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We build up in a systematic way the joint Wigner representation for the Dicke-
type atom-field interactions. We add certain new results for the systems described
by the Jaynes~Cummings model.

1. Introduction

Wigner functions, or more generally quasiprobability density functions and related
phase space methods have been proven to be extremely useful in quantum optics [1, 2],
regarding the description of the states of an electromagnetic field mode or the vibrational
states of molecules. This has been made possible by the smart construction of these
functions [3], which allows one to place back the description of a quantum system
onto the corresponding classical phase space. However, quantum optics deals with the
interaction of atoms with the electromagnetic field. Thus, it is rather natural to ask
whether it is possible to incorporate also the atomic part of an interacting system into
a phase space representation, that is, to give a fully phase space description of the
problem.

2. Fully phase space description

It is a very frequent and common situation in quantum optics, that the interaction
between the collection of identical atoms and the field mode is nearly resonant, and the
atoms interact with each other only through the field mode. In this case the atoms can
be treated as two-level systems, while their collection as an angular momentum. The
interacting system can be described by a Dicke-type Hamilton operator [4, 5].

For such systems the adequate tool for the fully phase space representation is the
Joint Wigner function [6, 7]. We briefly summarize here its basic elements, which are
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based on the definitions of the usual Wigner function [3, 8, 9, 10] and of the Wigner
function for angular momentum [11, 12, 13].

The underlying classical phase space is the direct product of a spherical surface wit
a plane. (These latters are the classical phase spaces for an angular momentum an
a field mode, respectively.) If we want to represent an operator A, acting in the staf,
space of the interacting system, by a function over the corresponding phase space, firs
we expand it in a suitable operator basis. For our systems this basis is constituted b
the tensor products of the displacement operators [9] with the multipole operators [12]
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where j is the angular momentum quantum number characterizing the atomic system
The expansion of A is the following [9, 12]: ;
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where the characteristic functions are to be calculated as
A * *
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Now we have to replace the operator basis (1) by a suitable function basis, which, if we
want to obtain a Wigner representation, is the set of functions
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where Yx (8, #) denote the spherical harmonics. This wavmbw transforms (2) into the
following equation, which is the definition of the joint Wigner function for A:
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In the case of the joint Wigner function for the density operator, W(*), it is customary .
to normalize it in such a way, that its integral ovet the phase space is unity. This can
be done with the definition
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With the help of the joint Wigner functions one can calculate the quantum expectation
values by the following integral over the phase space: o

Tr(p(t) A) = ,\MNW\%Q\% mmi\& W) (a,a*,0,6,8) W (a, 0", 0,4). (T)

In order to be able to investigate time evolution, we need an equation of motion.
For the joint Wigner function of the density operator it was given in [6], treating the
interaction with the Jaynes—Cummings model. In [7] a solution was presented assuming
the initial state to be a number state for the field and the excited state for the atom.
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Fig. 1. We plot the reduced joint Wigner function ggﬁ_o\_.ﬁ t) (see the n.mMn.mom. explanation)
at six moments of time (in units of g~'), assuming resonance, and the initial state to be a
coherent state with amplitude 1 for the field and the excited state for the atom.

3. Application to the Jaynes—Cummings model

Now we give certain new results for the joint Wigner representation mvn:mm to the
mWEEmmanm.mo_Erm:armnmmmou_%osmnio._m,iwaoaﬁn wv EﬁmmmnSsmé_nrmaomlz

resonant field mode. We describe the interaction by the well known Jaynes-Cummings
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Hamilton operator {14]:
1 1 r
s t § o
H;c = hwy(a'a+ mv + mmEna.n + hglacy + alo.). (8).
According to definition (5), and setting o = [ale™'¥, the joint Wigner function corre:
sponding to the Hamilton operator (8) is P

1 V3
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WHS)(|al, 9,8, 6) = = wylel® + 7 Wa cos 8 + V3 g |a] sin 8 cos(¢ — ¥)
If we want to visualize the joint Wigner function, we face the following problem
it has four real phase space coordinates, and generally also time, as its arguments
However, we can derive six kinds of reduced joint Wigner function by integrating nmm
joint Wigner function with respect to two coordinates not of interest. It is interesting to-
keep one field and one atomic variable, since the resulting reduced joint Wigner function
still contains information about the corresponding correlations. In Fig. 1 we plot the

reduced joint Wigner function

ﬂeﬂ_&_?vn\é_a_\& sin0 W) (|al, ,8, 6,1) ﬁe ,,

at six moments of time (measured in units of g~!), assuming resonance, and the EEE@
state to be a coherent state with amplitude 1 for the field and the excited state for the

atom.
Finally we note, that it is possible to treat these systems with the help of the joint

Wigner representation also under more realistic conditions, such as a damping cavity
or a position dependent Rabi frequency.
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