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We have shown [1] that dynamical localization happens in the quantum motion
of an jon in a Paul trap interacting with a standing wave laser field. The variable
which shows dynamical localization is the vibrational quantum number of a refe-
rence oscillator, which leads to localization in both mementum and position. Here
we discuss shortly the effect of decoherence.

1. Introduction

Dynamical localization is a peculiarity of quantum systems with classically chaotic
counterparts. It is an analogue of Anderson localization [2] of electronic waves in one-
dimensional disordered solids. Whereas in Anderson localization the disorder leads to
randomness in the classical dynamics, in systems showing dynamical localization the
classical dynamics is only quasirandom, l.e. deterministic but chaotic. In both cases,
according to classical physics, diffusion in the dynamical variables is expected, while
quantum theory predicts localization. Dynamical localization has been experimentally
verified in two types of systems: as suppression of jonization of Rydberg atoms in
microwave fields [3], and localization in the momentum distribution of an atom moving
in a phase modulated standing wave [4]. We have shown that dynamical localization
appears also in the quantum motion of an jon in a Paul trap interacting with a standing
wave laser field [1].

For the analysis of dynamical localization the definition of suitable action-angle
variables is essential. In the system considered here the Floquet theory of the time-
dependent harmonic oscillator [5] simplifies the dynamics so that we are able to identify
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the vibrational quantum number of a reference oscillator as the variable which shows
localization. In Section 2 we discuss this briefly, following the argumentation presented
in [1].

Dynamical localization is a quantum coherence effect and extremely sensitive to
dissipation. For this reason we have chosen the standing wave laser field to he far
detuned from the atomic transition. In section 3 we discuss the role of decoherence,

2. Dynamical localization

The phenomenon of dynamical localization in the Paul trap emerges because (i) the
Paul trap is an explicitly time dependent, device, (ii) a standing laser wave provides a
spatially periodic light potential for the center-of-mass motion, and (iii) the temperature
of the ion is so low that its motion has to be treated quantum mechanically.

We consider the standard Paul trap set-up realized experimentally in many labs
(e.g. [7]): a standing laser field of frequency wy and wave vector k aligned along the z-
axis couples the internal states of a single two-level ion of mass m to the center-of-mass
motion. The resulting dynamics of the ion follows from the time-dependent Schrodinger
equation with the Hamiltonian
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Here the parameters a and ¢ denote [8] the DC and AC voltages applied to the trap.
The frequency of the AC field is w. Here w, is the atomic transition frequency and Qg
1s the Rabi-frequency.

In order to avoid decoherence we assume the detuning A = wy ~w, to be large. After
making the rotating wave approximation and introducing the dimensionless position z =
2kZ, time { = wi/2 and momentum p = 4kp/mw we get the dimensionless Hamiltonian
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with the effective coupling constant Q = 21k2Q% /mw’ A [9]. The corresponding effective
Planck constant is & = 8&%h/muw.

Applying the Floquet theory of the time-dependent harmonic oscillator [5], we find
that the Hamiltonian can be written in terms of the action variable I and the an-
gle variable @ of a time-independent reference harmonic oscillator of frequency wy:
Hr =w, I+ QV(1,0,1). The new potential is VI(1,0,1) = |e(t)|? cos[|e(t)|\ /2] ]y sin 4],
where ¢(t) is the solution of the classical Mathieu equation [5]. The reference oscillator
frequency w, = w, + Mmooo ncy, where w, is the secular frequency and ¢,, are the Fourier
coefficients of ().

The Hamiltonian fl; suggests classical diffusion in J [10], implying that diffusion in
position and momentum has a square-root, not linear, dependence on time quantum
mechanically we expect localization in /. We have confirmed this by wave packet
simulations, and can thus conclude that the variable which shows dynanueal locs
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for the on-resonance case A = 0 of Eq. (1); it is formally the same as the Hamiltonian
for the far-detuned case, Eq. (2). In this case spontaneous emission destroys, via recoil
kicks, the quantum coherence of the motion, and the pure state describing it becomes
a mixed state; this reproduces the classical result, as expected. The destructive effect
of decoherence can be avoided by large enough detuning.

4. Conclusions

We discussed dynamical localization of the motion of an ion stored in a Paul trap
and interacting with a standing wave laser field [1]. We showed, as a check of con-
sistency, that when the quantum coherence of the motional wave packet is destroyed
by spontaneous emission, we obtain the same result as for a classical ensemble. The
coherence necessary for the observation of dynamical localization can be preserved by
detuning the laser field far off from the atomic transition.
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