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In disk-like resonators where the size in one direction is small in comparison to the
sizes in the two perpendicular directions, the range of low frequencies corresponds
to a two-dimensional mode structure with a two-dimensional mode density that is
explicitly discussed for a rectangular resonator. This leads to a two-dimensional
black-body radiation law if the temperature correlated with resonator size are
small enough to occupy only these modes according to Bose-Einstein statistics
and if there is a lot of two-dimensional modes within the new radiation contour
to justify the two-dimensional continuum approximation. We discuss the condi-
tions for this case and the corresponding laws for energy and entropy and for the
radiation pressure which is a negative pressure onto the plates. The Ommmgmﬂ ef-
fect which remains for the absolute temperature equal to zero and which has also
a negative value is the residual effect from the difference of the zero-point ener-
gies of the resonator configuration in comparison to the free space and is shortly
discussed.

1. Introduction

At the last instant of the last century (or the beginning of our century?) a new
constant h was introduced into physics by Planck [1-3] to establish a new law for the
thermal equilibrium radiation of a black body which is in good agreement with the
observation and solved at once all difficulties with the known radiation laws at that
time. This new constant rang in the age of quantum physics and found its place in the
rigorous quantum theory which will accompany the physicists forever. A new deriva-
tion of Planck’s formula by introduction of spontaneous and stimulated emission was
given by Einstein [4,5]. Plancks radiation law uses the fundamental assumption that the
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statistics of the basic harmonic oscillators of the radiation field with the frequency v i
obtained as the statistics of the oscillator with discrete equally spaced energies w:umnm .
of hv. Another less fundamental substitution makes the radiation law E%v.m:amﬁ _Mmm
the resonator form and makes it to a universal law depending only on the 8:59.3_5.0
as a parameter and some universal constants and makes quantities as the total ener
proportional to the resonator volume. This is the transition from the discrete %mf.:umsvH
tion of the frequencies of the resonator modes to a continuous distribution. The last
m,mmﬁdtaos is justified under “usual” conditions of not too low temperatures and “three-
dimensional” resonators with not too large differences of the sizes in different directions
Under extreme deviations of the resonator form from a body with approximately mnc&
sizes in all directions one has deviations of the black-body radiation law. We treat such
a case where the resonator form is disk-like with large sizes in two transversal directions
in comparison to the size in one longitudinal direction. Then one has a range of low mnm.|
quencies with a mode density corresponding to a two-dimensional mode structure and
if the temperature is low enough to excite essentially only these oscillators then one has
a “two-dimensional” black-body radiation. We discuss the conditions under which this
has to be expected. For zero absolute temperature there remains the Casimir effect {e.g
[6-12]) resulting from the changes of the zero-point energy of the resonator in nosgvm,z..,
son to the free space. This effect can be only treated by the differences of the somehow
truncated (infinite) zero-point energies. The thermal effects of two-dimensional mode
structures or of other deviations from the “universal” three-dimensional mode structure
can be ad®tively separated from the Casimir effect in a way that it makes not necessary
to include the zero-point energy from the beginning into our treatment.

2. Gibbs statistics of one oscillator mode

Equilibrium thermodynamics is based on statistical theory and describes large sys-
tems by mean values of additive quantities such as energy and entropy in dependence
on the temperature and proportional to the volume. The theory of fluctuations of these
quantities is already the next step beyond the equilibrium thermodynamics. There-
fore, equilibrium thermodynamics does not need the knowledge of the exact state of
a macroscopic system and connects only a few fixed parameters which can be realized
by ensembles of systems with microscopically different complete sets of parameters. In
case of the free radiation field of the harmonic oscillators of a resonator with ideally
reflecting walls the necessary information consists in the frequencies of the resonator
modes its degeneracies and the mean photon numbers in each mode depending on the
temperature.

The radiation oscillators do not interact directly with each other but interact only
through the walls by absorption and emission processes. This causes that the mean value
of the total number of photons in the resonator 1s not a given fixed guantity which has
to be distributed between the different modes but depends on the temperature. The
maximally available information for one oscillator i

contained in the density operator
brium with temperature 77 (h = h/(2x). &

for this oscillator which in thermal equ
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Boltzmann constant) is given by

o0 i
hw e* hw

1 = Tw _ i -
0= N.\Mmuﬁu A.\ﬁq _§VAST NE = Mm.ﬂﬁ .Izm ﬂv r= E :v

n=0

This is, in principle, Gibbs statistics (extended to its quantum-mechanical version) of
the occupation of the energy levels of the harmonic oscillators being subsystems of a
Jarge system in thermal equilibrium and characterized by maximum of entropy (e.g.,
[13]). As the entropy with the property of additivity for systems consisting of indepen-
dent subsystems has to be taken the von Neumann entropy which is the expectation
value of S = ~logp, ie. S = —(eloge), ({...) trace). As the “physical” entropy 5
compatible with statistical mechanics has to be taken S = —k(glog ¢), (k Boltzmann
constant). The quantity Z,, is the statistical sum for the oscillator mode.

For the mean number of photons N,, of an arbitrary mode with frequency w and 1ts

dispersion ADZE% one obtains

N.n..\...llﬂu ADZEVM = Awa _ :m HHA~+|>~|V . ANV

N, =
The values N,, correspond to Bose-Einstein statistics with chemical potential equal to
zero according to not fixed total number of photons. Orthogonal modes with the same
frequency w have to be taken into account according to the degree of degeneracy of the
frequency. Furthermore, one finds for the entropy and for the entropy fluctuations of
one oscillator mode of frequency w ’

o _ 1 &7 .
v — k £ w 1 e = R — N
S log {1+ N,) + N, log +,\<E k< log o + =
a— 1\\" ., z%
(ASL)? = k*N, (14 N,) {log { 1+ = =k . (3)
N. @1’

B = holg = T2, BE) = () AN = (T ———g.  (4)
e’ —1 (e —1)°
One finds
0S5, 1 hw
== F= (5)
0E, T o LY

independent of the mode and therefore of the frequency as it follows for the subsystems
of oscillators from the maximum of entropy in the whole resonator in thermal equi-
librium. If we look to E. or N, as the primarily given quantity for one mode then,
under supposition of thermal equilibrium, (5) can be considered as the definition of the

temperature.
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3. Discrete distributions of mode frequencies contrary to universality of
continuum approximation

An ideal resonator can be defined as a resonator with walls for which the permittivit,
.Umoo:gmw infinite for all frequencies (often called super-conducting medium). Howev d
it is clear that this condition can be satisfied due to the unavoidable &mvmnmm.oz at'le mmﬁ_
only for discrete frequencies (frequency zero in case of superconductors). Then the om_m
boundary condition for such ideal resonators is that the tangential components of w%
m_mo?m.o field have to vanish at the walls. There are only a few resonator noummcwmio%m
even in the ideal case of the boundary conditions, for which the possible Smosmﬁﬁw
modes can be exactly calculated in an easy way. This is first of all the rectangular
resonator with arbitrary side lengths. Furthermore, the circular-cylindrical resonator
and the spherical resonator are relatively easy to treat. The spherical resonator has
no parameters for a transition to disk-like resonators with one small size in noa:vg..-
ison to ﬁ.éo other sizes but it can serve as a good illustration for the universality of
the mozﬁ:EOCm approximation of the mode density in the three-dimensional case. We
consider here only in short form the rectangular resonator and make the S.m:mwims to
the two-dimensional case.

We mroo% the coordinates (z,y, z) of the rectangular resonator in direction of the
edges with the lengths (¢, ay, a;) ordered according to a; > ay > a, in such a way that
the resonator fills the volume 0 < z < a,, 0 < y < qaq, GIA 2 < m The well-known
solution of the wave equations for the components of the electric WmE E(r,t) of the
modes inside the rectangular resonators under the ideal boundary no:%io:m,m.wm

E.(z,y,2,1) = Az coskzz sin kyy sin k,ze ™ fcc,
Ey(z,y,2,t) = Aysinkyz cos kyy sin kyze ™t 4 cc.,

E.(z,y,2,t) = A, sinkzx sinkyy cosk,z e” ™ 4 ce. . (6)

From the Maxwell equations one finds for the components of the magnetic field B{r,t)

.C . :
By(z,y,2,1) = =t (kyA, — k. Ay)sink,2 coskyy cos k,ze ' e,
< .
By(z,y,2,t) = lﬁm (kA — kg As)cos by sinkyy cos I
c .
B.(z,y,2,1) = —i= (ke Ay — kyAz) cos ky2 coskyy sink.ze™™" +ec.. (7)

The quantities (k., ky, £;) and w are connected and restricted by

T T 7
ky=ng—, ky=n,—, k,=n,— w= 24 k24

. 7 2 1.2 g L2

a.au v QDQ. z uQ.u s [ >& \:\ >n‘

gy Ty T = 0, 12, g Mgy + Ny + N0y > 1 (8)

wmz,:a this is the coupling of 8 plane monochromatic waves with the § possible combi-
:m:o:m‘ of wave <oneo._.m r = (tky, tky, £k;) which contribute by superposition to each
mode. The last restriction neyny + nyn. +n.n; > 1 1s made because in case that two
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of the three numbers (nz,ny,n;) vanish the electric and magnetic field and thus the
whole solution becomes vanishing. From the three complex amplitudes (Az, Ay, - ) are
maxirmum only two linearly independent because from VE(r,t) = 01t follows

ko Ay + kyAy + kA = 0. (9)

In case that all three wave numbers (kz, ky, k;) are nonvanishing one has 2 linearly
independent solutions and one can choose, however, in a manifold of different ways two
orthogonal waves in the sense that the energy or the Hamiltonian is the sum of two
independent contributions and does not contain crossing terms of the chosen waves.

We now consider the special case that one of the three wave numbers (kg , by, k.) 1s
equal to zero and assume for definiteness k, = 0. One finds from (9-12) that the only
remaining solution in this case corresponds to an amplitude A; as follows

MHAH“@uMq&v”O. MQAHMQVN‘“vHO, mnAH_m\.NMS”OV

E,{(z,y,z,t) = A, sin k.z sinkyy e Wt ce.,
¢ . "
B:(z,y,z,t) = I&U»emm sin ko cos kyye w4 c.c.,

By(z,y,2,1) +~.Mwabu cos kg sin F\@mlén +cec., (k;=0). (10)
w

The twofold degeneracy of the solutions in case of ky # 0,ky # 0, k. #£ 0 1s here

reduced to nondegeneracy. It is important for our further considerations that both the

Poynting vector § = (¢/(4))[E, B] and the momentum density g = (1/{4wc))[E, B]

of the field in such resonator modes possess only components in z- and y-direction but

do not possess a component in z-direction.
We now consider the mode densities in the general three-dimensional case and In

the two-dimensional case (13). First we write w in dependence on (nz,ny,n:) and
(az, ay, a.) and separate the volume V = azaya, of the resonator as follows (a; = vV i)

QpQyty; = 1. AMHV

The normalized numbers {az, oy, o) characterize the relative sizes of the rectangular
resonator. If one makes a plot of w YV /(wc) in the order of their increase and taken with
their degeneracies and count on the z-axis the number of modes up to the corresponding
frequency then one gets a monotonously increasing curve f(n) which is not very different
for different resonators and approximates for increasing total number of considered
modes to a universal function. This is shown in F ig. 1 for a spherical resonator. We see
how on the background of the universal function fi(n) remains a weak individuality of
the considered resonator form. Let us calculate this universal function fa(n)-

The differential number d®n of modes in a frequency interval dw is obtained in its
continuous approximation from
917 Vv
Mv?_ss;_ -

B Vv a
d*n = 2dng Adny Adn, = w!.u.&(;a A dky A dk. = widw. (12)
p 1

w23



346
A. Winsche

f(n)

0 125 250 410 500 750 :uco:

m.,_.m. 1. Zo:,:w:Nmm frequencies of the first 1000 modes of an ideal spherical resonat

@9 their degeneracies. The universal three-dimensional mode function fa(r) mEm_M el
with the real curve in an excellent way. On the left up to n = 410 is the mm arat o aomgvmw
the electric type and to the right of the magnetic type of modes SePAIR R

16

#(n)

0 125200 400 500 600

Fig. 2. Normalized frequencies of the first 1000 modes of an ideal rectangular resonat i

Qz = @y = N.m, o = 1/7.84 counted with their degeneracies. The z:?m_}nm_ th mrm.:m Ow.s:nr
mode function fa(n) shows significant deviations from the real curve ,”,.En_ﬁm.m- w__BAmnm_o:w_
f(n) R. ‘\..m@.mmmmsiwzw the two-dimensional mode function f2(n) drawn in ._Z_m . 9
nwnmm-hba:mjm_o:m_ scheme. The transition to a mixed two-dimensional and th 5%.525@.:5&
mode function for f(n) > 7.84 can be distinctly seen. The modes seem to b o ._Emdm_o:&
for the spherical resonator but mainly due to less degenecracies as their nozszwﬁamo_”énm_,.m:mm ®

E&Mm :.5 usual ﬁio@m degeneracy of modes was taken into account and the factor 8 was
a mam: the denominator under the transition to the volume element in the wave-vector
space because (n., ny,n.) and (kg, ky, k,) a imartly i . vale
. 5 iy y, £2) are primartly restricted to nonnegative v
My ; . 3 e values.
From this one obtains the three-dimensional mode density v3(w) and by :;m@.mﬁmo: over
w the total number n = n3(w) of modes up to a frequency w in the a::

N d*n V - }
uglr) = PR n=ny(w) = \ d'vy(w') = ——
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From this one finds by inversion of the function n = n3(w

)
e a 3 3 3 -
w=uws(n) = /u\ﬂ\m?v, fa(n) = ,\Iq_.:, /\W = (.984745. (14)

Since it goes with the third root of n one obtains for each resonator of not too “extreme”
form that the lowest 1000 modes go up to an approximate frequency w = 9.85mc/ N

We now consider disk-like resonators that corresponds for the rectangular resonator
to az > ay > a:. Since 1/a? is large compared with n2/al + .:W\nw for not too

high (ns, ny) the modes of the lowest frequencies of such a resonator are formed with
n, = 0 corresponding to k, = 0. The frequencies of these modes can be calculated by

(a2, ay) = VA(B=By))

Az=azay, B:By =1

(15)
A universal function of increase of w with the counting of the number of modes is here
obtained by normalization with the area A of the resonator transverse to z in analogy to
the explained three-dimensional case. In figures with the normalization by the volume
 the two-dimensional case forms curves with different ascents. The differential number
d?n of modes in a frequency interval dw is obtained in the two-dimensional case from
A A A

2. _ _ 1 . T A
d*n = dng Adny = Mma;a Adky = ﬂuii&;_ = wﬁmmE&E. (16)

A certain correction to d2n could be obtained if we subtract —(dny+dny) corresponding
to the nonexisting modes with n, = 0 or ny = 0. We do not take this into account at
this stage because it makes the thermodynamical calculations unnecessary complicated.
The two-dimensional mode density vo(w) and by its integration over w the total number
n = na(w) of modes up to a frequency w in the range of reality of the two-dimensional
case is obtained from (16) in the form

d*n A A

= == = = \ 5 \” x.
r(w) = do = T n = ny(w) = \a dw'vs(w') = CJ

The inversion of the function n = na{w) provides

)
we we [ 4 4
w =wsy(n) = »\M?A:V = /u\ﬂ,u\ /\MF?Y fa(n) = /\.M\:“ /mﬂ 1.12838 .

(18)
This gives the two-dimensional aniversal function VAw/(me) = JfAn/7 = fa(n) to
which all two-dimensional cases of counting of resonator modes according to their strict
increase of frequencies approximates. As an example this is shown in Fig. 2 for oy =
a, = 28,0, = 1/7.84 in the same way as in Fig. 1. We see here the deviations of the
two-dimensional mode function fa(n) from the three-dimensional mode function fa(n).
We now discuss the conditions of reality of the two-dimensional mode continuum
and calculate the thermodynamic characteristics of the radiation field in a resonator n

the three-dimensional case and in the two-¢ nensional case of disk-like resonators.
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4. Conditions of reality of the continuum approximation and of the
two-dimensional case

,H_.Nm n.o:Ss:E: approximation in thermodynamics of the radiation field means the
substitution of sums over the discrete resonator frequencies of the form >ow Nof(w)
by integrals [~ dwN,v3(w)f(w) in the three-dimensional and I &E%SAMV\NQEV in
the two-dimensional case. Herein, f(w) are given polynomial m:%nao:m Mm w for which
one has to calculate the expectation value in thermal equilibrium. With N, accordin
to (2) and with the substitution z = (hw)/(kT) the continuum w@?.oxw:%m.ioc ~ommm
to the calculation of integrals over functions "/ (e* — 1) with small values n > 1 o.ﬂ.
over functions z"e”/ (e® — Sn for the calculation of fluctuations. AH such mczloso:m
possess their only maximum in the vicinity of 2 = 1 and decrease rapidly for z > 1
say = > 10. Therefore, it is important for the reality of the continuum wvvnoxmswaom
that the resonator possesses already a lot of modes in the range z < 1. If we take

the lowest frequencies in case of resonators with comparable sizes in all directions for
z = (huw}/(kT) then this means

he = he .
H% < 1, T 0.22899- 7 K - cm = 0.719393 K - cm. (19)

O:G for small products of temperature T with resonator sizes ¥V this condition of
reality of the continuum approximation can be violated, e.g., T= 1K and ¥V = 1 cm
comes into this transition domain.

M.a case of disk-like resonators the condition for the reality of the two-dimensional
continuum approximation is

Wms. he =
k

i o A B e
775 VST T (20)

where on the right-hand side the smallest resonator frequency with n, # 0 was taken
This frequency is the approximate beginning of the range where the »,ruom-&_dm:mwo:b
mode density becomes important. For example, for a; = 0.1 cm and vVA > 10 cm
temperatures of about 1 K are necessary for the reality of the two-dimensional mode
density. The lowest resonator frequencies are in this example in the GHz-range. For
a, = 107® cm and VA > 1cm the two-dimensional thermal radiation becomes al-
ready significant for room temperatures. Therefore, this can play a role in micro- or
optoelectronics.

5. Comparison of the three-dimensional with the two-dimensional thermal
radiation

The mo‘:oiwsw two auxiliary formulas are necessary for the calculation of the ther-
modynamical functions of the radiation and of fluctuations

oo
oo

oo
™ b 1
dy ———— = drexe % —kr _ ot _ -
& . \ z"e xMMWm :.MQ,[_.::t =nl(n+1),

a k=0

Two-dimensional thermal radiation s

T z"e” 7 L ke > I
de——— = \&a&:m # MU: +1)e™ " = :_MU ——— = nl((n),
w\ (e — 1) A k=0 k=0 (k+1)
2 4
¢(2) = N_.o.l = 1.64493, ((3) =1.20206, ((4)= .m@ = 1.08232, (21)

where ((z) denotes the Riemann zeta function.

In the three-dimensional case one obtains from {4) and (13) the following radiation
law {Planck’s radiation) and total energy E (we omit the bars in the more conscquent
notation E and do not insert w*/90 for {(4)} (Fig. 3)

. VTE = 6C(4) (KT)* hw
=" d E = v, = —. 22
dE. m2(he)d e — 1 © 72 (he)d TR (22)
In the two-dimensional case one obtains from (4) and (17) (Fig. 3)
AT z? (3) (kT3 Fuw
L ik . R = e r= . 2
dBo = o ey o —1°% E=="Tgr =T (23)

The total energy is here only proportional to the third power of the temperature and
proportional to the area A of the disk-like resonator. For the total entropy S (we omit
again bars) one finds in the three-dimensional and in the two-dimensional case

mnESJu wm@vizw
=k — V, = — ] A w»
8 2 he ’ s 2\ he 4 (24)
It is interesting that the thickness a, of the disk-like resonator does not appear in the

two-dimensional case but only the area A. For the fluctuations of the total energy and
total entropy in both cases we find using (3) and (4)

9 2 4 2 . 2 . 2 (s v ’
BEE  (BS7 _ 24c(4) QIJ y, BEF_[AS)_ X©) QJ 4. (25)

T2 - k2 - w2 \he *T) " R 7 \he

The relative energy and entropy fluctuations decrease with increasing temperature and
are proportional to the reciprocal square root of the volume V or area A, respectively.

If one expresses the total energy E as a function of S and V' in the three-dimensional
case one obtains the first thermodynamic potential F(S, V). In the two-dimensional case
one can express £ as a function of S, A and a, and obtains the first thermodynamic po-
tential £(S, A, a,), where the separate dependence on 4 and a, expresses an anisotropy
in transversal and longitudinal directions of a disk-like resonator. One obtains

2 /S\'3 he ) 2r (S he
—— = E=F(5 A a)= = 1
RO Tv e oo i 3C3) A\,v A%

(26

Vs
proving that E(S,A4,a;) does not depend on a.. The (radiation) pressure P can be
obtained in the three-dimensional case by the relations {13]

Wl

Wi ro

E=E(SV)=2¢

[e <AV

4

3%1@1?@%|wp.::5¢:|ww
b= Aoﬁ\vmwm Q\:A,‘v he = = e N\Ammv,\. (27)
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Fig. 3. Comparison of the three-dimensional and the two-dimensional thermal radiation law

which are the state equations of the photon gas for adiabatic and isothermal changes
In the two-dimensional case one has to distinguish the pressure onto the _.mmo:mﬂoh,
boundaries in transversal directions P, and in longitudinal direction (z-direction) P
due to the anisotropy according to ’

0

poo L(%Y) 1 [ (s\ire _cmumt1
a: \OA )5, 3\ 3B)\k4) a, 2 (he)?a,’
1 [ OF dE
P,=—— =0, T = :
4 \8a. ) 5.4 95 ) na. B

These state equations show that in the considered idealized disk-like resonator under
conditions of the two-dimensional case there is no radiation pressure onto the basis
&&:m and the pressure from outward according to (27) tries to press these walls to the
inside. This is in agreement with the property of the momentum of the electromagnetic
field which in the two-dimensional case does not possess a component in z-direction
(see section 3). On the.other hand, the pressure onto the side walls increases with
the reciprocal value of a,. In comparison of the three-dimensional and of the two-
dimensional cases one has the relations

PV = %_ Py Aa, = PV = W {29)
The anisotropy can be also expressed by the macroscopic energy-momentum tensor of
the macroscopic body [14] which becomes in the both cases

e 0, 0, 0 e, 0, 0, 0
0, P 0, 0 0, P 0, 0 b
MJ v = . Ly — 1 ERE N _ mw 3
I3 O, O, \u. 0 1 .\JE\ — Ou 0. Nw._.u 0 3 &= v = \»Qu
0, 0, 0. P 0, 0. 0, 0 )
(30)

™ e U | -
Ihe trace TY = ¢“# 1, of the energy-momentum tensor 1s equal to 0 as it corresponds
to a general property of this tensor for the free electromagnetic field.
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The Helmholtz free energy F can be calculated either by the logarithm of the sta-
tistical sum Z multiplied by —&T or via a Legendre transformation F = £ — 75 of the
total energy E regarding the variable S. One obtains in the three-dimensional case

2¢(4) (k7)* E
F=F(T,V)=E-TS=—kTlogZ = — B Tt 31
(T.v) §=-kTlogZ =~ gV =—3, (1)
and in the two-dimensional case
(@) (kT E
= J=E-TS=—kTlogZ = ————5A=—+, 2
F=F(T A qa;) og 2m (ho)? A 3 (32)
from which the radiation pressure can be obtained by
oF 1 [OF 1 /0F
P=—|_= Pi=—— 1\ 5= P, =—— 3:
av ), YT e, \0A ) g, T T ANGa ), 195}

in agreement with (27) and (28). A more detailed discussion and comparison of the ra-
diation laws for the three-dimensional and the two-dimensional case we delay to future.

6. Short remarks about the Casimir effect

The Casimir effect [6-12] is the residual effect from the change of the zero-polnt
energy £ of the given resonator configuration in comparison to the free space and
consists in case of parallel plates in an attractive force (negative pressure) onto the
plates proportional to a;* according to

whe 1

240 ad’

Tm‘u = WD.N - \Uc = — Aw\C
The derivation of this pressure by using a cutoff function of the frequency and by
applying the Euler-Maclaurin summation formula [8,11] makes the impression that it
does not critically depend on the cutoff function which is assumed to correspond to a
cutoff at wavelength of the order of the atomic dimensions. Other calculations which we
intend to publish rather indicate that it depends considerable on the cutoff frequencies
and that the given result corresponds to cutoff frequencies of the order of 7c/a, which is
the frequency where the pure two-dimensional mode structure makes the transition into
a mixed two-dimensional and three-dimensional mode structure. However, this is only
a preliminary information which must be finally clarified. In comparison to the Casimir
force, the residual pressure from the two-dimensional thermal radiation obtained from
(28) and (29) has the (stable) form
nhe [ LT\

P/=pP,—P=- 3¢
45 he ) (35)

that means it is of the same structure as the Casimir {orce with 1/a; substituted by
(kT)/(he) and has the same sign corresponding to an inward pressurc but can be dis-
tinguished by its independence of distance @, or dependence on temperature 7.
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7. Conclusion

It was shown that in disk-like resonators there is in dependence on the resonator
sizes and on the temperature a range for which the thermodynamical equilibrium ra-
diation is essentially a two-dimensional. This causes remarkable deviations from the
known “three-dimensional” radiation laws but shows under discussed conditions a two-
dimensional universal behaviour. The resonator modes of a rectangular resonator were
considered under idealized boundary conditions although there are due to dispersion,
principally, no media for which they can be satisfied for all frequencies. Nevertheless, to
the usual belief, they provide reliable results because for equilibrium thermodynamics
there exists a natural truncation of frequencies that makes it unnecessary to calculate
the frequencies of the resonator modes very exactly in the range of high frequencies in
comparison to the lowest resonator frequencies. Contrary to this, the treatment of the
Casimir effect seems to be sensitive to the frequency cutoff. Thus the Casimir effect
remains to be a very delicate effect with high challenges to the experiment.
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