermodynamical cquilibrium at temperature 7'
with the reservoir, which is characterized by the density operator [4]:
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iV = = S e A:m&wvv [vJM >< vag] (64)

vJM

Wﬂ%@ due to the decoupling of the vibrational and rotational degrees of freedom of the
_ A.mmov eq. A.mvv, because of the absence of interaction between two motions, byt
only with a certain Parametrical influence, we can write: M

loJM > = lw>|I>|M> . (65)
Due to the As ~-degeneration (where A §
. th 5
tion of the anguylar momentum), we cgm.m:—“m " AR imberif the TR projec:
o~ 1 S @r+1) 2t @
J 7 +1) Z; Py, (66)
J

where p(? ig given by eq. (35 i i
b 3%3&85 ot _% %M (35). Then, the expected value of a certain physical observable

<A>=Tr iy _ 1
>=Trp®yg = 7 MBTW:&EA;V& (67)
J

Mwnu s,r_as In the operator A the normally ordered creation and annihilation operators
€ 1nvolved, then the expected value < 4 > with respect to the CS is:
d?z
<A>;=f 22 g
1= [ ZhE a2, (68)

i.e. the expected value is formali ituti
y calculated by mccmsncizm the operators q¥ .
(from the operator 4) with their eigenvalues z*, respectively, 2. ’ 3 ey

The expected va]
are p values of the normg) ordered products ASOSE;& » using eq. (53),

<(af)"a? >= w) — Az :
A .\v ¥ [exp AQNEV 1] / ﬂ,mﬁu M.I_N_N (exp AQmEV — Hﬁ (z%)™ o | (69)
Using eq. (45), the complex integral splits into the two real integrals:

<(af)"a? > =
2r & 00
= fa b = ] !ﬁ 3 _ m+-n 2
[exp (8 w) — 1] exp E: Svﬁ\o drr™mrntl exp Tﬁ- (exp (Bhw) — E,

0 T
which, after two simple ES@E&CE, leads to: "

_— [(mtn
< AD.\+V ay >= ﬁ &..:l:ﬁc A.N“:
[exp (Bhw) — )= 7m0
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Form=n= 1, we obtain:

1
exp(Bhw) —1°

This results is useful for calculating the internal energy of a PHO gas of N oscillators:

< Q..w@.\ b = Aﬂwv

1

UP = N<H® > = NTrpP g =N

Y @I+1)ZP <HP 5, . (73)
J

The function m.a\. . (2%, z) which corresponds to the Hamiltonian (10} is:

9
HP (2°,2) = hwlof? + m%E+ -2 ()

By substituting this equation in eq. (68) and after integrations, we obtain the
expression of the internal energy of the PHO gas [4]: :

5
) = _ N5 P T !mmllmw.~ 75
uv = _N 1 ﬁo+2w Tcgmm m@Asﬂov R (75)
where we have used the notations:
oc
Ty = M (2J + 1) exp (~ya), (76)
J=0
hw
y= lel. (77)
The first and last terms of eq.(75) may be considered as the contribution of the

anharmonicity.
From this expression, using the harmonic limit defined by eq. (24), we obtain the
expression of the internal energy for the HO-3D [4]:

imU® = =3y - =3N |22 ; 8
lim U U= 3N =2 coth = M:,; = +§E§§TL, (78)

which demonstrate the correctness of the expression (75).
In a similar way we can obtain the expressions of the other physical observables of
the PHO and, at the harmonic limit, the corresponding expressions of the HO-3D.
This illustrates the utility and the simplicity of the using of CS-representation.

6. Conclusions

The pscudoharmonical potential is a more realistic potential in comparation with the
harmonic potential. Due to the mathematical facilitios in the approach of the PHO (it
admits an exact solution of the Schrédinger equation and the exact caleulations of the
expected values), the PHO is useful for the examination of the molecular vibrations,
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We are building the creation and aunihilation opcrators for the PHO and, con-
sequently, the colicrent states, which, to gur r:cs.rimca have not appeared in the
literature to thig point. ;

Also, we are building the density operator in Om-~.cb~,cmc:§.20: for the PHO, in two
ways, directly by their definition -and by solving the Bloch cquation. This second way
Seems to be more efficient and elegant.

As we can sce, the use of the Om-«ﬁ:.%e:nmzc: is more cfficient rather than other
representations in the cage of the quantum gas of the pseudoharmonica) oscillators in
thermodynamica) cquilibrium with (he reservoir [4),

In the short application in Sec. 5, we are showing how one can use. the CS-
representation E.n&nimﬁ:m the expected values of some physical observables of the
PHO. The results lead, a the harmonic limit, to the corresponding results for the
HO-3D, which represent a good test of the validity of ours obtained resylts.

\wowzoihmmmsmzom The author gratefully acknowledges Professor Oliviy GHERM AN
for discussions and for Cncouraging him tg carry out rescarches in thig field.
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