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It is shown that least-squared inversion is a suitable method for reconstructing the
density matrix from measurable time-dependent quantities. It enables one to take
into account various specific features of experiments, such as limited sets of data
and data smearing owing to limited resolution. The method can be used to recon-
struct the quantum state of various systems, such as harmonic and anharmonic
oscillators including molecular vibrations in vibronic transitions and damped mo-
tion. To illustrate it, we consider the reconstruction of the density matrix of a

damped harmonic oscillator.

1. Introduction

] Tomographic methods have been very fruitful for reconstructing the quantum state
of light (1] and matter systems, such as molecular vibrations [2], the transverse mo-
tion of an atom beam [3], and the center-of-mass motion of trapped ions [4]. Usually
undamped harmonic oscillators are considered and the quantum state is reconstructed
from the quadrature-component statistics. However, in many physical systems anhar-
monic and damped motions are observed. A first attempt has been made to reconstruct
the quantum state of anharmonic molecular vibrations using time-resolved fluorescence
spectroscopy [5]. It has been shown that the density matrix can be obtained by inver-
sion of high-dimensional systems of linear equations. An approach has been given in
[6], extending the pattern-function formalism to more general than harmonic potentials
and reconstructing the density matrix from the time-dependent position distribution.
There have been a number of open questions, such as those of the determination of
suitable sampling functions mapping the measured data onto the density matrix, the
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choice of optimum observational times, and the inclusion into the scheme of QmEE:m
effects and data smearing. Some of the questions have been addressed in [7]. For all the
systems mentioned the general problem to be solved is the inversion of linear equations
that relate the measured quantities to the density-matrix elements of the system under
study. This can be done in a very efficient way using the least-squares method, which
has already been applied to various quantum-state reconstruction problems, such as
the reconstruction of the quantum state of cavity fields [8], vibrations of trapped ions
[9], and optical field by balanced [10] and unbalanced [11] homodyning. Here we wang
to show the applicability of the least squares inversion to the state reconstruction of a
damped oscillator.

2. Basic equations

Let us consider a quantum-mechanical system and assume that at some initial time
it is prepared in a state with density matrix gn ns = (n]g|n’), where |n) are the energy
eigenstates of the system Hamiltonian. Further, let us assume that there is a measurable
time-dependent (probability) distribution p(z,1) of a quantity = that can be given by a
linear combination of all density-matrix elements g, .,/ that are initially excited, with
linearly independent coefficient functions Sy, (2,1},

EAH‘.S = M.W:_:.AHMS Ononi- A:

n 1

When we consider, e.g., a particle that moves in a potential well and is initially prepared
in a bound state (e.g., a molecular vibration in a vibronic system below the dissociation
level), only the discrete part of the energy spectrum is excited (n=1,2,3,...). For the
sake of transparency, in what follows we restrict attention to discrete spectra. However,
replacing in Eq. (1) the sums with integrals (or combinations of sums and integrals),
excitations of continuous parts of the spectrum can be treated accordingly. For any
physical state the density-matrix elements gn n+ must eventually decrease indefinitely
with increasing n(n'). Therefore it follows that the expression on the right-hand side of
Eq. (1) can always be approximated to any desired degree of accuracy by setting g, '
= 0 for n(n'} > nmax, if Nmax is suitably large.

From the assumptions made it is clear, that Eq. (1) can, in principle, be inverted in
order to obtain the quantum state (at time ¢ =0) from the measured function p(z,t).
Direct application of least-squares inversion to Eq. (1) yields [7]

Bt = \ &H,\ dt Ky ne(2,1) plz, 1), (2)
X T
where the sampling function is given by

Kop(®, )= Y Fapumms Spmil,?) (3)

m,m' <fmax

and F = G™! with the matrix G being defined by
Gm.m'n,nt H\ a_a\ dt Sy, (2, 8)5 nr(z,t). (4)
b's T '

Here T and X, respectively, characterize the measurement time and the size of the

interval in which z is measured. The symbol g, ,+ is Introduced to distinguish between
the reconstructed density matrix and the exact one (g, n' = 0 o fOr gy — 00).
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3. Damped systems

It is worth noting that Eq. (2) can also be applied to damped systems. Let us

suppose that the density matrix evolves according to some master equation ¢ = Lo,

where £ is a linear superoperator,

5 1.~ . -

Lo= I8+ Re, (5)
with R describing the effect of (Markovian) damping. Since the solution of this master
equation can always be represented in the form of

Om,m’ Qv = M QS.EJ:E\QV Onn’y A@v

On.nt = 0n,n(0), the function Spn(z,t) in Eq. (1) can be given by
.m,:;:\ﬂ&_&v = M %3_3_ AHV Q«:,S::_:\Qvu ANV
m,m’

where S ni(2) = San{z,0) n_mamnarzmm, %no?&.:m to Eq. Eq ?.m initial %mﬁ.:ucﬁ._w%
p(z,0). To demonstrate the method, let us consider a ozm-awam:m‘ﬂosm_ mmHEoEo oscil-
lator {w=1) undergoing energy relaxation and assume that p(z,t) is the Sﬁm-amvmzamﬂ
position distribution. In this case we have .m:_:.\.?v = U (2) P (), JS; S:T& =
A/\MM::_.VL\M exp(—2?/2)Hn(z) being the harmonic-oscillator mz.mmm% eigenfunctions,
and Rp= IEQ* ap+ mmqg — w:ma: (8, damping constant). Solving ﬁmgm master equa-
tion yields Um,min,nt(t) HMUmwno mﬂ+?3&3+>:&3‘+r:\QB.{QV for m/ > m, where

1 [(m+ Dl m+ 1+ k)]
Umpet®) = | ™ t(m + B!

and QS._.:\ES.J:QV = QMfSJSB\ANV.
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Fig. 1. Sampling function Ko(z,t) for reconstructing the real part of the density-matrix
element go,1 (at time i = 0) of a damped harmonic oscillator for nmax = 12 and two values of

the damping constant [ = 0.03 (a), 8= 0.08 {b)].

Examples of the sampling function (3) are plotted in Fig. 1, and qmm:.:m of the
density-matrix reconstruction are shown in Fig. 2. In our nogw:»..m_. oxvm:.smw.;m we
have assumed that 10° events are recorded at each of 42 times m@:_maﬁ.i_% a_m.a:g;mm
over a 27 interval. For small damping [Fig. 1a] the sampling function is essentially the

same as the analytical result for an undamped oscillator (see, e.g.. [6]). With increasing
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damping it reaches larger absolute values, which (for chosen number of events) implies
an increase of the statistical error. Whereas for short times it can be highly structurized,
for long times it becomes more and more structureless due to damping [Fig. 1b]. For
larger damping a larger number of events must be recorded to keep the statistical error
sufficiently small. Using the same amount of data for an undamped oscillator reduces the
error such that it cannot be resolved on the scale used in Fig. 2b. In summary we have
shown that the density matrix of a damped harmonic oscillator can be reconstructed
with a sufficiently good precision.

(a) (b) -

Fig. 2. Reconstruction of the density-matrix elements of a damped harmonic oscillator (3 =
0.08), which is initially prepared in a state [¢)) = A(la) — | — a)) (@ =1.5), from the data in
a simulated position measurement for T = 2a; (a) reconstructed density matrix (real part),
(b) comparison of the reconstructed diagonal elements of damped (full lines) and undamped
(dashed lines) oscillators. The error bars indicate the statistical error.
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