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The “discrete-time” dynamics is addressed in the framework of the finite photon
number and discrete phase formalism. Moreover, the approximations of number-
phase commutator are compared.

1. Introduction

The importance of the commutator in the formalism of quantum optics derives
from two sources. First, the commutator enters the Heisenberg-Robertson uncertainty
relation [1]. Second, it is connected to the dynamics of a system. The role of the com-
mutator in the Heisenberg-Robertson uncertainty relation is almost never doubted. The
derivation of this uncertainty relation comprises an introduction of operator variances
and covariance which, as a quasiclassical notion, is obtained through symmetrization of
the operator product. A necessary antisymmetric term can be expressed by the com-
mutator. One can doubt the introduction of an operator variance (e.g., the quantum
phase variance) rather than the commutator in the uncertainty relation.

In the dynamics, the commutator enters an evolution equation, because the time on
which the desired solutions of the evolution equation depend, is a continuous parameter.
In the harmonic oscillator the time and the phase are linked together. Although we
share the opinion that the continuous time and a discrete phase can co-exist in the
harmonic oscillator, we are tempted by the idea that the discrete phase could also
mean a “discrete” time.

The discrete phase occurs along with a finite range of the photon number. In this
situation we can replace the usual commutator by the group-theoretical commutator,
which can enter the Weyl commutation relation. The Weyl commutation relation can
become a Heisenberg commutation relation between the operators which generate ar-
bitrarily small shifts. Since the exponential phase and angle operators cause the least
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shift of the action and angular momentum by the Planck constant / and A = h/2n,
respectively, the early recommendation follows to restrict oneself to the commutation
relation between the action and the operator of the least shift, but not directly betweep
the action and the quantum phase [2]. We can thus avoid an “ugly” commutator. Byt
what (o do in case this singular commutator is of appeal [3,4]7 Besides, a difference
between the action operator and the displaced action operator better corresponds o a
hybrid of Lie-algebraic and group-theoretical commutators.

Barnett and Pegg [5] intended to characterize the limit behaviour of the cominutator
of the number operator and their phase operator in the finite photon number and
discrete phase formalism. Were they to modify London’s recommendation and to study
the commutation relation between the operator of the least shift in the discrete phase
(the phase step) and their phase operator? Or, as remarked, they could study the
difference between the phase operator and the displaced phase operator. As stated
above, the uncertainty relation does not allow us to doubt the commutator and Barnett

and Pegg {5] have expressed only the commutator of the number operator and their
phase operator indeed.

2. Hermitian optical phase operators

Pegg and Barnett [6,7] introduced the Hermitian phase formalism, which is based
on the observation that the states with the better-and-better-defined phase can have a
simple number state basis representation [8]. Thus they restrict the state space to a
finite (s + 1)-dimensional Hilbert space H, spanned by the number states [0),11),...,[s).
The identity operator appropriate to this space and the restricted number operator are
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In the space #, Pegg and Barnett define a complete orthonormal system of phase states
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The value of 8; can be chosen as any real number. An Hermitian optical phase operator
is constructed directly from the orthonormal phase states [6]
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The appropriate matrix elements read .
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For example, the introduced operator ¢g_, g,,s has an eigenvalue $(0_1 + 0,)
phase state [_;:s) = |0,;5).
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3. Commutators s

In {5] the limit beliaviour of the commutator [n,, gy, ,] as s tends to infinity hag’
been characterized. There does not exist any function J{) to enable ope to express this'
commutator ag i&,m?mv exactly, although approximations are possible. The requirerment
that an approximation should comprise the phase state 160;s), leads to the relation

l&ﬁwm\uu &,QPL ~ Mu - A.m + MZ%G_ MVA%OWM_
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There exists a function f(9) to enable us to approximate the commutator,
Io—(s+ D)[00; 5)(0o; s = f($6,.5), (15)
where 3 .
2r s+
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Instead, we require that the approximation should use the phase state EL\B&. Thus
we obtain the relation
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There exists a function T () to express the approximadte commutator,
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The commutator [Aq, Pa_,,00,5] and its approximations can be obtained similarly.
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