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We present a canonical quantum theory of radiation in nonlinear media taking into
account the effects of linear dispersion and absorption in a consistent way. We
apply recently developed concepts of the quantization of radiation in dispersive
and absorbing linear media and extend the theory in order to include nonlinear
optical processes. In particular, the method enables us to systematically derive
the noise sources that arise naturally in the nonlinear terms in the space-time
propagation equations of the radiation fields.

1. Introduction

The study of the propagation of nonclassical light in nonlinear media, such as quan-
tum solitons in Kerr niedia, has been of increasing interest because of potential applica-
tions in optical communication systems [1]. The quantization of light in dielectric media
can be performed in different ways. One approach to the problem is to describe the
medium phenomenologically by a permittivity (see, e.g., [2]). Another way is to treat
the medium microscopically on the basis of appropriately chosen dynamical degrees of
freedom (see, e.g., [3, 4]). In what follows we present a microscopic theory and show
that the nonlinearities can be incorporated within a fully canonical model including both
dispersion and losses. For this purpose we start from the model presented in [3] and
extend it to nonlinear media, representing the matter by an anharmonic oscillator field.
We express the Hamiltonian of the nonlinear system in terms of the eigenoperators
of the linear system and derive quantum-mechanically consistent nonlinear evolution
equations for the radiation field in which both dispersion and absorption are included.
Throughout the paper we freely use results and formulae from references [3, 5] for a

1pesented at the Fifth Central-European Workshop on Quantum Optics, Prague, Czech
Republic, April 25 - 28, 1997
2E-mail address: schmidt@tpi.uni-jena.de

0323-0465/97 © Institute of Physics, SAS, Bratislava, Slovakia 331



332
E. Schmidt et al.

linear medium. For the sake of brevity we do not fully reproduce the derivations of
the results ?O_d this paper but refer the reader there lmom a complete S.mwn:»oi:m o el
The paper is organized as follows. In Section 2 the Lagrangian and mwB‘.: i
for the .:o::.:mmm dielectric are introduced. Evolution equations for the field iy
are ﬂ@.Ema in Section 3 and it is shown that additional noise sources a e
nonlinear terms. A summary and concluding remarks are given in mmoio:vw o the

2. Hamiltonian of the nonlinear system

. OE,. starting point is a nonlinear extension to Hopfield’s microscopic model of
Q_m_mn.ﬂ:n [6, 7]. In the linear model the matter is represented by a _E.mgo_:némm.:o .
polarization field coupled to a continuum of harmonic-oscillator reservoir mmEQ weﬁon
9.@»:@ this by the addition of a nonlinear term, but otherwise follow the pr m.m ve
given in [3]. There are, however, some important differences when nonlinear WMM.«W ard
no:mi.mnmnr and these will be emphasized at the appropriate places. e

It is usual to begin by writing down a Lagrangian for the system under consideration

hﬂ\%ﬂ.h?v, (1)
In our case the Lagrangian density £(r) has the form
Lir) = Li(r)+ Lu(r), (2)
Lifr) = Lem(r) + Linar(v) + Lree(r) + Line(r), 3)
where £i(r) governs the linear dynamics of the system and Ly(r) M:S.om:o,mm the non-

linear behaviour. The Lagrangian densit 15 i
ar y L£i(r) is the same as in [3]. We ha
radiation-field part (we work in the Coulomb gauge with V- A(r) = o{ ¢ hive the

Lom(r) = Wo TE CA@) - & ? x >Ev : ? x Zai , ()
the matter or polarizdtion part
Loae() = § [X(0) - X(x) - w3 X(0) - X ()] )
and the reservoir part
Eoplr e m ,\08 dw T:ﬁev Y(r,w) -’ Y(r,w)- Y(r, eL : 6)

The interaction part is

Line(r) = —aA(r) - X(r) — \og dw v(w) X(r)Y (r,w), (7

E_:n:. governs the coupling between the radiation, matter and reservoir fields. The
coupling between the radiation field and polarization field is given by the constant o
B - GO . LEy
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and the function v(w) describes the coupling between the polarization field and the
reservoir fields. The same assumptions apply to v{w) as were described in {3l

With regard to the nonlinear interaction, we assume that Ln{r) is a function of the
fields and/or their spatial derivatives. Since La(r) does not depend on the temporal
derivatives of the fields, the conjugate field momenta are related to the fields in the same
way as in the linear case, so that the relations between the fields and the conjugate field
momenta are the same as in [3]. In what follows we will restrict attention to the case
when Lpni(r) is a function of the polarization field X(r),

Lu(r) = [XE)] (8)

such as Ly(r)~ (X - X)? for a Kerr medium. This means that the nonlinear dynamics
of the system is assumed to arise from the nonlinear motion of the polarization field.

Since we use the Coulomb gauge the field A(r) is transverse. However, the fields
X(r) and Y(r,w) can have longitudinal components [3). 1t is clear that Lni(r) provides,
in general, a coupling between transverse and longitudinal components of these fields.
Therefore, in contrast with the linear model, the Lagrangian does not separate into
two independent parts for the transverse and longitudinal fields. The longitudinal-field
effects, however, will be negligible in the limit of intense transverse light beams.

We use the fact that the conjugate momenta have the same form as in the linear
case to find the Hamiltonian of our system and perform the quantization following [3].
The Hamiltonian can be written as

m,” mw_n*.bs_ﬂmwm_l_vb_\r\fﬁws_. Acv

where the Hamiltonian H, that governs the linear dynamics can be taken from [3], and
the nonlinear interaction term Hy is given by

Flu = — \ dr FIX()). (10)

3. Nonlinear field dynamics
A. Field representation

We now represent the transverse part of the linear Hamiltonian in diagonal form

(3, 5]
~ e z pt
it = \&u,ﬂ\ dw he £1(r, w)£(r,w), {11)
0
where the basic field f{r,w) satisfies the commutation relations [5]

[0, Fe' )] = 8o =) ol =),
[Fitr.), £y 67} = 0, (12)
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&.‘w\?. — r'} being the transverse d-function. Writing
A(r Il\ dw A H
(r) A wA(r,w) + He., (13)
2 ._IA v 1\ d v L
X {r)= W W)+
] X*(r,w)+ He., (14)

we can relate A (r) and X1 (r) to f(r,w) as [5]

- h w

mzev\%iﬁ?,nnr\v f(r',w), (15)

mege? ¢

XLy _fo . % .| h .
Xt (r,w) = ol [elw) = 1] A(r,w) + iy \AIS/\DA]EK.T;EV . (16)

Here
s et _ 1 W
OAmqw _Ev = la mKUTM/\NAEV T.|~.\; AH.NV
is the Green function satisfying the equation
AGE Y w) + 2
. - !
G(r,r',w) + MmAEV G(r,v' \w) = &{r — 1), (18)

and mAEV = &+ Mm.m is the complex permittivity (for the connection between £{(w) and
the oscillator-medium parameters, see [3]). Note that from Egs. (15), (17), and (18)
A(r,w) can be seen to satisfy the spatial propagation equation ,

h w :
OVE@ R )

e~

Next we introduce the transverse electric field strength operator

E(r) = N.A\o dwwA(r,w)+ He, (20)

1t can be proven [3, 5] that the components of the vector potential and the electric field
strength satisfy the well-known canonical commutation relations

T%r@lé_ -

(21)
Relations for the longitudinal fields can be found analogously.
B. Field evolution equations

The equation of motion for f{r,w) in the Heisenberg picture reads as

ihOE(r,w) = ?Fii = hw fr,w) + [f(r,0), :_;. (22)
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Note that (in the nonlinear case) w is not the frequency, but plays the role of a continuous
index of the reservoir fields. It should be clear that due to the linear (equal-time)
connection between A (r,w), XL(r,w), and f(r,w) the equations of motion for A(r,w)
and X+ (r,w) have the same form as Eq. (22). Furthermore, from Eq. (22) we see that
w corresponds to the action of an operator

o= (i + RTUHY), (23)
where the action of H, 2} on an operator O is defined by
7% 0= T,:r& . (24)

In order to obtain a space-time evolution equation for the vector potential, we define

[by power-series expansion of K (w) = ¢~ 2w2e(w)] the operator function

. 5 L2 .
ie(io + htig) = o2 (id + h) e (0 +ATUA ) (25)
We then use this in Eq. (19) to replace the function K (w) =c~ 2wie(w):

h w

mege? ¢

AA(r,w) + wo@ +mL§v Alr,w) = a(@) f(r,w).  (26)

Since K does not depend explicitly on w, in Eq. (26) the w integration can be performed
and the sought evolution equation can formally be given by

> » > ) w. 00 >

AA() + xog +h! :x_v Ay = yl—= \ %mm?v:_.“a:mb.@:
meoc? | Jo c

The properties of e(w) imply [e-(~w) =g (w), &(~w)=—¢(w)] that K is Hermitian. It

may be convenient to decompose K into two parts,

K=K+ Ku, (28)

where K, = K (i8,) = ¢=2(i0;)%(i8;) [together with the term on the right-hand side in
Eq. (27)] describes the efects of linear dispersion and absorption. The nonlinear effects
(and their mixing with the linear effects) are included in Kn.

Equation (27) can be regarded as a basic equation for describing the propagation
of quantized radiation in a nonlinear medium including both dispersion and absorp-
tion. From inspection of the equation we see that the term on the right-hand side is
obviously related to the noise sources that are necessarily associated with absorption
[factor \/ei(w)}. On the left-hand side we can express X(r) in Ha, Eq. (10), in terms
of its transverse and longitudinal parts XL (r) and Xl (r), respectively, and then make
use of Eqgs. (14) and (16) to relate XLi(r) to A(r,w) and f(r,w). In this way we find
that noise sources naturally arise in the nonlinear terms in the equation of motion (27).

It has previously been shown that such noise sources are a necessary component of a

quantization scheme hn a Kerr-type medium [8].
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4. Summary

We have developed a quantization scheme for radiation in a nonlinear dielectric with
dispersion and absorption. This has been achieved by modifying the Lagrangian of the+
linear model [3] by the addition of a general nonlinear term which does not change the :
canonically conjugated momenta of the system. This guarantees that the equal-time '
commutation relations of the linear theory are also valid in the extended theory. In~
particular, the equal-time commutation relations of the free field are preserved, and
the spatial propagation equations for the field components are the same as for a linear -
dielectric. The nonlinearity provides a coupling between transverse and _osmxs&zm_m
fields, making impossible a separation of the Hamiltonian into two completely inde- :
pendent parts as in the linear case. As in the linear dielectric, absorption provides
additional noise. Since the basic equation between the transversal polarization field °
and the electromagnetic field necessarily contains fluctuations, noise sources also arise
naturally in the nonlinear terms.
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